1*c2c66affSColin Finck /*
2*c2c66affSColin Finck * jquant2.c
3*c2c66affSColin Finck *
4*c2c66affSColin Finck * Copyright (C) 1991-1996, Thomas G. Lane.
5*c2c66affSColin Finck * Modified 2011 by Guido Vollbeding.
6*c2c66affSColin Finck * This file is part of the Independent JPEG Group's software.
7*c2c66affSColin Finck * For conditions of distribution and use, see the accompanying README file.
8*c2c66affSColin Finck *
9*c2c66affSColin Finck * This file contains 2-pass color quantization (color mapping) routines.
10*c2c66affSColin Finck * These routines provide selection of a custom color map for an image,
11*c2c66affSColin Finck * followed by mapping of the image to that color map, with optional
12*c2c66affSColin Finck * Floyd-Steinberg dithering.
13*c2c66affSColin Finck * It is also possible to use just the second pass to map to an arbitrary
14*c2c66affSColin Finck * externally-given color map.
15*c2c66affSColin Finck *
16*c2c66affSColin Finck * Note: ordered dithering is not supported, since there isn't any fast
17*c2c66affSColin Finck * way to compute intercolor distances; it's unclear that ordered dither's
18*c2c66affSColin Finck * fundamental assumptions even hold with an irregularly spaced color map.
19*c2c66affSColin Finck */
20*c2c66affSColin Finck
21*c2c66affSColin Finck #define JPEG_INTERNALS
22*c2c66affSColin Finck #include "jinclude.h"
23*c2c66affSColin Finck #include "jpeglib.h"
24*c2c66affSColin Finck
25*c2c66affSColin Finck #ifdef QUANT_2PASS_SUPPORTED
26*c2c66affSColin Finck
27*c2c66affSColin Finck
28*c2c66affSColin Finck /*
29*c2c66affSColin Finck * This module implements the well-known Heckbert paradigm for color
30*c2c66affSColin Finck * quantization. Most of the ideas used here can be traced back to
31*c2c66affSColin Finck * Heckbert's seminal paper
32*c2c66affSColin Finck * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
33*c2c66affSColin Finck * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
34*c2c66affSColin Finck *
35*c2c66affSColin Finck * In the first pass over the image, we accumulate a histogram showing the
36*c2c66affSColin Finck * usage count of each possible color. To keep the histogram to a reasonable
37*c2c66affSColin Finck * size, we reduce the precision of the input; typical practice is to retain
38*c2c66affSColin Finck * 5 or 6 bits per color, so that 8 or 4 different input values are counted
39*c2c66affSColin Finck * in the same histogram cell.
40*c2c66affSColin Finck *
41*c2c66affSColin Finck * Next, the color-selection step begins with a box representing the whole
42*c2c66affSColin Finck * color space, and repeatedly splits the "largest" remaining box until we
43*c2c66affSColin Finck * have as many boxes as desired colors. Then the mean color in each
44*c2c66affSColin Finck * remaining box becomes one of the possible output colors.
45*c2c66affSColin Finck *
46*c2c66affSColin Finck * The second pass over the image maps each input pixel to the closest output
47*c2c66affSColin Finck * color (optionally after applying a Floyd-Steinberg dithering correction).
48*c2c66affSColin Finck * This mapping is logically trivial, but making it go fast enough requires
49*c2c66affSColin Finck * considerable care.
50*c2c66affSColin Finck *
51*c2c66affSColin Finck * Heckbert-style quantizers vary a good deal in their policies for choosing
52*c2c66affSColin Finck * the "largest" box and deciding where to cut it. The particular policies
53*c2c66affSColin Finck * used here have proved out well in experimental comparisons, but better ones
54*c2c66affSColin Finck * may yet be found.
55*c2c66affSColin Finck *
56*c2c66affSColin Finck * In earlier versions of the IJG code, this module quantized in YCbCr color
57*c2c66affSColin Finck * space, processing the raw upsampled data without a color conversion step.
58*c2c66affSColin Finck * This allowed the color conversion math to be done only once per colormap
59*c2c66affSColin Finck * entry, not once per pixel. However, that optimization precluded other
60*c2c66affSColin Finck * useful optimizations (such as merging color conversion with upsampling)
61*c2c66affSColin Finck * and it also interfered with desired capabilities such as quantizing to an
62*c2c66affSColin Finck * externally-supplied colormap. We have therefore abandoned that approach.
63*c2c66affSColin Finck * The present code works in the post-conversion color space, typically RGB.
64*c2c66affSColin Finck *
65*c2c66affSColin Finck * To improve the visual quality of the results, we actually work in scaled
66*c2c66affSColin Finck * RGB space, giving G distances more weight than R, and R in turn more than
67*c2c66affSColin Finck * B. To do everything in integer math, we must use integer scale factors.
68*c2c66affSColin Finck * The 2/3/1 scale factors used here correspond loosely to the relative
69*c2c66affSColin Finck * weights of the colors in the NTSC grayscale equation.
70*c2c66affSColin Finck * If you want to use this code to quantize a non-RGB color space, you'll
71*c2c66affSColin Finck * probably need to change these scale factors.
72*c2c66affSColin Finck */
73*c2c66affSColin Finck
74*c2c66affSColin Finck #define R_SCALE 2 /* scale R distances by this much */
75*c2c66affSColin Finck #define G_SCALE 3 /* scale G distances by this much */
76*c2c66affSColin Finck #define B_SCALE 1 /* and B by this much */
77*c2c66affSColin Finck
78*c2c66affSColin Finck /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
79*c2c66affSColin Finck * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B
80*c2c66affSColin Finck * and B,G,R orders. If you define some other weird order in jmorecfg.h,
81*c2c66affSColin Finck * you'll get compile errors until you extend this logic. In that case
82*c2c66affSColin Finck * you'll probably want to tweak the histogram sizes too.
83*c2c66affSColin Finck */
84*c2c66affSColin Finck
85*c2c66affSColin Finck #if RGB_RED == 0
86*c2c66affSColin Finck #define C0_SCALE R_SCALE
87*c2c66affSColin Finck #endif
88*c2c66affSColin Finck #if RGB_BLUE == 0
89*c2c66affSColin Finck #define C0_SCALE B_SCALE
90*c2c66affSColin Finck #endif
91*c2c66affSColin Finck #if RGB_GREEN == 1
92*c2c66affSColin Finck #define C1_SCALE G_SCALE
93*c2c66affSColin Finck #endif
94*c2c66affSColin Finck #if RGB_RED == 2
95*c2c66affSColin Finck #define C2_SCALE R_SCALE
96*c2c66affSColin Finck #endif
97*c2c66affSColin Finck #if RGB_BLUE == 2
98*c2c66affSColin Finck #define C2_SCALE B_SCALE
99*c2c66affSColin Finck #endif
100*c2c66affSColin Finck
101*c2c66affSColin Finck
102*c2c66affSColin Finck /*
103*c2c66affSColin Finck * First we have the histogram data structure and routines for creating it.
104*c2c66affSColin Finck *
105*c2c66affSColin Finck * The number of bits of precision can be adjusted by changing these symbols.
106*c2c66affSColin Finck * We recommend keeping 6 bits for G and 5 each for R and B.
107*c2c66affSColin Finck * If you have plenty of memory and cycles, 6 bits all around gives marginally
108*c2c66affSColin Finck * better results; if you are short of memory, 5 bits all around will save
109*c2c66affSColin Finck * some space but degrade the results.
110*c2c66affSColin Finck * To maintain a fully accurate histogram, we'd need to allocate a "long"
111*c2c66affSColin Finck * (preferably unsigned long) for each cell. In practice this is overkill;
112*c2c66affSColin Finck * we can get by with 16 bits per cell. Few of the cell counts will overflow,
113*c2c66affSColin Finck * and clamping those that do overflow to the maximum value will give close-
114*c2c66affSColin Finck * enough results. This reduces the recommended histogram size from 256Kb
115*c2c66affSColin Finck * to 128Kb, which is a useful savings on PC-class machines.
116*c2c66affSColin Finck * (In the second pass the histogram space is re-used for pixel mapping data;
117*c2c66affSColin Finck * in that capacity, each cell must be able to store zero to the number of
118*c2c66affSColin Finck * desired colors. 16 bits/cell is plenty for that too.)
119*c2c66affSColin Finck * Since the JPEG code is intended to run in small memory model on 80x86
120*c2c66affSColin Finck * machines, we can't just allocate the histogram in one chunk. Instead
121*c2c66affSColin Finck * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
122*c2c66affSColin Finck * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
123*c2c66affSColin Finck * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
124*c2c66affSColin Finck * on 80x86 machines, the pointer row is in near memory but the actual
125*c2c66affSColin Finck * arrays are in far memory (same arrangement as we use for image arrays).
126*c2c66affSColin Finck */
127*c2c66affSColin Finck
128*c2c66affSColin Finck #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
129*c2c66affSColin Finck
130*c2c66affSColin Finck /* These will do the right thing for either R,G,B or B,G,R color order,
131*c2c66affSColin Finck * but you may not like the results for other color orders.
132*c2c66affSColin Finck */
133*c2c66affSColin Finck #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
134*c2c66affSColin Finck #define HIST_C1_BITS 6 /* bits of precision in G histogram */
135*c2c66affSColin Finck #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
136*c2c66affSColin Finck
137*c2c66affSColin Finck /* Number of elements along histogram axes. */
138*c2c66affSColin Finck #define HIST_C0_ELEMS (1<<HIST_C0_BITS)
139*c2c66affSColin Finck #define HIST_C1_ELEMS (1<<HIST_C1_BITS)
140*c2c66affSColin Finck #define HIST_C2_ELEMS (1<<HIST_C2_BITS)
141*c2c66affSColin Finck
142*c2c66affSColin Finck /* These are the amounts to shift an input value to get a histogram index. */
143*c2c66affSColin Finck #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
144*c2c66affSColin Finck #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
145*c2c66affSColin Finck #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
146*c2c66affSColin Finck
147*c2c66affSColin Finck
148*c2c66affSColin Finck typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
149*c2c66affSColin Finck
150*c2c66affSColin Finck typedef histcell FAR * histptr; /* for pointers to histogram cells */
151*c2c66affSColin Finck
152*c2c66affSColin Finck typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
153*c2c66affSColin Finck typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */
154*c2c66affSColin Finck typedef hist2d * hist3d; /* type for top-level pointer */
155*c2c66affSColin Finck
156*c2c66affSColin Finck
157*c2c66affSColin Finck /* Declarations for Floyd-Steinberg dithering.
158*c2c66affSColin Finck *
159*c2c66affSColin Finck * Errors are accumulated into the array fserrors[], at a resolution of
160*c2c66affSColin Finck * 1/16th of a pixel count. The error at a given pixel is propagated
161*c2c66affSColin Finck * to its not-yet-processed neighbors using the standard F-S fractions,
162*c2c66affSColin Finck * ... (here) 7/16
163*c2c66affSColin Finck * 3/16 5/16 1/16
164*c2c66affSColin Finck * We work left-to-right on even rows, right-to-left on odd rows.
165*c2c66affSColin Finck *
166*c2c66affSColin Finck * We can get away with a single array (holding one row's worth of errors)
167*c2c66affSColin Finck * by using it to store the current row's errors at pixel columns not yet
168*c2c66affSColin Finck * processed, but the next row's errors at columns already processed. We
169*c2c66affSColin Finck * need only a few extra variables to hold the errors immediately around the
170*c2c66affSColin Finck * current column. (If we are lucky, those variables are in registers, but
171*c2c66affSColin Finck * even if not, they're probably cheaper to access than array elements are.)
172*c2c66affSColin Finck *
173*c2c66affSColin Finck * The fserrors[] array has (#columns + 2) entries; the extra entry at
174*c2c66affSColin Finck * each end saves us from special-casing the first and last pixels.
175*c2c66affSColin Finck * Each entry is three values long, one value for each color component.
176*c2c66affSColin Finck *
177*c2c66affSColin Finck * Note: on a wide image, we might not have enough room in a PC's near data
178*c2c66affSColin Finck * segment to hold the error array; so it is allocated with alloc_large.
179*c2c66affSColin Finck */
180*c2c66affSColin Finck
181*c2c66affSColin Finck #if BITS_IN_JSAMPLE == 8
182*c2c66affSColin Finck typedef INT16 FSERROR; /* 16 bits should be enough */
183*c2c66affSColin Finck typedef int LOCFSERROR; /* use 'int' for calculation temps */
184*c2c66affSColin Finck #else
185*c2c66affSColin Finck typedef INT32 FSERROR; /* may need more than 16 bits */
186*c2c66affSColin Finck typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
187*c2c66affSColin Finck #endif
188*c2c66affSColin Finck
189*c2c66affSColin Finck typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
190*c2c66affSColin Finck
191*c2c66affSColin Finck
192*c2c66affSColin Finck /* Private subobject */
193*c2c66affSColin Finck
194*c2c66affSColin Finck typedef struct {
195*c2c66affSColin Finck struct jpeg_color_quantizer pub; /* public fields */
196*c2c66affSColin Finck
197*c2c66affSColin Finck /* Space for the eventually created colormap is stashed here */
198*c2c66affSColin Finck JSAMPARRAY sv_colormap; /* colormap allocated at init time */
199*c2c66affSColin Finck int desired; /* desired # of colors = size of colormap */
200*c2c66affSColin Finck
201*c2c66affSColin Finck /* Variables for accumulating image statistics */
202*c2c66affSColin Finck hist3d histogram; /* pointer to the histogram */
203*c2c66affSColin Finck
204*c2c66affSColin Finck boolean needs_zeroed; /* TRUE if next pass must zero histogram */
205*c2c66affSColin Finck
206*c2c66affSColin Finck /* Variables for Floyd-Steinberg dithering */
207*c2c66affSColin Finck FSERRPTR fserrors; /* accumulated errors */
208*c2c66affSColin Finck boolean on_odd_row; /* flag to remember which row we are on */
209*c2c66affSColin Finck int * error_limiter; /* table for clamping the applied error */
210*c2c66affSColin Finck } my_cquantizer;
211*c2c66affSColin Finck
212*c2c66affSColin Finck typedef my_cquantizer * my_cquantize_ptr;
213*c2c66affSColin Finck
214*c2c66affSColin Finck
215*c2c66affSColin Finck /*
216*c2c66affSColin Finck * Prescan some rows of pixels.
217*c2c66affSColin Finck * In this module the prescan simply updates the histogram, which has been
218*c2c66affSColin Finck * initialized to zeroes by start_pass.
219*c2c66affSColin Finck * An output_buf parameter is required by the method signature, but no data
220*c2c66affSColin Finck * is actually output (in fact the buffer controller is probably passing a
221*c2c66affSColin Finck * NULL pointer).
222*c2c66affSColin Finck */
223*c2c66affSColin Finck
224*c2c66affSColin Finck METHODDEF(void)
prescan_quantize(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)225*c2c66affSColin Finck prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
226*c2c66affSColin Finck JSAMPARRAY output_buf, int num_rows)
227*c2c66affSColin Finck {
228*c2c66affSColin Finck my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
229*c2c66affSColin Finck register JSAMPROW ptr;
230*c2c66affSColin Finck register histptr histp;
231*c2c66affSColin Finck register hist3d histogram = cquantize->histogram;
232*c2c66affSColin Finck int row;
233*c2c66affSColin Finck JDIMENSION col;
234*c2c66affSColin Finck JDIMENSION width = cinfo->output_width;
235*c2c66affSColin Finck
236*c2c66affSColin Finck for (row = 0; row < num_rows; row++) {
237*c2c66affSColin Finck ptr = input_buf[row];
238*c2c66affSColin Finck for (col = width; col > 0; col--) {
239*c2c66affSColin Finck /* get pixel value and index into the histogram */
240*c2c66affSColin Finck histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
241*c2c66affSColin Finck [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
242*c2c66affSColin Finck [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
243*c2c66affSColin Finck /* increment, check for overflow and undo increment if so. */
244*c2c66affSColin Finck if (++(*histp) <= 0)
245*c2c66affSColin Finck (*histp)--;
246*c2c66affSColin Finck ptr += 3;
247*c2c66affSColin Finck }
248*c2c66affSColin Finck }
249*c2c66affSColin Finck }
250*c2c66affSColin Finck
251*c2c66affSColin Finck
252*c2c66affSColin Finck /*
253*c2c66affSColin Finck * Next we have the really interesting routines: selection of a colormap
254*c2c66affSColin Finck * given the completed histogram.
255*c2c66affSColin Finck * These routines work with a list of "boxes", each representing a rectangular
256*c2c66affSColin Finck * subset of the input color space (to histogram precision).
257*c2c66affSColin Finck */
258*c2c66affSColin Finck
259*c2c66affSColin Finck typedef struct {
260*c2c66affSColin Finck /* The bounds of the box (inclusive); expressed as histogram indexes */
261*c2c66affSColin Finck int c0min, c0max;
262*c2c66affSColin Finck int c1min, c1max;
263*c2c66affSColin Finck int c2min, c2max;
264*c2c66affSColin Finck /* The volume (actually 2-norm) of the box */
265*c2c66affSColin Finck INT32 volume;
266*c2c66affSColin Finck /* The number of nonzero histogram cells within this box */
267*c2c66affSColin Finck long colorcount;
268*c2c66affSColin Finck } box;
269*c2c66affSColin Finck
270*c2c66affSColin Finck typedef box * boxptr;
271*c2c66affSColin Finck
272*c2c66affSColin Finck
273*c2c66affSColin Finck LOCAL(boxptr)
find_biggest_color_pop(boxptr boxlist,int numboxes)274*c2c66affSColin Finck find_biggest_color_pop (boxptr boxlist, int numboxes)
275*c2c66affSColin Finck /* Find the splittable box with the largest color population */
276*c2c66affSColin Finck /* Returns NULL if no splittable boxes remain */
277*c2c66affSColin Finck {
278*c2c66affSColin Finck register boxptr boxp;
279*c2c66affSColin Finck register int i;
280*c2c66affSColin Finck register long maxc = 0;
281*c2c66affSColin Finck boxptr which = NULL;
282*c2c66affSColin Finck
283*c2c66affSColin Finck for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
284*c2c66affSColin Finck if (boxp->colorcount > maxc && boxp->volume > 0) {
285*c2c66affSColin Finck which = boxp;
286*c2c66affSColin Finck maxc = boxp->colorcount;
287*c2c66affSColin Finck }
288*c2c66affSColin Finck }
289*c2c66affSColin Finck return which;
290*c2c66affSColin Finck }
291*c2c66affSColin Finck
292*c2c66affSColin Finck
293*c2c66affSColin Finck LOCAL(boxptr)
find_biggest_volume(boxptr boxlist,int numboxes)294*c2c66affSColin Finck find_biggest_volume (boxptr boxlist, int numboxes)
295*c2c66affSColin Finck /* Find the splittable box with the largest (scaled) volume */
296*c2c66affSColin Finck /* Returns NULL if no splittable boxes remain */
297*c2c66affSColin Finck {
298*c2c66affSColin Finck register boxptr boxp;
299*c2c66affSColin Finck register int i;
300*c2c66affSColin Finck register INT32 maxv = 0;
301*c2c66affSColin Finck boxptr which = NULL;
302*c2c66affSColin Finck
303*c2c66affSColin Finck for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
304*c2c66affSColin Finck if (boxp->volume > maxv) {
305*c2c66affSColin Finck which = boxp;
306*c2c66affSColin Finck maxv = boxp->volume;
307*c2c66affSColin Finck }
308*c2c66affSColin Finck }
309*c2c66affSColin Finck return which;
310*c2c66affSColin Finck }
311*c2c66affSColin Finck
312*c2c66affSColin Finck
313*c2c66affSColin Finck LOCAL(void)
update_box(j_decompress_ptr cinfo,boxptr boxp)314*c2c66affSColin Finck update_box (j_decompress_ptr cinfo, boxptr boxp)
315*c2c66affSColin Finck /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
316*c2c66affSColin Finck /* and recompute its volume and population */
317*c2c66affSColin Finck {
318*c2c66affSColin Finck my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
319*c2c66affSColin Finck hist3d histogram = cquantize->histogram;
320*c2c66affSColin Finck histptr histp;
321*c2c66affSColin Finck int c0,c1,c2;
322*c2c66affSColin Finck int c0min,c0max,c1min,c1max,c2min,c2max;
323*c2c66affSColin Finck INT32 dist0,dist1,dist2;
324*c2c66affSColin Finck long ccount;
325*c2c66affSColin Finck
326*c2c66affSColin Finck c0min = boxp->c0min; c0max = boxp->c0max;
327*c2c66affSColin Finck c1min = boxp->c1min; c1max = boxp->c1max;
328*c2c66affSColin Finck c2min = boxp->c2min; c2max = boxp->c2max;
329*c2c66affSColin Finck
330*c2c66affSColin Finck if (c0max > c0min)
331*c2c66affSColin Finck for (c0 = c0min; c0 <= c0max; c0++)
332*c2c66affSColin Finck for (c1 = c1min; c1 <= c1max; c1++) {
333*c2c66affSColin Finck histp = & histogram[c0][c1][c2min];
334*c2c66affSColin Finck for (c2 = c2min; c2 <= c2max; c2++)
335*c2c66affSColin Finck if (*histp++ != 0) {
336*c2c66affSColin Finck boxp->c0min = c0min = c0;
337*c2c66affSColin Finck goto have_c0min;
338*c2c66affSColin Finck }
339*c2c66affSColin Finck }
340*c2c66affSColin Finck have_c0min:
341*c2c66affSColin Finck if (c0max > c0min)
342*c2c66affSColin Finck for (c0 = c0max; c0 >= c0min; c0--)
343*c2c66affSColin Finck for (c1 = c1min; c1 <= c1max; c1++) {
344*c2c66affSColin Finck histp = & histogram[c0][c1][c2min];
345*c2c66affSColin Finck for (c2 = c2min; c2 <= c2max; c2++)
346*c2c66affSColin Finck if (*histp++ != 0) {
347*c2c66affSColin Finck boxp->c0max = c0max = c0;
348*c2c66affSColin Finck goto have_c0max;
349*c2c66affSColin Finck }
350*c2c66affSColin Finck }
351*c2c66affSColin Finck have_c0max:
352*c2c66affSColin Finck if (c1max > c1min)
353*c2c66affSColin Finck for (c1 = c1min; c1 <= c1max; c1++)
354*c2c66affSColin Finck for (c0 = c0min; c0 <= c0max; c0++) {
355*c2c66affSColin Finck histp = & histogram[c0][c1][c2min];
356*c2c66affSColin Finck for (c2 = c2min; c2 <= c2max; c2++)
357*c2c66affSColin Finck if (*histp++ != 0) {
358*c2c66affSColin Finck boxp->c1min = c1min = c1;
359*c2c66affSColin Finck goto have_c1min;
360*c2c66affSColin Finck }
361*c2c66affSColin Finck }
362*c2c66affSColin Finck have_c1min:
363*c2c66affSColin Finck if (c1max > c1min)
364*c2c66affSColin Finck for (c1 = c1max; c1 >= c1min; c1--)
365*c2c66affSColin Finck for (c0 = c0min; c0 <= c0max; c0++) {
366*c2c66affSColin Finck histp = & histogram[c0][c1][c2min];
367*c2c66affSColin Finck for (c2 = c2min; c2 <= c2max; c2++)
368*c2c66affSColin Finck if (*histp++ != 0) {
369*c2c66affSColin Finck boxp->c1max = c1max = c1;
370*c2c66affSColin Finck goto have_c1max;
371*c2c66affSColin Finck }
372*c2c66affSColin Finck }
373*c2c66affSColin Finck have_c1max:
374*c2c66affSColin Finck if (c2max > c2min)
375*c2c66affSColin Finck for (c2 = c2min; c2 <= c2max; c2++)
376*c2c66affSColin Finck for (c0 = c0min; c0 <= c0max; c0++) {
377*c2c66affSColin Finck histp = & histogram[c0][c1min][c2];
378*c2c66affSColin Finck for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
379*c2c66affSColin Finck if (*histp != 0) {
380*c2c66affSColin Finck boxp->c2min = c2min = c2;
381*c2c66affSColin Finck goto have_c2min;
382*c2c66affSColin Finck }
383*c2c66affSColin Finck }
384*c2c66affSColin Finck have_c2min:
385*c2c66affSColin Finck if (c2max > c2min)
386*c2c66affSColin Finck for (c2 = c2max; c2 >= c2min; c2--)
387*c2c66affSColin Finck for (c0 = c0min; c0 <= c0max; c0++) {
388*c2c66affSColin Finck histp = & histogram[c0][c1min][c2];
389*c2c66affSColin Finck for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
390*c2c66affSColin Finck if (*histp != 0) {
391*c2c66affSColin Finck boxp->c2max = c2max = c2;
392*c2c66affSColin Finck goto have_c2max;
393*c2c66affSColin Finck }
394*c2c66affSColin Finck }
395*c2c66affSColin Finck have_c2max:
396*c2c66affSColin Finck
397*c2c66affSColin Finck /* Update box volume.
398*c2c66affSColin Finck * We use 2-norm rather than real volume here; this biases the method
399*c2c66affSColin Finck * against making long narrow boxes, and it has the side benefit that
400*c2c66affSColin Finck * a box is splittable iff norm > 0.
401*c2c66affSColin Finck * Since the differences are expressed in histogram-cell units,
402*c2c66affSColin Finck * we have to shift back to JSAMPLE units to get consistent distances;
403*c2c66affSColin Finck * after which, we scale according to the selected distance scale factors.
404*c2c66affSColin Finck */
405*c2c66affSColin Finck dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
406*c2c66affSColin Finck dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
407*c2c66affSColin Finck dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
408*c2c66affSColin Finck boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
409*c2c66affSColin Finck
410*c2c66affSColin Finck /* Now scan remaining volume of box and compute population */
411*c2c66affSColin Finck ccount = 0;
412*c2c66affSColin Finck for (c0 = c0min; c0 <= c0max; c0++)
413*c2c66affSColin Finck for (c1 = c1min; c1 <= c1max; c1++) {
414*c2c66affSColin Finck histp = & histogram[c0][c1][c2min];
415*c2c66affSColin Finck for (c2 = c2min; c2 <= c2max; c2++, histp++)
416*c2c66affSColin Finck if (*histp != 0) {
417*c2c66affSColin Finck ccount++;
418*c2c66affSColin Finck }
419*c2c66affSColin Finck }
420*c2c66affSColin Finck boxp->colorcount = ccount;
421*c2c66affSColin Finck }
422*c2c66affSColin Finck
423*c2c66affSColin Finck
424*c2c66affSColin Finck LOCAL(int)
median_cut(j_decompress_ptr cinfo,boxptr boxlist,int numboxes,int desired_colors)425*c2c66affSColin Finck median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
426*c2c66affSColin Finck int desired_colors)
427*c2c66affSColin Finck /* Repeatedly select and split the largest box until we have enough boxes */
428*c2c66affSColin Finck {
429*c2c66affSColin Finck int n,lb;
430*c2c66affSColin Finck int c0,c1,c2,cmax;
431*c2c66affSColin Finck register boxptr b1,b2;
432*c2c66affSColin Finck
433*c2c66affSColin Finck while (numboxes < desired_colors) {
434*c2c66affSColin Finck /* Select box to split.
435*c2c66affSColin Finck * Current algorithm: by population for first half, then by volume.
436*c2c66affSColin Finck */
437*c2c66affSColin Finck if (numboxes*2 <= desired_colors) {
438*c2c66affSColin Finck b1 = find_biggest_color_pop(boxlist, numboxes);
439*c2c66affSColin Finck } else {
440*c2c66affSColin Finck b1 = find_biggest_volume(boxlist, numboxes);
441*c2c66affSColin Finck }
442*c2c66affSColin Finck if (b1 == NULL) /* no splittable boxes left! */
443*c2c66affSColin Finck break;
444*c2c66affSColin Finck b2 = &boxlist[numboxes]; /* where new box will go */
445*c2c66affSColin Finck /* Copy the color bounds to the new box. */
446*c2c66affSColin Finck b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
447*c2c66affSColin Finck b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
448*c2c66affSColin Finck /* Choose which axis to split the box on.
449*c2c66affSColin Finck * Current algorithm: longest scaled axis.
450*c2c66affSColin Finck * See notes in update_box about scaling distances.
451*c2c66affSColin Finck */
452*c2c66affSColin Finck c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
453*c2c66affSColin Finck c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
454*c2c66affSColin Finck c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
455*c2c66affSColin Finck /* We want to break any ties in favor of green, then red, blue last.
456*c2c66affSColin Finck * This code does the right thing for R,G,B or B,G,R color orders only.
457*c2c66affSColin Finck */
458*c2c66affSColin Finck #if RGB_RED == 0
459*c2c66affSColin Finck cmax = c1; n = 1;
460*c2c66affSColin Finck if (c0 > cmax) { cmax = c0; n = 0; }
461*c2c66affSColin Finck if (c2 > cmax) { n = 2; }
462*c2c66affSColin Finck #else
463*c2c66affSColin Finck cmax = c1; n = 1;
464*c2c66affSColin Finck if (c2 > cmax) { cmax = c2; n = 2; }
465*c2c66affSColin Finck if (c0 > cmax) { n = 0; }
466*c2c66affSColin Finck #endif
467*c2c66affSColin Finck /* Choose split point along selected axis, and update box bounds.
468*c2c66affSColin Finck * Current algorithm: split at halfway point.
469*c2c66affSColin Finck * (Since the box has been shrunk to minimum volume,
470*c2c66affSColin Finck * any split will produce two nonempty subboxes.)
471*c2c66affSColin Finck * Note that lb value is max for lower box, so must be < old max.
472*c2c66affSColin Finck */
473*c2c66affSColin Finck switch (n) {
474*c2c66affSColin Finck case 0:
475*c2c66affSColin Finck lb = (b1->c0max + b1->c0min) / 2;
476*c2c66affSColin Finck b1->c0max = lb;
477*c2c66affSColin Finck b2->c0min = lb+1;
478*c2c66affSColin Finck break;
479*c2c66affSColin Finck case 1:
480*c2c66affSColin Finck lb = (b1->c1max + b1->c1min) / 2;
481*c2c66affSColin Finck b1->c1max = lb;
482*c2c66affSColin Finck b2->c1min = lb+1;
483*c2c66affSColin Finck break;
484*c2c66affSColin Finck case 2:
485*c2c66affSColin Finck lb = (b1->c2max + b1->c2min) / 2;
486*c2c66affSColin Finck b1->c2max = lb;
487*c2c66affSColin Finck b2->c2min = lb+1;
488*c2c66affSColin Finck break;
489*c2c66affSColin Finck }
490*c2c66affSColin Finck /* Update stats for boxes */
491*c2c66affSColin Finck update_box(cinfo, b1);
492*c2c66affSColin Finck update_box(cinfo, b2);
493*c2c66affSColin Finck numboxes++;
494*c2c66affSColin Finck }
495*c2c66affSColin Finck return numboxes;
496*c2c66affSColin Finck }
497*c2c66affSColin Finck
498*c2c66affSColin Finck
499*c2c66affSColin Finck LOCAL(void)
compute_color(j_decompress_ptr cinfo,boxptr boxp,int icolor)500*c2c66affSColin Finck compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
501*c2c66affSColin Finck /* Compute representative color for a box, put it in colormap[icolor] */
502*c2c66affSColin Finck {
503*c2c66affSColin Finck /* Current algorithm: mean weighted by pixels (not colors) */
504*c2c66affSColin Finck /* Note it is important to get the rounding correct! */
505*c2c66affSColin Finck my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
506*c2c66affSColin Finck hist3d histogram = cquantize->histogram;
507*c2c66affSColin Finck histptr histp;
508*c2c66affSColin Finck int c0,c1,c2;
509*c2c66affSColin Finck int c0min,c0max,c1min,c1max,c2min,c2max;
510*c2c66affSColin Finck long count;
511*c2c66affSColin Finck long total = 0;
512*c2c66affSColin Finck long c0total = 0;
513*c2c66affSColin Finck long c1total = 0;
514*c2c66affSColin Finck long c2total = 0;
515*c2c66affSColin Finck
516*c2c66affSColin Finck c0min = boxp->c0min; c0max = boxp->c0max;
517*c2c66affSColin Finck c1min = boxp->c1min; c1max = boxp->c1max;
518*c2c66affSColin Finck c2min = boxp->c2min; c2max = boxp->c2max;
519*c2c66affSColin Finck
520*c2c66affSColin Finck for (c0 = c0min; c0 <= c0max; c0++)
521*c2c66affSColin Finck for (c1 = c1min; c1 <= c1max; c1++) {
522*c2c66affSColin Finck histp = & histogram[c0][c1][c2min];
523*c2c66affSColin Finck for (c2 = c2min; c2 <= c2max; c2++) {
524*c2c66affSColin Finck if ((count = *histp++) != 0) {
525*c2c66affSColin Finck total += count;
526*c2c66affSColin Finck c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
527*c2c66affSColin Finck c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
528*c2c66affSColin Finck c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
529*c2c66affSColin Finck }
530*c2c66affSColin Finck }
531*c2c66affSColin Finck }
532*c2c66affSColin Finck
533*c2c66affSColin Finck cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
534*c2c66affSColin Finck cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
535*c2c66affSColin Finck cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
536*c2c66affSColin Finck }
537*c2c66affSColin Finck
538*c2c66affSColin Finck
539*c2c66affSColin Finck LOCAL(void)
select_colors(j_decompress_ptr cinfo,int desired_colors)540*c2c66affSColin Finck select_colors (j_decompress_ptr cinfo, int desired_colors)
541*c2c66affSColin Finck /* Master routine for color selection */
542*c2c66affSColin Finck {
543*c2c66affSColin Finck boxptr boxlist;
544*c2c66affSColin Finck int numboxes;
545*c2c66affSColin Finck int i;
546*c2c66affSColin Finck
547*c2c66affSColin Finck /* Allocate workspace for box list */
548*c2c66affSColin Finck boxlist = (boxptr) (*cinfo->mem->alloc_small)
549*c2c66affSColin Finck ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
550*c2c66affSColin Finck /* Initialize one box containing whole space */
551*c2c66affSColin Finck numboxes = 1;
552*c2c66affSColin Finck boxlist[0].c0min = 0;
553*c2c66affSColin Finck boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
554*c2c66affSColin Finck boxlist[0].c1min = 0;
555*c2c66affSColin Finck boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
556*c2c66affSColin Finck boxlist[0].c2min = 0;
557*c2c66affSColin Finck boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
558*c2c66affSColin Finck /* Shrink it to actually-used volume and set its statistics */
559*c2c66affSColin Finck update_box(cinfo, & boxlist[0]);
560*c2c66affSColin Finck /* Perform median-cut to produce final box list */
561*c2c66affSColin Finck numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
562*c2c66affSColin Finck /* Compute the representative color for each box, fill colormap */
563*c2c66affSColin Finck for (i = 0; i < numboxes; i++)
564*c2c66affSColin Finck compute_color(cinfo, & boxlist[i], i);
565*c2c66affSColin Finck cinfo->actual_number_of_colors = numboxes;
566*c2c66affSColin Finck TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
567*c2c66affSColin Finck }
568*c2c66affSColin Finck
569*c2c66affSColin Finck
570*c2c66affSColin Finck /*
571*c2c66affSColin Finck * These routines are concerned with the time-critical task of mapping input
572*c2c66affSColin Finck * colors to the nearest color in the selected colormap.
573*c2c66affSColin Finck *
574*c2c66affSColin Finck * We re-use the histogram space as an "inverse color map", essentially a
575*c2c66affSColin Finck * cache for the results of nearest-color searches. All colors within a
576*c2c66affSColin Finck * histogram cell will be mapped to the same colormap entry, namely the one
577*c2c66affSColin Finck * closest to the cell's center. This may not be quite the closest entry to
578*c2c66affSColin Finck * the actual input color, but it's almost as good. A zero in the cache
579*c2c66affSColin Finck * indicates we haven't found the nearest color for that cell yet; the array
580*c2c66affSColin Finck * is cleared to zeroes before starting the mapping pass. When we find the
581*c2c66affSColin Finck * nearest color for a cell, its colormap index plus one is recorded in the
582*c2c66affSColin Finck * cache for future use. The pass2 scanning routines call fill_inverse_cmap
583*c2c66affSColin Finck * when they need to use an unfilled entry in the cache.
584*c2c66affSColin Finck *
585*c2c66affSColin Finck * Our method of efficiently finding nearest colors is based on the "locally
586*c2c66affSColin Finck * sorted search" idea described by Heckbert and on the incremental distance
587*c2c66affSColin Finck * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
588*c2c66affSColin Finck * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
589*c2c66affSColin Finck * the distances from a given colormap entry to each cell of the histogram can
590*c2c66affSColin Finck * be computed quickly using an incremental method: the differences between
591*c2c66affSColin Finck * distances to adjacent cells themselves differ by a constant. This allows a
592*c2c66affSColin Finck * fairly fast implementation of the "brute force" approach of computing the
593*c2c66affSColin Finck * distance from every colormap entry to every histogram cell. Unfortunately,
594*c2c66affSColin Finck * it needs a work array to hold the best-distance-so-far for each histogram
595*c2c66affSColin Finck * cell (because the inner loop has to be over cells, not colormap entries).
596*c2c66affSColin Finck * The work array elements have to be INT32s, so the work array would need
597*c2c66affSColin Finck * 256Kb at our recommended precision. This is not feasible in DOS machines.
598*c2c66affSColin Finck *
599*c2c66affSColin Finck * To get around these problems, we apply Thomas' method to compute the
600*c2c66affSColin Finck * nearest colors for only the cells within a small subbox of the histogram.
601*c2c66affSColin Finck * The work array need be only as big as the subbox, so the memory usage
602*c2c66affSColin Finck * problem is solved. Furthermore, we need not fill subboxes that are never
603*c2c66affSColin Finck * referenced in pass2; many images use only part of the color gamut, so a
604*c2c66affSColin Finck * fair amount of work is saved. An additional advantage of this
605*c2c66affSColin Finck * approach is that we can apply Heckbert's locality criterion to quickly
606*c2c66affSColin Finck * eliminate colormap entries that are far away from the subbox; typically
607*c2c66affSColin Finck * three-fourths of the colormap entries are rejected by Heckbert's criterion,
608*c2c66affSColin Finck * and we need not compute their distances to individual cells in the subbox.
609*c2c66affSColin Finck * The speed of this approach is heavily influenced by the subbox size: too
610*c2c66affSColin Finck * small means too much overhead, too big loses because Heckbert's criterion
611*c2c66affSColin Finck * can't eliminate as many colormap entries. Empirically the best subbox
612*c2c66affSColin Finck * size seems to be about 1/512th of the histogram (1/8th in each direction).
613*c2c66affSColin Finck *
614*c2c66affSColin Finck * Thomas' article also describes a refined method which is asymptotically
615*c2c66affSColin Finck * faster than the brute-force method, but it is also far more complex and
616*c2c66affSColin Finck * cannot efficiently be applied to small subboxes. It is therefore not
617*c2c66affSColin Finck * useful for programs intended to be portable to DOS machines. On machines
618*c2c66affSColin Finck * with plenty of memory, filling the whole histogram in one shot with Thomas'
619*c2c66affSColin Finck * refined method might be faster than the present code --- but then again,
620*c2c66affSColin Finck * it might not be any faster, and it's certainly more complicated.
621*c2c66affSColin Finck */
622*c2c66affSColin Finck
623*c2c66affSColin Finck
624*c2c66affSColin Finck /* log2(histogram cells in update box) for each axis; this can be adjusted */
625*c2c66affSColin Finck #define BOX_C0_LOG (HIST_C0_BITS-3)
626*c2c66affSColin Finck #define BOX_C1_LOG (HIST_C1_BITS-3)
627*c2c66affSColin Finck #define BOX_C2_LOG (HIST_C2_BITS-3)
628*c2c66affSColin Finck
629*c2c66affSColin Finck #define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
630*c2c66affSColin Finck #define BOX_C1_ELEMS (1<<BOX_C1_LOG)
631*c2c66affSColin Finck #define BOX_C2_ELEMS (1<<BOX_C2_LOG)
632*c2c66affSColin Finck
633*c2c66affSColin Finck #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
634*c2c66affSColin Finck #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
635*c2c66affSColin Finck #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
636*c2c66affSColin Finck
637*c2c66affSColin Finck
638*c2c66affSColin Finck /*
639*c2c66affSColin Finck * The next three routines implement inverse colormap filling. They could
640*c2c66affSColin Finck * all be folded into one big routine, but splitting them up this way saves
641*c2c66affSColin Finck * some stack space (the mindist[] and bestdist[] arrays need not coexist)
642*c2c66affSColin Finck * and may allow some compilers to produce better code by registerizing more
643*c2c66affSColin Finck * inner-loop variables.
644*c2c66affSColin Finck */
645*c2c66affSColin Finck
646*c2c66affSColin Finck LOCAL(int)
find_nearby_colors(j_decompress_ptr cinfo,int minc0,int minc1,int minc2,JSAMPLE colorlist[])647*c2c66affSColin Finck find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
648*c2c66affSColin Finck JSAMPLE colorlist[])
649*c2c66affSColin Finck /* Locate the colormap entries close enough to an update box to be candidates
650*c2c66affSColin Finck * for the nearest entry to some cell(s) in the update box. The update box
651*c2c66affSColin Finck * is specified by the center coordinates of its first cell. The number of
652*c2c66affSColin Finck * candidate colormap entries is returned, and their colormap indexes are
653*c2c66affSColin Finck * placed in colorlist[].
654*c2c66affSColin Finck * This routine uses Heckbert's "locally sorted search" criterion to select
655*c2c66affSColin Finck * the colors that need further consideration.
656*c2c66affSColin Finck */
657*c2c66affSColin Finck {
658*c2c66affSColin Finck int numcolors = cinfo->actual_number_of_colors;
659*c2c66affSColin Finck int maxc0, maxc1, maxc2;
660*c2c66affSColin Finck int centerc0, centerc1, centerc2;
661*c2c66affSColin Finck int i, x, ncolors;
662*c2c66affSColin Finck INT32 minmaxdist, min_dist, max_dist, tdist;
663*c2c66affSColin Finck INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
664*c2c66affSColin Finck
665*c2c66affSColin Finck /* Compute true coordinates of update box's upper corner and center.
666*c2c66affSColin Finck * Actually we compute the coordinates of the center of the upper-corner
667*c2c66affSColin Finck * histogram cell, which are the upper bounds of the volume we care about.
668*c2c66affSColin Finck * Note that since ">>" rounds down, the "center" values may be closer to
669*c2c66affSColin Finck * min than to max; hence comparisons to them must be "<=", not "<".
670*c2c66affSColin Finck */
671*c2c66affSColin Finck maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
672*c2c66affSColin Finck centerc0 = (minc0 + maxc0) >> 1;
673*c2c66affSColin Finck maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
674*c2c66affSColin Finck centerc1 = (minc1 + maxc1) >> 1;
675*c2c66affSColin Finck maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
676*c2c66affSColin Finck centerc2 = (minc2 + maxc2) >> 1;
677*c2c66affSColin Finck
678*c2c66affSColin Finck /* For each color in colormap, find:
679*c2c66affSColin Finck * 1. its minimum squared-distance to any point in the update box
680*c2c66affSColin Finck * (zero if color is within update box);
681*c2c66affSColin Finck * 2. its maximum squared-distance to any point in the update box.
682*c2c66affSColin Finck * Both of these can be found by considering only the corners of the box.
683*c2c66affSColin Finck * We save the minimum distance for each color in mindist[];
684*c2c66affSColin Finck * only the smallest maximum distance is of interest.
685*c2c66affSColin Finck */
686*c2c66affSColin Finck minmaxdist = 0x7FFFFFFFL;
687*c2c66affSColin Finck
688*c2c66affSColin Finck for (i = 0; i < numcolors; i++) {
689*c2c66affSColin Finck /* We compute the squared-c0-distance term, then add in the other two. */
690*c2c66affSColin Finck x = GETJSAMPLE(cinfo->colormap[0][i]);
691*c2c66affSColin Finck if (x < minc0) {
692*c2c66affSColin Finck tdist = (x - minc0) * C0_SCALE;
693*c2c66affSColin Finck min_dist = tdist*tdist;
694*c2c66affSColin Finck tdist = (x - maxc0) * C0_SCALE;
695*c2c66affSColin Finck max_dist = tdist*tdist;
696*c2c66affSColin Finck } else if (x > maxc0) {
697*c2c66affSColin Finck tdist = (x - maxc0) * C0_SCALE;
698*c2c66affSColin Finck min_dist = tdist*tdist;
699*c2c66affSColin Finck tdist = (x - minc0) * C0_SCALE;
700*c2c66affSColin Finck max_dist = tdist*tdist;
701*c2c66affSColin Finck } else {
702*c2c66affSColin Finck /* within cell range so no contribution to min_dist */
703*c2c66affSColin Finck min_dist = 0;
704*c2c66affSColin Finck if (x <= centerc0) {
705*c2c66affSColin Finck tdist = (x - maxc0) * C0_SCALE;
706*c2c66affSColin Finck max_dist = tdist*tdist;
707*c2c66affSColin Finck } else {
708*c2c66affSColin Finck tdist = (x - minc0) * C0_SCALE;
709*c2c66affSColin Finck max_dist = tdist*tdist;
710*c2c66affSColin Finck }
711*c2c66affSColin Finck }
712*c2c66affSColin Finck
713*c2c66affSColin Finck x = GETJSAMPLE(cinfo->colormap[1][i]);
714*c2c66affSColin Finck if (x < minc1) {
715*c2c66affSColin Finck tdist = (x - minc1) * C1_SCALE;
716*c2c66affSColin Finck min_dist += tdist*tdist;
717*c2c66affSColin Finck tdist = (x - maxc1) * C1_SCALE;
718*c2c66affSColin Finck max_dist += tdist*tdist;
719*c2c66affSColin Finck } else if (x > maxc1) {
720*c2c66affSColin Finck tdist = (x - maxc1) * C1_SCALE;
721*c2c66affSColin Finck min_dist += tdist*tdist;
722*c2c66affSColin Finck tdist = (x - minc1) * C1_SCALE;
723*c2c66affSColin Finck max_dist += tdist*tdist;
724*c2c66affSColin Finck } else {
725*c2c66affSColin Finck /* within cell range so no contribution to min_dist */
726*c2c66affSColin Finck if (x <= centerc1) {
727*c2c66affSColin Finck tdist = (x - maxc1) * C1_SCALE;
728*c2c66affSColin Finck max_dist += tdist*tdist;
729*c2c66affSColin Finck } else {
730*c2c66affSColin Finck tdist = (x - minc1) * C1_SCALE;
731*c2c66affSColin Finck max_dist += tdist*tdist;
732*c2c66affSColin Finck }
733*c2c66affSColin Finck }
734*c2c66affSColin Finck
735*c2c66affSColin Finck x = GETJSAMPLE(cinfo->colormap[2][i]);
736*c2c66affSColin Finck if (x < minc2) {
737*c2c66affSColin Finck tdist = (x - minc2) * C2_SCALE;
738*c2c66affSColin Finck min_dist += tdist*tdist;
739*c2c66affSColin Finck tdist = (x - maxc2) * C2_SCALE;
740*c2c66affSColin Finck max_dist += tdist*tdist;
741*c2c66affSColin Finck } else if (x > maxc2) {
742*c2c66affSColin Finck tdist = (x - maxc2) * C2_SCALE;
743*c2c66affSColin Finck min_dist += tdist*tdist;
744*c2c66affSColin Finck tdist = (x - minc2) * C2_SCALE;
745*c2c66affSColin Finck max_dist += tdist*tdist;
746*c2c66affSColin Finck } else {
747*c2c66affSColin Finck /* within cell range so no contribution to min_dist */
748*c2c66affSColin Finck if (x <= centerc2) {
749*c2c66affSColin Finck tdist = (x - maxc2) * C2_SCALE;
750*c2c66affSColin Finck max_dist += tdist*tdist;
751*c2c66affSColin Finck } else {
752*c2c66affSColin Finck tdist = (x - minc2) * C2_SCALE;
753*c2c66affSColin Finck max_dist += tdist*tdist;
754*c2c66affSColin Finck }
755*c2c66affSColin Finck }
756*c2c66affSColin Finck
757*c2c66affSColin Finck mindist[i] = min_dist; /* save away the results */
758*c2c66affSColin Finck if (max_dist < minmaxdist)
759*c2c66affSColin Finck minmaxdist = max_dist;
760*c2c66affSColin Finck }
761*c2c66affSColin Finck
762*c2c66affSColin Finck /* Now we know that no cell in the update box is more than minmaxdist
763*c2c66affSColin Finck * away from some colormap entry. Therefore, only colors that are
764*c2c66affSColin Finck * within minmaxdist of some part of the box need be considered.
765*c2c66affSColin Finck */
766*c2c66affSColin Finck ncolors = 0;
767*c2c66affSColin Finck for (i = 0; i < numcolors; i++) {
768*c2c66affSColin Finck if (mindist[i] <= minmaxdist)
769*c2c66affSColin Finck colorlist[ncolors++] = (JSAMPLE) i;
770*c2c66affSColin Finck }
771*c2c66affSColin Finck return ncolors;
772*c2c66affSColin Finck }
773*c2c66affSColin Finck
774*c2c66affSColin Finck
775*c2c66affSColin Finck LOCAL(void)
find_best_colors(j_decompress_ptr cinfo,int minc0,int minc1,int minc2,int numcolors,JSAMPLE colorlist[],JSAMPLE bestcolor[])776*c2c66affSColin Finck find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
777*c2c66affSColin Finck int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
778*c2c66affSColin Finck /* Find the closest colormap entry for each cell in the update box,
779*c2c66affSColin Finck * given the list of candidate colors prepared by find_nearby_colors.
780*c2c66affSColin Finck * Return the indexes of the closest entries in the bestcolor[] array.
781*c2c66affSColin Finck * This routine uses Thomas' incremental distance calculation method to
782*c2c66affSColin Finck * find the distance from a colormap entry to successive cells in the box.
783*c2c66affSColin Finck */
784*c2c66affSColin Finck {
785*c2c66affSColin Finck int ic0, ic1, ic2;
786*c2c66affSColin Finck int i, icolor;
787*c2c66affSColin Finck register INT32 * bptr; /* pointer into bestdist[] array */
788*c2c66affSColin Finck JSAMPLE * cptr; /* pointer into bestcolor[] array */
789*c2c66affSColin Finck INT32 dist0, dist1; /* initial distance values */
790*c2c66affSColin Finck register INT32 dist2; /* current distance in inner loop */
791*c2c66affSColin Finck INT32 xx0, xx1; /* distance increments */
792*c2c66affSColin Finck register INT32 xx2;
793*c2c66affSColin Finck INT32 inc0, inc1, inc2; /* initial values for increments */
794*c2c66affSColin Finck /* This array holds the distance to the nearest-so-far color for each cell */
795*c2c66affSColin Finck INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
796*c2c66affSColin Finck
797*c2c66affSColin Finck /* Initialize best-distance for each cell of the update box */
798*c2c66affSColin Finck bptr = bestdist;
799*c2c66affSColin Finck for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
800*c2c66affSColin Finck *bptr++ = 0x7FFFFFFFL;
801*c2c66affSColin Finck
802*c2c66affSColin Finck /* For each color selected by find_nearby_colors,
803*c2c66affSColin Finck * compute its distance to the center of each cell in the box.
804*c2c66affSColin Finck * If that's less than best-so-far, update best distance and color number.
805*c2c66affSColin Finck */
806*c2c66affSColin Finck
807*c2c66affSColin Finck /* Nominal steps between cell centers ("x" in Thomas article) */
808*c2c66affSColin Finck #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
809*c2c66affSColin Finck #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
810*c2c66affSColin Finck #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
811*c2c66affSColin Finck
812*c2c66affSColin Finck for (i = 0; i < numcolors; i++) {
813*c2c66affSColin Finck icolor = GETJSAMPLE(colorlist[i]);
814*c2c66affSColin Finck /* Compute (square of) distance from minc0/c1/c2 to this color */
815*c2c66affSColin Finck inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
816*c2c66affSColin Finck dist0 = inc0*inc0;
817*c2c66affSColin Finck inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
818*c2c66affSColin Finck dist0 += inc1*inc1;
819*c2c66affSColin Finck inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
820*c2c66affSColin Finck dist0 += inc2*inc2;
821*c2c66affSColin Finck /* Form the initial difference increments */
822*c2c66affSColin Finck inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
823*c2c66affSColin Finck inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
824*c2c66affSColin Finck inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
825*c2c66affSColin Finck /* Now loop over all cells in box, updating distance per Thomas method */
826*c2c66affSColin Finck bptr = bestdist;
827*c2c66affSColin Finck cptr = bestcolor;
828*c2c66affSColin Finck xx0 = inc0;
829*c2c66affSColin Finck for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
830*c2c66affSColin Finck dist1 = dist0;
831*c2c66affSColin Finck xx1 = inc1;
832*c2c66affSColin Finck for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
833*c2c66affSColin Finck dist2 = dist1;
834*c2c66affSColin Finck xx2 = inc2;
835*c2c66affSColin Finck for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
836*c2c66affSColin Finck if (dist2 < *bptr) {
837*c2c66affSColin Finck *bptr = dist2;
838*c2c66affSColin Finck *cptr = (JSAMPLE) icolor;
839*c2c66affSColin Finck }
840*c2c66affSColin Finck dist2 += xx2;
841*c2c66affSColin Finck xx2 += 2 * STEP_C2 * STEP_C2;
842*c2c66affSColin Finck bptr++;
843*c2c66affSColin Finck cptr++;
844*c2c66affSColin Finck }
845*c2c66affSColin Finck dist1 += xx1;
846*c2c66affSColin Finck xx1 += 2 * STEP_C1 * STEP_C1;
847*c2c66affSColin Finck }
848*c2c66affSColin Finck dist0 += xx0;
849*c2c66affSColin Finck xx0 += 2 * STEP_C0 * STEP_C0;
850*c2c66affSColin Finck }
851*c2c66affSColin Finck }
852*c2c66affSColin Finck }
853*c2c66affSColin Finck
854*c2c66affSColin Finck
855*c2c66affSColin Finck LOCAL(void)
fill_inverse_cmap(j_decompress_ptr cinfo,int c0,int c1,int c2)856*c2c66affSColin Finck fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
857*c2c66affSColin Finck /* Fill the inverse-colormap entries in the update box that contains */
858*c2c66affSColin Finck /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
859*c2c66affSColin Finck /* we can fill as many others as we wish.) */
860*c2c66affSColin Finck {
861*c2c66affSColin Finck my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
862*c2c66affSColin Finck hist3d histogram = cquantize->histogram;
863*c2c66affSColin Finck int minc0, minc1, minc2; /* lower left corner of update box */
864*c2c66affSColin Finck int ic0, ic1, ic2;
865*c2c66affSColin Finck register JSAMPLE * cptr; /* pointer into bestcolor[] array */
866*c2c66affSColin Finck register histptr cachep; /* pointer into main cache array */
867*c2c66affSColin Finck /* This array lists the candidate colormap indexes. */
868*c2c66affSColin Finck JSAMPLE colorlist[MAXNUMCOLORS];
869*c2c66affSColin Finck int numcolors; /* number of candidate colors */
870*c2c66affSColin Finck /* This array holds the actually closest colormap index for each cell. */
871*c2c66affSColin Finck JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
872*c2c66affSColin Finck
873*c2c66affSColin Finck /* Convert cell coordinates to update box ID */
874*c2c66affSColin Finck c0 >>= BOX_C0_LOG;
875*c2c66affSColin Finck c1 >>= BOX_C1_LOG;
876*c2c66affSColin Finck c2 >>= BOX_C2_LOG;
877*c2c66affSColin Finck
878*c2c66affSColin Finck /* Compute true coordinates of update box's origin corner.
879*c2c66affSColin Finck * Actually we compute the coordinates of the center of the corner
880*c2c66affSColin Finck * histogram cell, which are the lower bounds of the volume we care about.
881*c2c66affSColin Finck */
882*c2c66affSColin Finck minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
883*c2c66affSColin Finck minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
884*c2c66affSColin Finck minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
885*c2c66affSColin Finck
886*c2c66affSColin Finck /* Determine which colormap entries are close enough to be candidates
887*c2c66affSColin Finck * for the nearest entry to some cell in the update box.
888*c2c66affSColin Finck */
889*c2c66affSColin Finck numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
890*c2c66affSColin Finck
891*c2c66affSColin Finck /* Determine the actually nearest colors. */
892*c2c66affSColin Finck find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
893*c2c66affSColin Finck bestcolor);
894*c2c66affSColin Finck
895*c2c66affSColin Finck /* Save the best color numbers (plus 1) in the main cache array */
896*c2c66affSColin Finck c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
897*c2c66affSColin Finck c1 <<= BOX_C1_LOG;
898*c2c66affSColin Finck c2 <<= BOX_C2_LOG;
899*c2c66affSColin Finck cptr = bestcolor;
900*c2c66affSColin Finck for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
901*c2c66affSColin Finck for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
902*c2c66affSColin Finck cachep = & histogram[c0+ic0][c1+ic1][c2];
903*c2c66affSColin Finck for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
904*c2c66affSColin Finck *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
905*c2c66affSColin Finck }
906*c2c66affSColin Finck }
907*c2c66affSColin Finck }
908*c2c66affSColin Finck }
909*c2c66affSColin Finck
910*c2c66affSColin Finck
911*c2c66affSColin Finck /*
912*c2c66affSColin Finck * Map some rows of pixels to the output colormapped representation.
913*c2c66affSColin Finck */
914*c2c66affSColin Finck
915*c2c66affSColin Finck METHODDEF(void)
pass2_no_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)916*c2c66affSColin Finck pass2_no_dither (j_decompress_ptr cinfo,
917*c2c66affSColin Finck JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
918*c2c66affSColin Finck /* This version performs no dithering */
919*c2c66affSColin Finck {
920*c2c66affSColin Finck my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
921*c2c66affSColin Finck hist3d histogram = cquantize->histogram;
922*c2c66affSColin Finck register JSAMPROW inptr, outptr;
923*c2c66affSColin Finck register histptr cachep;
924*c2c66affSColin Finck register int c0, c1, c2;
925*c2c66affSColin Finck int row;
926*c2c66affSColin Finck JDIMENSION col;
927*c2c66affSColin Finck JDIMENSION width = cinfo->output_width;
928*c2c66affSColin Finck
929*c2c66affSColin Finck for (row = 0; row < num_rows; row++) {
930*c2c66affSColin Finck inptr = input_buf[row];
931*c2c66affSColin Finck outptr = output_buf[row];
932*c2c66affSColin Finck for (col = width; col > 0; col--) {
933*c2c66affSColin Finck /* get pixel value and index into the cache */
934*c2c66affSColin Finck c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
935*c2c66affSColin Finck c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
936*c2c66affSColin Finck c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
937*c2c66affSColin Finck cachep = & histogram[c0][c1][c2];
938*c2c66affSColin Finck /* If we have not seen this color before, find nearest colormap entry */
939*c2c66affSColin Finck /* and update the cache */
940*c2c66affSColin Finck if (*cachep == 0)
941*c2c66affSColin Finck fill_inverse_cmap(cinfo, c0,c1,c2);
942*c2c66affSColin Finck /* Now emit the colormap index for this cell */
943*c2c66affSColin Finck *outptr++ = (JSAMPLE) (*cachep - 1);
944*c2c66affSColin Finck }
945*c2c66affSColin Finck }
946*c2c66affSColin Finck }
947*c2c66affSColin Finck
948*c2c66affSColin Finck
949*c2c66affSColin Finck METHODDEF(void)
pass2_fs_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)950*c2c66affSColin Finck pass2_fs_dither (j_decompress_ptr cinfo,
951*c2c66affSColin Finck JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
952*c2c66affSColin Finck /* This version performs Floyd-Steinberg dithering */
953*c2c66affSColin Finck {
954*c2c66affSColin Finck my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
955*c2c66affSColin Finck hist3d histogram = cquantize->histogram;
956*c2c66affSColin Finck register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
957*c2c66affSColin Finck LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
958*c2c66affSColin Finck LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
959*c2c66affSColin Finck register FSERRPTR errorptr; /* => fserrors[] at column before current */
960*c2c66affSColin Finck JSAMPROW inptr; /* => current input pixel */
961*c2c66affSColin Finck JSAMPROW outptr; /* => current output pixel */
962*c2c66affSColin Finck histptr cachep;
963*c2c66affSColin Finck int dir; /* +1 or -1 depending on direction */
964*c2c66affSColin Finck int dir3; /* 3*dir, for advancing inptr & errorptr */
965*c2c66affSColin Finck int row;
966*c2c66affSColin Finck JDIMENSION col;
967*c2c66affSColin Finck JDIMENSION width = cinfo->output_width;
968*c2c66affSColin Finck JSAMPLE *range_limit = cinfo->sample_range_limit;
969*c2c66affSColin Finck int *error_limit = cquantize->error_limiter;
970*c2c66affSColin Finck JSAMPROW colormap0 = cinfo->colormap[0];
971*c2c66affSColin Finck JSAMPROW colormap1 = cinfo->colormap[1];
972*c2c66affSColin Finck JSAMPROW colormap2 = cinfo->colormap[2];
973*c2c66affSColin Finck SHIFT_TEMPS
974*c2c66affSColin Finck
975*c2c66affSColin Finck for (row = 0; row < num_rows; row++) {
976*c2c66affSColin Finck inptr = input_buf[row];
977*c2c66affSColin Finck outptr = output_buf[row];
978*c2c66affSColin Finck if (cquantize->on_odd_row) {
979*c2c66affSColin Finck /* work right to left in this row */
980*c2c66affSColin Finck inptr += (width-1) * 3; /* so point to rightmost pixel */
981*c2c66affSColin Finck outptr += width-1;
982*c2c66affSColin Finck dir = -1;
983*c2c66affSColin Finck dir3 = -3;
984*c2c66affSColin Finck errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
985*c2c66affSColin Finck cquantize->on_odd_row = FALSE; /* flip for next time */
986*c2c66affSColin Finck } else {
987*c2c66affSColin Finck /* work left to right in this row */
988*c2c66affSColin Finck dir = 1;
989*c2c66affSColin Finck dir3 = 3;
990*c2c66affSColin Finck errorptr = cquantize->fserrors; /* => entry before first real column */
991*c2c66affSColin Finck cquantize->on_odd_row = TRUE; /* flip for next time */
992*c2c66affSColin Finck }
993*c2c66affSColin Finck /* Preset error values: no error propagated to first pixel from left */
994*c2c66affSColin Finck cur0 = cur1 = cur2 = 0;
995*c2c66affSColin Finck /* and no error propagated to row below yet */
996*c2c66affSColin Finck belowerr0 = belowerr1 = belowerr2 = 0;
997*c2c66affSColin Finck bpreverr0 = bpreverr1 = bpreverr2 = 0;
998*c2c66affSColin Finck
999*c2c66affSColin Finck for (col = width; col > 0; col--) {
1000*c2c66affSColin Finck /* curN holds the error propagated from the previous pixel on the
1001*c2c66affSColin Finck * current line. Add the error propagated from the previous line
1002*c2c66affSColin Finck * to form the complete error correction term for this pixel, and
1003*c2c66affSColin Finck * round the error term (which is expressed * 16) to an integer.
1004*c2c66affSColin Finck * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
1005*c2c66affSColin Finck * for either sign of the error value.
1006*c2c66affSColin Finck * Note: errorptr points to *previous* column's array entry.
1007*c2c66affSColin Finck */
1008*c2c66affSColin Finck cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
1009*c2c66affSColin Finck cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
1010*c2c66affSColin Finck cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
1011*c2c66affSColin Finck /* Limit the error using transfer function set by init_error_limit.
1012*c2c66affSColin Finck * See comments with init_error_limit for rationale.
1013*c2c66affSColin Finck */
1014*c2c66affSColin Finck cur0 = error_limit[cur0];
1015*c2c66affSColin Finck cur1 = error_limit[cur1];
1016*c2c66affSColin Finck cur2 = error_limit[cur2];
1017*c2c66affSColin Finck /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1018*c2c66affSColin Finck * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1019*c2c66affSColin Finck * this sets the required size of the range_limit array.
1020*c2c66affSColin Finck */
1021*c2c66affSColin Finck cur0 += GETJSAMPLE(inptr[0]);
1022*c2c66affSColin Finck cur1 += GETJSAMPLE(inptr[1]);
1023*c2c66affSColin Finck cur2 += GETJSAMPLE(inptr[2]);
1024*c2c66affSColin Finck cur0 = GETJSAMPLE(range_limit[cur0]);
1025*c2c66affSColin Finck cur1 = GETJSAMPLE(range_limit[cur1]);
1026*c2c66affSColin Finck cur2 = GETJSAMPLE(range_limit[cur2]);
1027*c2c66affSColin Finck /* Index into the cache with adjusted pixel value */
1028*c2c66affSColin Finck cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
1029*c2c66affSColin Finck /* If we have not seen this color before, find nearest colormap */
1030*c2c66affSColin Finck /* entry and update the cache */
1031*c2c66affSColin Finck if (*cachep == 0)
1032*c2c66affSColin Finck fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
1033*c2c66affSColin Finck /* Now emit the colormap index for this cell */
1034*c2c66affSColin Finck { register int pixcode = *cachep - 1;
1035*c2c66affSColin Finck *outptr = (JSAMPLE) pixcode;
1036*c2c66affSColin Finck /* Compute representation error for this pixel */
1037*c2c66affSColin Finck cur0 -= GETJSAMPLE(colormap0[pixcode]);
1038*c2c66affSColin Finck cur1 -= GETJSAMPLE(colormap1[pixcode]);
1039*c2c66affSColin Finck cur2 -= GETJSAMPLE(colormap2[pixcode]);
1040*c2c66affSColin Finck }
1041*c2c66affSColin Finck /* Compute error fractions to be propagated to adjacent pixels.
1042*c2c66affSColin Finck * Add these into the running sums, and simultaneously shift the
1043*c2c66affSColin Finck * next-line error sums left by 1 column.
1044*c2c66affSColin Finck */
1045*c2c66affSColin Finck { register LOCFSERROR bnexterr, delta;
1046*c2c66affSColin Finck
1047*c2c66affSColin Finck bnexterr = cur0; /* Process component 0 */
1048*c2c66affSColin Finck delta = cur0 * 2;
1049*c2c66affSColin Finck cur0 += delta; /* form error * 3 */
1050*c2c66affSColin Finck errorptr[0] = (FSERROR) (bpreverr0 + cur0);
1051*c2c66affSColin Finck cur0 += delta; /* form error * 5 */
1052*c2c66affSColin Finck bpreverr0 = belowerr0 + cur0;
1053*c2c66affSColin Finck belowerr0 = bnexterr;
1054*c2c66affSColin Finck cur0 += delta; /* form error * 7 */
1055*c2c66affSColin Finck bnexterr = cur1; /* Process component 1 */
1056*c2c66affSColin Finck delta = cur1 * 2;
1057*c2c66affSColin Finck cur1 += delta; /* form error * 3 */
1058*c2c66affSColin Finck errorptr[1] = (FSERROR) (bpreverr1 + cur1);
1059*c2c66affSColin Finck cur1 += delta; /* form error * 5 */
1060*c2c66affSColin Finck bpreverr1 = belowerr1 + cur1;
1061*c2c66affSColin Finck belowerr1 = bnexterr;
1062*c2c66affSColin Finck cur1 += delta; /* form error * 7 */
1063*c2c66affSColin Finck bnexterr = cur2; /* Process component 2 */
1064*c2c66affSColin Finck delta = cur2 * 2;
1065*c2c66affSColin Finck cur2 += delta; /* form error * 3 */
1066*c2c66affSColin Finck errorptr[2] = (FSERROR) (bpreverr2 + cur2);
1067*c2c66affSColin Finck cur2 += delta; /* form error * 5 */
1068*c2c66affSColin Finck bpreverr2 = belowerr2 + cur2;
1069*c2c66affSColin Finck belowerr2 = bnexterr;
1070*c2c66affSColin Finck cur2 += delta; /* form error * 7 */
1071*c2c66affSColin Finck }
1072*c2c66affSColin Finck /* At this point curN contains the 7/16 error value to be propagated
1073*c2c66affSColin Finck * to the next pixel on the current line, and all the errors for the
1074*c2c66affSColin Finck * next line have been shifted over. We are therefore ready to move on.
1075*c2c66affSColin Finck */
1076*c2c66affSColin Finck inptr += dir3; /* Advance pixel pointers to next column */
1077*c2c66affSColin Finck outptr += dir;
1078*c2c66affSColin Finck errorptr += dir3; /* advance errorptr to current column */
1079*c2c66affSColin Finck }
1080*c2c66affSColin Finck /* Post-loop cleanup: we must unload the final error values into the
1081*c2c66affSColin Finck * final fserrors[] entry. Note we need not unload belowerrN because
1082*c2c66affSColin Finck * it is for the dummy column before or after the actual array.
1083*c2c66affSColin Finck */
1084*c2c66affSColin Finck errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1085*c2c66affSColin Finck errorptr[1] = (FSERROR) bpreverr1;
1086*c2c66affSColin Finck errorptr[2] = (FSERROR) bpreverr2;
1087*c2c66affSColin Finck }
1088*c2c66affSColin Finck }
1089*c2c66affSColin Finck
1090*c2c66affSColin Finck
1091*c2c66affSColin Finck /*
1092*c2c66affSColin Finck * Initialize the error-limiting transfer function (lookup table).
1093*c2c66affSColin Finck * The raw F-S error computation can potentially compute error values of up to
1094*c2c66affSColin Finck * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
1095*c2c66affSColin Finck * much less, otherwise obviously wrong pixels will be created. (Typical
1096*c2c66affSColin Finck * effects include weird fringes at color-area boundaries, isolated bright
1097*c2c66affSColin Finck * pixels in a dark area, etc.) The standard advice for avoiding this problem
1098*c2c66affSColin Finck * is to ensure that the "corners" of the color cube are allocated as output
1099*c2c66affSColin Finck * colors; then repeated errors in the same direction cannot cause cascading
1100*c2c66affSColin Finck * error buildup. However, that only prevents the error from getting
1101*c2c66affSColin Finck * completely out of hand; Aaron Giles reports that error limiting improves
1102*c2c66affSColin Finck * the results even with corner colors allocated.
1103*c2c66affSColin Finck * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1104*c2c66affSColin Finck * well, but the smoother transfer function used below is even better. Thanks
1105*c2c66affSColin Finck * to Aaron Giles for this idea.
1106*c2c66affSColin Finck */
1107*c2c66affSColin Finck
1108*c2c66affSColin Finck LOCAL(void)
init_error_limit(j_decompress_ptr cinfo)1109*c2c66affSColin Finck init_error_limit (j_decompress_ptr cinfo)
1110*c2c66affSColin Finck /* Allocate and fill in the error_limiter table */
1111*c2c66affSColin Finck {
1112*c2c66affSColin Finck my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1113*c2c66affSColin Finck int * table;
1114*c2c66affSColin Finck int in, out;
1115*c2c66affSColin Finck
1116*c2c66affSColin Finck table = (int *) (*cinfo->mem->alloc_small)
1117*c2c66affSColin Finck ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
1118*c2c66affSColin Finck table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1119*c2c66affSColin Finck cquantize->error_limiter = table;
1120*c2c66affSColin Finck
1121*c2c66affSColin Finck #define STEPSIZE ((MAXJSAMPLE+1)/16)
1122*c2c66affSColin Finck /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1123*c2c66affSColin Finck out = 0;
1124*c2c66affSColin Finck for (in = 0; in < STEPSIZE; in++, out++) {
1125*c2c66affSColin Finck table[in] = out; table[-in] = -out;
1126*c2c66affSColin Finck }
1127*c2c66affSColin Finck /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1128*c2c66affSColin Finck for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
1129*c2c66affSColin Finck table[in] = out; table[-in] = -out;
1130*c2c66affSColin Finck }
1131*c2c66affSColin Finck /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1132*c2c66affSColin Finck for (; in <= MAXJSAMPLE; in++) {
1133*c2c66affSColin Finck table[in] = out; table[-in] = -out;
1134*c2c66affSColin Finck }
1135*c2c66affSColin Finck #undef STEPSIZE
1136*c2c66affSColin Finck }
1137*c2c66affSColin Finck
1138*c2c66affSColin Finck
1139*c2c66affSColin Finck /*
1140*c2c66affSColin Finck * Finish up at the end of each pass.
1141*c2c66affSColin Finck */
1142*c2c66affSColin Finck
1143*c2c66affSColin Finck METHODDEF(void)
finish_pass1(j_decompress_ptr cinfo)1144*c2c66affSColin Finck finish_pass1 (j_decompress_ptr cinfo)
1145*c2c66affSColin Finck {
1146*c2c66affSColin Finck my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1147*c2c66affSColin Finck
1148*c2c66affSColin Finck /* Select the representative colors and fill in cinfo->colormap */
1149*c2c66affSColin Finck cinfo->colormap = cquantize->sv_colormap;
1150*c2c66affSColin Finck select_colors(cinfo, cquantize->desired);
1151*c2c66affSColin Finck /* Force next pass to zero the color index table */
1152*c2c66affSColin Finck cquantize->needs_zeroed = TRUE;
1153*c2c66affSColin Finck }
1154*c2c66affSColin Finck
1155*c2c66affSColin Finck
1156*c2c66affSColin Finck METHODDEF(void)
finish_pass2(j_decompress_ptr cinfo)1157*c2c66affSColin Finck finish_pass2 (j_decompress_ptr cinfo)
1158*c2c66affSColin Finck {
1159*c2c66affSColin Finck /* no work */
1160*c2c66affSColin Finck }
1161*c2c66affSColin Finck
1162*c2c66affSColin Finck
1163*c2c66affSColin Finck /*
1164*c2c66affSColin Finck * Initialize for each processing pass.
1165*c2c66affSColin Finck */
1166*c2c66affSColin Finck
1167*c2c66affSColin Finck METHODDEF(void)
start_pass_2_quant(j_decompress_ptr cinfo,boolean is_pre_scan)1168*c2c66affSColin Finck start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
1169*c2c66affSColin Finck {
1170*c2c66affSColin Finck my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1171*c2c66affSColin Finck hist3d histogram = cquantize->histogram;
1172*c2c66affSColin Finck int i;
1173*c2c66affSColin Finck
1174*c2c66affSColin Finck /* Only F-S dithering or no dithering is supported. */
1175*c2c66affSColin Finck /* If user asks for ordered dither, give him F-S. */
1176*c2c66affSColin Finck if (cinfo->dither_mode != JDITHER_NONE)
1177*c2c66affSColin Finck cinfo->dither_mode = JDITHER_FS;
1178*c2c66affSColin Finck
1179*c2c66affSColin Finck if (is_pre_scan) {
1180*c2c66affSColin Finck /* Set up method pointers */
1181*c2c66affSColin Finck cquantize->pub.color_quantize = prescan_quantize;
1182*c2c66affSColin Finck cquantize->pub.finish_pass = finish_pass1;
1183*c2c66affSColin Finck cquantize->needs_zeroed = TRUE; /* Always zero histogram */
1184*c2c66affSColin Finck } else {
1185*c2c66affSColin Finck /* Set up method pointers */
1186*c2c66affSColin Finck if (cinfo->dither_mode == JDITHER_FS)
1187*c2c66affSColin Finck cquantize->pub.color_quantize = pass2_fs_dither;
1188*c2c66affSColin Finck else
1189*c2c66affSColin Finck cquantize->pub.color_quantize = pass2_no_dither;
1190*c2c66affSColin Finck cquantize->pub.finish_pass = finish_pass2;
1191*c2c66affSColin Finck
1192*c2c66affSColin Finck /* Make sure color count is acceptable */
1193*c2c66affSColin Finck i = cinfo->actual_number_of_colors;
1194*c2c66affSColin Finck if (i < 1)
1195*c2c66affSColin Finck ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
1196*c2c66affSColin Finck if (i > MAXNUMCOLORS)
1197*c2c66affSColin Finck ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1198*c2c66affSColin Finck
1199*c2c66affSColin Finck if (cinfo->dither_mode == JDITHER_FS) {
1200*c2c66affSColin Finck size_t arraysize = (size_t) ((cinfo->output_width + 2) *
1201*c2c66affSColin Finck (3 * SIZEOF(FSERROR)));
1202*c2c66affSColin Finck /* Allocate Floyd-Steinberg workspace if we didn't already. */
1203*c2c66affSColin Finck if (cquantize->fserrors == NULL)
1204*c2c66affSColin Finck cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1205*c2c66affSColin Finck ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
1206*c2c66affSColin Finck /* Initialize the propagated errors to zero. */
1207*c2c66affSColin Finck FMEMZERO((void FAR *) cquantize->fserrors, arraysize);
1208*c2c66affSColin Finck /* Make the error-limit table if we didn't already. */
1209*c2c66affSColin Finck if (cquantize->error_limiter == NULL)
1210*c2c66affSColin Finck init_error_limit(cinfo);
1211*c2c66affSColin Finck cquantize->on_odd_row = FALSE;
1212*c2c66affSColin Finck }
1213*c2c66affSColin Finck
1214*c2c66affSColin Finck }
1215*c2c66affSColin Finck /* Zero the histogram or inverse color map, if necessary */
1216*c2c66affSColin Finck if (cquantize->needs_zeroed) {
1217*c2c66affSColin Finck for (i = 0; i < HIST_C0_ELEMS; i++) {
1218*c2c66affSColin Finck FMEMZERO((void FAR *) histogram[i],
1219*c2c66affSColin Finck HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1220*c2c66affSColin Finck }
1221*c2c66affSColin Finck cquantize->needs_zeroed = FALSE;
1222*c2c66affSColin Finck }
1223*c2c66affSColin Finck }
1224*c2c66affSColin Finck
1225*c2c66affSColin Finck
1226*c2c66affSColin Finck /*
1227*c2c66affSColin Finck * Switch to a new external colormap between output passes.
1228*c2c66affSColin Finck */
1229*c2c66affSColin Finck
1230*c2c66affSColin Finck METHODDEF(void)
new_color_map_2_quant(j_decompress_ptr cinfo)1231*c2c66affSColin Finck new_color_map_2_quant (j_decompress_ptr cinfo)
1232*c2c66affSColin Finck {
1233*c2c66affSColin Finck my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1234*c2c66affSColin Finck
1235*c2c66affSColin Finck /* Reset the inverse color map */
1236*c2c66affSColin Finck cquantize->needs_zeroed = TRUE;
1237*c2c66affSColin Finck }
1238*c2c66affSColin Finck
1239*c2c66affSColin Finck
1240*c2c66affSColin Finck /*
1241*c2c66affSColin Finck * Module initialization routine for 2-pass color quantization.
1242*c2c66affSColin Finck */
1243*c2c66affSColin Finck
1244*c2c66affSColin Finck GLOBAL(void)
jinit_2pass_quantizer(j_decompress_ptr cinfo)1245*c2c66affSColin Finck jinit_2pass_quantizer (j_decompress_ptr cinfo)
1246*c2c66affSColin Finck {
1247*c2c66affSColin Finck my_cquantize_ptr cquantize;
1248*c2c66affSColin Finck int i;
1249*c2c66affSColin Finck
1250*c2c66affSColin Finck cquantize = (my_cquantize_ptr)
1251*c2c66affSColin Finck (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1252*c2c66affSColin Finck SIZEOF(my_cquantizer));
1253*c2c66affSColin Finck cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
1254*c2c66affSColin Finck cquantize->pub.start_pass = start_pass_2_quant;
1255*c2c66affSColin Finck cquantize->pub.new_color_map = new_color_map_2_quant;
1256*c2c66affSColin Finck cquantize->fserrors = NULL; /* flag optional arrays not allocated */
1257*c2c66affSColin Finck cquantize->error_limiter = NULL;
1258*c2c66affSColin Finck
1259*c2c66affSColin Finck /* Make sure jdmaster didn't give me a case I can't handle */
1260*c2c66affSColin Finck if (cinfo->out_color_components != 3)
1261*c2c66affSColin Finck ERREXIT(cinfo, JERR_NOTIMPL);
1262*c2c66affSColin Finck
1263*c2c66affSColin Finck /* Allocate the histogram/inverse colormap storage */
1264*c2c66affSColin Finck cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
1265*c2c66affSColin Finck ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
1266*c2c66affSColin Finck for (i = 0; i < HIST_C0_ELEMS; i++) {
1267*c2c66affSColin Finck cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
1268*c2c66affSColin Finck ((j_common_ptr) cinfo, JPOOL_IMAGE,
1269*c2c66affSColin Finck HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1270*c2c66affSColin Finck }
1271*c2c66affSColin Finck cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
1272*c2c66affSColin Finck
1273*c2c66affSColin Finck /* Allocate storage for the completed colormap, if required.
1274*c2c66affSColin Finck * We do this now since it is FAR storage and may affect
1275*c2c66affSColin Finck * the memory manager's space calculations.
1276*c2c66affSColin Finck */
1277*c2c66affSColin Finck if (cinfo->enable_2pass_quant) {
1278*c2c66affSColin Finck /* Make sure color count is acceptable */
1279*c2c66affSColin Finck int desired = cinfo->desired_number_of_colors;
1280*c2c66affSColin Finck /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1281*c2c66affSColin Finck if (desired < 8)
1282*c2c66affSColin Finck ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
1283*c2c66affSColin Finck /* Make sure colormap indexes can be represented by JSAMPLEs */
1284*c2c66affSColin Finck if (desired > MAXNUMCOLORS)
1285*c2c66affSColin Finck ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1286*c2c66affSColin Finck cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
1287*c2c66affSColin Finck ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
1288*c2c66affSColin Finck cquantize->desired = desired;
1289*c2c66affSColin Finck } else
1290*c2c66affSColin Finck cquantize->sv_colormap = NULL;
1291*c2c66affSColin Finck
1292*c2c66affSColin Finck /* Only F-S dithering or no dithering is supported. */
1293*c2c66affSColin Finck /* If user asks for ordered dither, give him F-S. */
1294*c2c66affSColin Finck if (cinfo->dither_mode != JDITHER_NONE)
1295*c2c66affSColin Finck cinfo->dither_mode = JDITHER_FS;
1296*c2c66affSColin Finck
1297*c2c66affSColin Finck /* Allocate Floyd-Steinberg workspace if necessary.
1298*c2c66affSColin Finck * This isn't really needed until pass 2, but again it is FAR storage.
1299*c2c66affSColin Finck * Although we will cope with a later change in dither_mode,
1300*c2c66affSColin Finck * we do not promise to honor max_memory_to_use if dither_mode changes.
1301*c2c66affSColin Finck */
1302*c2c66affSColin Finck if (cinfo->dither_mode == JDITHER_FS) {
1303*c2c66affSColin Finck cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1304*c2c66affSColin Finck ((j_common_ptr) cinfo, JPOOL_IMAGE,
1305*c2c66affSColin Finck (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
1306*c2c66affSColin Finck /* Might as well create the error-limiting table too. */
1307*c2c66affSColin Finck init_error_limit(cinfo);
1308*c2c66affSColin Finck }
1309*c2c66affSColin Finck }
1310*c2c66affSColin Finck
1311*c2c66affSColin Finck #endif /* QUANT_2PASS_SUPPORTED */
1312