1 /*
2  * tkTrig.c --
3  *
4  *	This is an abridged copy of generic/tkTrig.c from the source
5  *	distribution for tk8.3.0.
6  *
7  *	This file contains a collection of trigonometry utility
8  *	routines that are used by Tk and in particular by the
9  *	canvas code.  It also has miscellaneous geometry functions
10  *	used by canvases.
11  *
12  * Copyright (c) 1992-1994 The Regents of the University of California.
13  * Copyright (c) 1994-1997 Sun Microsystems, Inc.
14  *
15  * Changelog:
16  * Replaced "Tk" prefix in function names with "Tkgeomap" to prevent collisions
17  * with later Tk functions.  The functions have not been otherwise modified.
18  * Gordon Carrie, 7 December 2003.
19  *
20  * See the file "license.terms" for information on usage and redistribution
21  * of this file, and for a DISCLAIMER OF ALL WARRANTIES.
22  *
23  * @(#) $Id: tkTrig.c,v 1.1 2004/02/18 20:26:21 tkgeomap Exp $
24  */
25 
26 #include <stdio.h>
27 #include <math.h>
28 #include "tkgeomapInt.h"
29 
30 #undef MIN
31 #define MIN(a,b) (((a) < (b)) ? (a) : (b))
32 #undef MAX
33 #define MAX(a,b) (((a) > (b)) ? (a) : (b))
34 #ifndef PI
35 #   define PI 3.14159265358979323846
36 #endif /* PI */
37 
38 /*
39  *--------------------------------------------------------------
40  *
41  * TkgeomapLineToPoint --
42  *
43  *	Compute the distance from a point to a finite line segment.
44  *
45  * Results:
46  *	The return value is the distance from the line segment
47  *	whose end-points are *end1Ptr and *end2Ptr to the point
48  *	given by *pointPtr.
49  *
50  * Side effects:
51  *	None.
52  *
53  *--------------------------------------------------------------
54  */
55 
56 double
TkgeomapLineToPoint(end1Ptr,end2Ptr,pointPtr)57 TkgeomapLineToPoint(end1Ptr, end2Ptr, pointPtr)
58     double end1Ptr[2];		/* Coordinates of first end-point of line. */
59     double end2Ptr[2];		/* Coordinates of second end-point of line. */
60     double pointPtr[2];		/* Points to coords for point. */
61 {
62     double x, y;
63 
64     /*
65      * Compute the point on the line that is closest to the
66      * point.  This must be done separately for vertical edges,
67      * horizontal edges, and other edges.
68      */
69 
70     if (end1Ptr[0] == end2Ptr[0]) {
71 
72 	/*
73 	 * Vertical edge.
74 	 */
75 
76 	x = end1Ptr[0];
77 	if (end1Ptr[1] >= end2Ptr[1]) {
78 	    y = MIN(end1Ptr[1], pointPtr[1]);
79 	    y = MAX(y, end2Ptr[1]);
80 	} else {
81 	    y = MIN(end2Ptr[1], pointPtr[1]);
82 	    y = MAX(y, end1Ptr[1]);
83 	}
84     } else if (end1Ptr[1] == end2Ptr[1]) {
85 
86 	/*
87 	 * Horizontal edge.
88 	 */
89 
90 	y = end1Ptr[1];
91 	if (end1Ptr[0] >= end2Ptr[0]) {
92 	    x = MIN(end1Ptr[0], pointPtr[0]);
93 	    x = MAX(x, end2Ptr[0]);
94 	} else {
95 	    x = MIN(end2Ptr[0], pointPtr[0]);
96 	    x = MAX(x, end1Ptr[0]);
97 	}
98     } else {
99 	double m1, b1, m2, b2;
100 
101 	/*
102 	 * The edge is neither horizontal nor vertical.  Convert the
103 	 * edge to a line equation of the form y = m1*x + b1.  Then
104 	 * compute a line perpendicular to this edge but passing
105 	 * through the point, also in the form y = m2*x + b2.
106 	 */
107 
108 	m1 = (end2Ptr[1] - end1Ptr[1])/(end2Ptr[0] - end1Ptr[0]);
109 	b1 = end1Ptr[1] - m1*end1Ptr[0];
110 	m2 = -1.0/m1;
111 	b2 = pointPtr[1] - m2*pointPtr[0];
112 	x = (b2 - b1)/(m1 - m2);
113 	y = m1*x + b1;
114 	if (end1Ptr[0] > end2Ptr[0]) {
115 	    if (x > end1Ptr[0]) {
116 		x = end1Ptr[0];
117 		y = end1Ptr[1];
118 	    } else if (x < end2Ptr[0]) {
119 		x = end2Ptr[0];
120 		y = end2Ptr[1];
121 	    }
122 	} else {
123 	    if (x > end2Ptr[0]) {
124 		x = end2Ptr[0];
125 		y = end2Ptr[1];
126 	    } else if (x < end1Ptr[0]) {
127 		x = end1Ptr[0];
128 		y = end1Ptr[1];
129 	    }
130 	}
131     }
132 
133     /*
134      * Compute the distance to the closest point.
135      */
136 
137     return hypot(pointPtr[0] - x, pointPtr[1] - y);
138 }
139 
140 /*
141  *--------------------------------------------------------------
142  *
143  * TkgeomapLineToArea --
144  *
145  *	Determine whether a line lies entirely inside, entirely
146  *	outside, or overlapping a given rectangular area.
147  *
148  * Results:
149  *	-1 is returned if the line given by end1Ptr and end2Ptr
150  *	is entirely outside the rectangle given by rectPtr.  0 is
151  *	returned if the polygon overlaps the rectangle, and 1 is
152  *	returned if the polygon is entirely inside the rectangle.
153  *
154  * Side effects:
155  *	None.
156  *
157  *--------------------------------------------------------------
158  */
159 
160 int
TkgeomapLineToArea(end1Ptr,end2Ptr,rectPtr)161 TkgeomapLineToArea(end1Ptr, end2Ptr, rectPtr)
162     double end1Ptr[2];		/* X and y coordinates for one endpoint
163 				 * of line. */
164     double end2Ptr[2];		/* X and y coordinates for other endpoint
165 				 * of line. */
166     double rectPtr[4];		/* Points to coords for rectangle, in the
167 				 * order x1, y1, x2, y2.  X1 must be no
168 				 * larger than x2, and y1 no larger than y2. */
169 {
170     int inside1, inside2;
171 
172     /*
173      * First check the two points individually to see whether they
174      * are inside the rectangle or not.
175      */
176 
177     inside1 = (end1Ptr[0] >= rectPtr[0]) && (end1Ptr[0] <= rectPtr[2])
178 	    && (end1Ptr[1] >= rectPtr[1]) && (end1Ptr[1] <= rectPtr[3]);
179     inside2 = (end2Ptr[0] >= rectPtr[0]) && (end2Ptr[0] <= rectPtr[2])
180 	    && (end2Ptr[1] >= rectPtr[1]) && (end2Ptr[1] <= rectPtr[3]);
181     if (inside1 != inside2) {
182 	return 0;
183     }
184     if (inside1 & inside2) {
185 	return 1;
186     }
187 
188     /*
189      * Both points are outside the rectangle, but still need to check
190      * for intersections between the line and the rectangle.  Horizontal
191      * and vertical lines are particularly easy, so handle them
192      * separately.
193      */
194 
195     if (end1Ptr[0] == end2Ptr[0]) {
196 	/*
197 	 * Vertical line.
198 	 */
199 
200 	if (((end1Ptr[1] >= rectPtr[1]) ^ (end2Ptr[1] >= rectPtr[1]))
201 		&& (end1Ptr[0] >= rectPtr[0])
202 		&& (end1Ptr[0] <= rectPtr[2])) {
203 	    return 0;
204 	}
205     } else if (end1Ptr[1] == end2Ptr[1]) {
206 	/*
207 	 * Horizontal line.
208 	 */
209 
210 	if (((end1Ptr[0] >= rectPtr[0]) ^ (end2Ptr[0] >= rectPtr[0]))
211 		&& (end1Ptr[1] >= rectPtr[1])
212 		&& (end1Ptr[1] <= rectPtr[3])) {
213 	    return 0;
214 	}
215     } else {
216 	double m, x, y, low, high;
217 
218 	/*
219 	 * Diagonal line.  Compute slope of line and use
220 	 * for intersection checks against each of the
221 	 * sides of the rectangle: left, right, bottom, top.
222 	 */
223 
224 	m = (end2Ptr[1] - end1Ptr[1])/(end2Ptr[0] - end1Ptr[0]);
225 	if (end1Ptr[0] < end2Ptr[0]) {
226 	    low = end1Ptr[0];  high = end2Ptr[0];
227 	} else {
228 	    low = end2Ptr[0]; high = end1Ptr[0];
229 	}
230 
231 	/*
232 	 * Left edge.
233 	 */
234 
235 	y = end1Ptr[1] + (rectPtr[0] - end1Ptr[0])*m;
236 	if ((rectPtr[0] >= low) && (rectPtr[0] <= high)
237 		&& (y >= rectPtr[1]) && (y <= rectPtr[3])) {
238 	    return 0;
239 	}
240 
241 	/*
242 	 * Right edge.
243 	 */
244 
245 	y += (rectPtr[2] - rectPtr[0])*m;
246 	if ((y >= rectPtr[1]) && (y <= rectPtr[3])
247 		&& (rectPtr[2] >= low) && (rectPtr[2] <= high)) {
248 	    return 0;
249 	}
250 
251 	/*
252 	 * Bottom edge.
253 	 */
254 
255 	if (end1Ptr[1] < end2Ptr[1]) {
256 	    low = end1Ptr[1];  high = end2Ptr[1];
257 	} else {
258 	    low = end2Ptr[1]; high = end1Ptr[1];
259 	}
260 	x = end1Ptr[0] + (rectPtr[1] - end1Ptr[1])/m;
261 	if ((x >= rectPtr[0]) && (x <= rectPtr[2])
262 		&& (rectPtr[1] >= low) && (rectPtr[1] <= high)) {
263 	    return 0;
264 	}
265 
266 	/*
267 	 * Top edge.
268 	 */
269 
270 	x += (rectPtr[3] - rectPtr[1])/m;
271 	if ((x >= rectPtr[0]) && (x <= rectPtr[2])
272 		&& (rectPtr[3] >= low) && (rectPtr[3] <= high)) {
273 	    return 0;
274 	}
275     }
276     return -1;
277 }
278 
279 /*
280  *--------------------------------------------------------------
281  *
282  * TkgeomapPolygonToPoint --
283  *
284  *	Compute the distance from a point to a polygon.
285  *
286  * Results:
287  *	The return value is 0.0 if the point referred to by
288  *	pointPtr is within the polygon referred to by polyPtr
289  *	and numPoints.  Otherwise the return value is the
290  *	distance of the point from the polygon.
291  *
292  * Side effects:
293  *	None.
294  *
295  *--------------------------------------------------------------
296  */
297 
298 double
TkgeomapPolygonToPoint(polyPtr,numPoints,pointPtr)299 TkgeomapPolygonToPoint(polyPtr, numPoints, pointPtr)
300     double *polyPtr;		/* Points to an array coordinates for
301 				 * closed polygon:  x0, y0, x1, y1, ...
302 				 * The polygon may be self-intersecting. */
303     int numPoints;		/* Total number of points at *polyPtr. */
304     double *pointPtr;		/* Points to coords for point. */
305 {
306     double bestDist;		/* Closest distance between point and
307 				 * any edge in polygon. */
308     int intersections;		/* Number of edges in the polygon that
309 				 * intersect a ray extending vertically
310 				 * upwards from the point to infinity. */
311     int count;
312     register double *pPtr;
313 
314     /*
315      * Iterate through all of the edges in the polygon, updating
316      * bestDist and intersections.
317      *
318      * TRICKY POINT:  when computing intersections, include left
319      * x-coordinate of line within its range, but not y-coordinate.
320      * Otherwise if the point lies exactly below a vertex we'll
321      * count it as two intersections.
322      */
323 
324     bestDist = 1.0e36;
325     intersections = 0;
326 
327     for (count = numPoints, pPtr = polyPtr; count > 1; count--, pPtr += 2) {
328 	double x, y, dist;
329 
330 	/*
331 	 * Compute the point on the current edge closest to the point
332 	 * and update the intersection count.  This must be done
333 	 * separately for vertical edges, horizontal edges, and
334 	 * other edges.
335 	 */
336 
337 	if (pPtr[2] == pPtr[0]) {
338 
339 	    /*
340 	     * Vertical edge.
341 	     */
342 
343 	    x = pPtr[0];
344 	    if (pPtr[1] >= pPtr[3]) {
345 		y = MIN(pPtr[1], pointPtr[1]);
346 		y = MAX(y, pPtr[3]);
347 	    } else {
348 		y = MIN(pPtr[3], pointPtr[1]);
349 		y = MAX(y, pPtr[1]);
350 	    }
351 	} else if (pPtr[3] == pPtr[1]) {
352 
353 	    /*
354 	     * Horizontal edge.
355 	     */
356 
357 	    y = pPtr[1];
358 	    if (pPtr[0] >= pPtr[2]) {
359 		x = MIN(pPtr[0], pointPtr[0]);
360 		x = MAX(x, pPtr[2]);
361 		if ((pointPtr[1] < y) && (pointPtr[0] < pPtr[0])
362 			&& (pointPtr[0] >= pPtr[2])) {
363 		    intersections++;
364 		}
365 	    } else {
366 		x = MIN(pPtr[2], pointPtr[0]);
367 		x = MAX(x, pPtr[0]);
368 		if ((pointPtr[1] < y) && (pointPtr[0] < pPtr[2])
369 			&& (pointPtr[0] >= pPtr[0])) {
370 		    intersections++;
371 		}
372 	    }
373 	} else {
374 	    double m1, b1, m2, b2;
375 	    int lower;			/* Non-zero means point below line. */
376 
377 	    /*
378 	     * The edge is neither horizontal nor vertical.  Convert the
379 	     * edge to a line equation of the form y = m1*x + b1.  Then
380 	     * compute a line perpendicular to this edge but passing
381 	     * through the point, also in the form y = m2*x + b2.
382 	     */
383 
384 	    m1 = (pPtr[3] - pPtr[1])/(pPtr[2] - pPtr[0]);
385 	    b1 = pPtr[1] - m1*pPtr[0];
386 	    m2 = -1.0/m1;
387 	    b2 = pointPtr[1] - m2*pointPtr[0];
388 	    x = (b2 - b1)/(m1 - m2);
389 	    y = m1*x + b1;
390 	    if (pPtr[0] > pPtr[2]) {
391 		if (x > pPtr[0]) {
392 		    x = pPtr[0];
393 		    y = pPtr[1];
394 		} else if (x < pPtr[2]) {
395 		    x = pPtr[2];
396 		    y = pPtr[3];
397 		}
398 	    } else {
399 		if (x > pPtr[2]) {
400 		    x = pPtr[2];
401 		    y = pPtr[3];
402 		} else if (x < pPtr[0]) {
403 		    x = pPtr[0];
404 		    y = pPtr[1];
405 		}
406 	    }
407 	    lower = (m1*pointPtr[0] + b1) > pointPtr[1];
408 	    if (lower && (pointPtr[0] >= MIN(pPtr[0], pPtr[2]))
409 		    && (pointPtr[0] < MAX(pPtr[0], pPtr[2]))) {
410 		intersections++;
411 	    }
412 	}
413 
414 	/*
415 	 * Compute the distance to the closest point, and see if that
416 	 * is the best distance seen so far.
417 	 */
418 
419 	dist = hypot(pointPtr[0] - x, pointPtr[1] - y);
420 	if (dist < bestDist) {
421 	    bestDist = dist;
422 	}
423     }
424 
425     /*
426      * We've processed all of the points.  If the number of intersections
427      * is odd, the point is inside the polygon.
428      */
429 
430     if (intersections & 0x1) {
431 	return 0.0;
432     }
433     return bestDist;
434 }
435 
436 /*
437  *--------------------------------------------------------------
438  *
439  * TkgeomapPolygonToArea --
440  *
441  *	Determine whether a polygon lies entirely inside, entirely
442  *	outside, or overlapping a given rectangular area.
443  *
444  * Results:
445  *	-1 is returned if the polygon given by polyPtr and numPoints
446  *	is entirely outside the rectangle given by rectPtr.  0 is
447  *	returned if the polygon overlaps the rectangle, and 1 is
448  *	returned if the polygon is entirely inside the rectangle.
449  *
450  * Side effects:
451  *	None.
452  *
453  *--------------------------------------------------------------
454  */
455 
456 int
TkgeomapPolygonToArea(polyPtr,numPoints,rectPtr)457 TkgeomapPolygonToArea(polyPtr, numPoints, rectPtr)
458     double *polyPtr;		/* Points to an array coordinates for
459 				 * closed polygon:  x0, y0, x1, y1, ...
460 				 * The polygon may be self-intersecting. */
461     int numPoints;		/* Total number of points at *polyPtr. */
462     register double *rectPtr;	/* Points to coords for rectangle, in the
463 				 * order x1, y1, x2, y2.  X1 and y1 must
464 				 * be lower-left corner. */
465 {
466     int state;			/* State of all edges seen so far (-1 means
467 				 * outside, 1 means inside, won't ever be
468 				 * 0). */
469     int count;
470     register double *pPtr;
471 
472     /*
473      * Iterate over all of the edges of the polygon and test them
474      * against the rectangle.  Can quit as soon as the state becomes
475      * "intersecting".
476      */
477 
478     state = TkgeomapLineToArea(polyPtr, polyPtr+2, rectPtr);
479     if (state == 0) {
480 	return 0;
481     }
482     for (pPtr = polyPtr+2, count = numPoints-1; count >= 2;
483 	    pPtr += 2, count--) {
484 	if (TkgeomapLineToArea(pPtr, pPtr+2, rectPtr) != state) {
485 	    return 0;
486 	}
487     }
488 
489     /*
490      * If all of the edges were inside the rectangle we're done.
491      * If all of the edges were outside, then the rectangle could
492      * still intersect the polygon (if it's entirely enclosed).
493      * Call TkgeomapPolygonToPoint to figure this out.
494      */
495 
496     if (state == 1) {
497 	return 1;
498     }
499     if (TkgeomapPolygonToPoint(polyPtr, numPoints, rectPtr) == 0.0) {
500 	return 0;
501     }
502     return -1;
503 }
504 
505 /*
506  *--------------------------------------------------------------
507  *
508  * TkgeomapBezierScreenPoints --
509  *
510  *	Given four control points, create a larger set of XPoints
511  *	for a Bezier spline based on the points.
512  *
513  * Results:
514  *	The array at *xPointPtr gets filled in with numSteps XPoints
515  *	corresponding to the Bezier spline defined by the four
516  *	control points.  Note:  no output point is generated for the
517  *	first input point, but an output point *is* generated for
518  *	the last input point.
519  *
520  * Side effects:
521  *	None.
522  *
523  *--------------------------------------------------------------
524  */
525 
526 void
TkgeomapBezierScreenPoints(canvas,control,numSteps,xPointPtr)527 TkgeomapBezierScreenPoints(canvas, control, numSteps, xPointPtr)
528     Tk_Canvas canvas;			/* Canvas in which curve is to be
529 					 * drawn. */
530     double control[];			/* Array of coordinates for four
531 					 * control points:  x0, y0, x1, y1,
532 					 * ... x3 y3. */
533     int numSteps;			/* Number of curve points to
534 					 * generate.  */
535     register XPoint *xPointPtr;		/* Where to put new points. */
536 {
537     int i;
538     double u, u2, u3, t, t2, t3;
539 
540     for (i = 1; i <= numSteps; i++, xPointPtr++) {
541 	t = ((double) i)/((double) numSteps);
542 	t2 = t*t;
543 	t3 = t2*t;
544 	u = 1.0 - t;
545 	u2 = u*u;
546 	u3 = u2*u;
547 	Tk_CanvasDrawableCoords(canvas,
548 		(control[0]*u3 + 3.0 * (control[2]*t*u2 + control[4]*t2*u)
549 		    + control[6]*t3),
550 		(control[1]*u3 + 3.0 * (control[3]*t*u2 + control[5]*t2*u)
551 		    + control[7]*t3),
552 		&xPointPtr->x, &xPointPtr->y);
553     }
554 }
555 
556 /*
557  *--------------------------------------------------------------
558  *
559  * TkgeomapBezierPoints --
560  *
561  *	Given four control points, create a larger set of points
562  *	for a Bezier spline based on the points.
563  *
564  * Results:
565  *	The array at *coordPtr gets filled in with 2*numSteps
566  *	coordinates, which correspond to the Bezier spline defined
567  *	by the four control points.  Note:  no output point is
568  *	generated for the first input point, but an output point
569  *	*is* generated for the last input point.
570  *
571  * Side effects:
572  *	None.
573  *
574  *--------------------------------------------------------------
575  */
576 
577 void
TkgeomapBezierPoints(control,numSteps,coordPtr)578 TkgeomapBezierPoints(control, numSteps, coordPtr)
579     double control[];			/* Array of coordinates for four
580 					 * control points:  x0, y0, x1, y1,
581 					 * ... x3 y3. */
582     int numSteps;			/* Number of curve points to
583 					 * generate.  */
584     register double *coordPtr;		/* Where to put new points. */
585 {
586     int i;
587     double u, u2, u3, t, t2, t3;
588 
589     for (i = 1; i <= numSteps; i++, coordPtr += 2) {
590 	t = ((double) i)/((double) numSteps);
591 	t2 = t*t;
592 	t3 = t2*t;
593 	u = 1.0 - t;
594 	u2 = u*u;
595 	u3 = u2*u;
596 	coordPtr[0] = control[0]*u3
597 		+ 3.0 * (control[2]*t*u2 + control[4]*t2*u) + control[6]*t3;
598 	coordPtr[1] = control[1]*u3
599 		+ 3.0 * (control[3]*t*u2 + control[5]*t2*u) + control[7]*t3;
600     }
601 }
602 
603 /*
604  *--------------------------------------------------------------
605  *
606  * TkgeomapMakeBezierCurve --
607  *
608  *	Given a set of points, create a new set of points that fit
609  *	parabolic splines to the line segments connecting the original
610  *	points.  Produces output points in either of two forms.
611  *
612  *	Note: in spite of this procedure's name, it does *not* generate
613  *	Bezier curves.  Since only three control points are used for
614  *	each curve segment, not four, the curves are actually just
615  *	parabolic.
616  *
617  * Results:
618  *	Either or both of the xPoints or dblPoints arrays are filled
619  *	in.  The return value is the number of points placed in the
620  *	arrays.  Note:  if the first and last points are the same, then
621  *	a closed curve is generated.
622  *
623  * Side effects:
624  *	None.
625  *
626  *--------------------------------------------------------------
627  */
628 
629 int
TkgeomapMakeBezierCurve(canvas,pointPtr,numPoints,numSteps,xPoints,dblPoints)630 TkgeomapMakeBezierCurve(canvas, pointPtr, numPoints, numSteps, xPoints,
631 	dblPoints)
632     Tk_Canvas canvas;			/* Canvas in which curve is to be
633 					 * drawn. */
634     double *pointPtr;			/* Array of input coordinates:  x0,
635 					 * y0, x1, y1, etc.. */
636     int numPoints;			/* Number of points at pointPtr. */
637     int numSteps;			/* Number of steps to use for each
638 					 * spline segments (determines
639 					 * smoothness of curve). */
640     XPoint xPoints[];			/* Array of XPoints to fill in (e.g.
641 					 * for display.  NULL means don't
642 					 * fill in any XPoints. */
643     double dblPoints[];			/* Array of points to fill in as
644 					 * doubles, in the form x0, y0,
645 					 * x1, y1, ....  NULL means don't
646 					 * fill in anything in this form.
647 					 * Caller must make sure that this
648 					 * array has enough space. */
649 {
650     int closed, outputPoints, i;
651     int numCoords = numPoints*2;
652     double control[8];
653 
654     /*
655      * If the curve is a closed one then generate a special spline
656      * that spans the last points and the first ones.  Otherwise
657      * just put the first point into the output.
658      */
659 
660     if (!pointPtr) {
661 	/* Of pointPtr == NULL, this function returns an upper limit.
662 	 * of the array size to store the coordinates. This can be
663 	 * used to allocate storage, before the actual coordinates
664 	 * are calculated. */
665 	return 1 + numPoints * numSteps;
666     }
667 
668     outputPoints = 0;
669     if ((pointPtr[0] == pointPtr[numCoords-2])
670 	    && (pointPtr[1] == pointPtr[numCoords-1])) {
671 	closed = 1;
672 	control[0] = 0.5*pointPtr[numCoords-4] + 0.5*pointPtr[0];
673 	control[1] = 0.5*pointPtr[numCoords-3] + 0.5*pointPtr[1];
674 	control[2] = 0.167*pointPtr[numCoords-4] + 0.833*pointPtr[0];
675 	control[3] = 0.167*pointPtr[numCoords-3] + 0.833*pointPtr[1];
676 	control[4] = 0.833*pointPtr[0] + 0.167*pointPtr[2];
677 	control[5] = 0.833*pointPtr[1] + 0.167*pointPtr[3];
678 	control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
679 	control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
680 	if (xPoints != NULL) {
681 	    Tk_CanvasDrawableCoords(canvas, control[0], control[1],
682 		    &xPoints->x, &xPoints->y);
683 	    TkgeomapBezierScreenPoints(canvas, control, numSteps, xPoints+1);
684 	    xPoints += numSteps+1;
685 	}
686 	if (dblPoints != NULL) {
687 	    dblPoints[0] = control[0];
688 	    dblPoints[1] = control[1];
689 	    TkgeomapBezierPoints(control, numSteps, dblPoints+2);
690 	    dblPoints += 2*(numSteps+1);
691 	}
692 	outputPoints += numSteps+1;
693     } else {
694 	closed = 0;
695 	if (xPoints != NULL) {
696 	    Tk_CanvasDrawableCoords(canvas, pointPtr[0], pointPtr[1],
697 		    &xPoints->x, &xPoints->y);
698 	    xPoints += 1;
699 	}
700 	if (dblPoints != NULL) {
701 	    dblPoints[0] = pointPtr[0];
702 	    dblPoints[1] = pointPtr[1];
703 	    dblPoints += 2;
704 	}
705 	outputPoints += 1;
706     }
707 
708     for (i = 2; i < numPoints; i++, pointPtr += 2) {
709 	/*
710 	 * Set up the first two control points.  This is done
711 	 * differently for the first spline of an open curve
712 	 * than for other cases.
713 	 */
714 
715 	if ((i == 2) && !closed) {
716 	    control[0] = pointPtr[0];
717 	    control[1] = pointPtr[1];
718 	    control[2] = 0.333*pointPtr[0] + 0.667*pointPtr[2];
719 	    control[3] = 0.333*pointPtr[1] + 0.667*pointPtr[3];
720 	} else {
721 	    control[0] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
722 	    control[1] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
723 	    control[2] = 0.167*pointPtr[0] + 0.833*pointPtr[2];
724 	    control[3] = 0.167*pointPtr[1] + 0.833*pointPtr[3];
725 	}
726 
727 	/*
728 	 * Set up the last two control points.  This is done
729 	 * differently for the last spline of an open curve
730 	 * than for other cases.
731 	 */
732 
733 	if ((i == (numPoints-1)) && !closed) {
734 	    control[4] = .667*pointPtr[2] + .333*pointPtr[4];
735 	    control[5] = .667*pointPtr[3] + .333*pointPtr[5];
736 	    control[6] = pointPtr[4];
737 	    control[7] = pointPtr[5];
738 	} else {
739 	    control[4] = .833*pointPtr[2] + .167*pointPtr[4];
740 	    control[5] = .833*pointPtr[3] + .167*pointPtr[5];
741 	    control[6] = 0.5*pointPtr[2] + 0.5*pointPtr[4];
742 	    control[7] = 0.5*pointPtr[3] + 0.5*pointPtr[5];
743 	}
744 
745 	/*
746 	 * If the first two points coincide, or if the last
747 	 * two points coincide, then generate a single
748 	 * straight-line segment by outputting the last control
749 	 * point.
750 	 */
751 
752 	if (((pointPtr[0] == pointPtr[2]) && (pointPtr[1] == pointPtr[3]))
753 		|| ((pointPtr[2] == pointPtr[4])
754 		&& (pointPtr[3] == pointPtr[5]))) {
755 	    if (xPoints != NULL) {
756 		Tk_CanvasDrawableCoords(canvas, control[6], control[7],
757 			&xPoints[0].x, &xPoints[0].y);
758 		xPoints++;
759 	    }
760 	    if (dblPoints != NULL) {
761 		dblPoints[0] = control[6];
762 		dblPoints[1] = control[7];
763 		dblPoints += 2;
764 	    }
765 	    outputPoints += 1;
766 	    continue;
767 	}
768 
769 	/*
770 	 * Generate a Bezier spline using the control points.
771 	 */
772 
773 
774 	if (xPoints != NULL) {
775 	    TkgeomapBezierScreenPoints(canvas, control, numSteps, xPoints);
776 	    xPoints += numSteps;
777 	}
778 	if (dblPoints != NULL) {
779 	    TkgeomapBezierPoints(control, numSteps, dblPoints);
780 	    dblPoints += 2*numSteps;
781 	}
782 	outputPoints += numSteps;
783     }
784     return outputPoints;
785 }
786 
787 /*
788  *--------------------------------------------------------------
789  *
790  * TkgeomapMakeBezierPostscript --
791  *
792  *	This procedure generates Postscript commands that create
793  *	a path corresponding to a given Bezier curve.
794  *
795  * Results:
796  *	None.  Postscript commands to generate the path are appended
797  *	to the interp's result.
798  *
799  * Side effects:
800  *	None.
801  *
802  *--------------------------------------------------------------
803  */
804 
805 void
TkgeomapMakeBezierPostscript(interp,canvas,pointPtr,numPoints)806 TkgeomapMakeBezierPostscript(interp, canvas, pointPtr, numPoints)
807     Tcl_Interp *interp;			/* Interpreter in whose result the
808 					 * Postscript is to be stored. */
809     Tk_Canvas canvas;			/* Canvas widget for which the
810 					 * Postscript is being generated. */
811     double *pointPtr;			/* Array of input coordinates:  x0,
812 					 * y0, x1, y1, etc.. */
813     int numPoints;			/* Number of points at pointPtr. */
814 {
815     int closed, i;
816     int numCoords = numPoints*2;
817     double control[8];
818     char buffer[200];
819 
820     /*
821      * If the curve is a closed one then generate a special spline
822      * that spans the last points and the first ones.  Otherwise
823      * just put the first point into the path.
824      */
825 
826     if ((pointPtr[0] == pointPtr[numCoords-2])
827 	    && (pointPtr[1] == pointPtr[numCoords-1])) {
828 	closed = 1;
829 	control[0] = 0.5*pointPtr[numCoords-4] + 0.5*pointPtr[0];
830 	control[1] = 0.5*pointPtr[numCoords-3] + 0.5*pointPtr[1];
831 	control[2] = 0.167*pointPtr[numCoords-4] + 0.833*pointPtr[0];
832 	control[3] = 0.167*pointPtr[numCoords-3] + 0.833*pointPtr[1];
833 	control[4] = 0.833*pointPtr[0] + 0.167*pointPtr[2];
834 	control[5] = 0.833*pointPtr[1] + 0.167*pointPtr[3];
835 	control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
836 	control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
837 	sprintf(buffer, "%.15g %.15g moveto\n%.15g %.15g %.15g %.15g %.15g %.15g curveto\n",
838 		control[0], Tk_CanvasPsY(canvas, control[1]),
839 		control[2], Tk_CanvasPsY(canvas, control[3]),
840 		control[4], Tk_CanvasPsY(canvas, control[5]),
841 		control[6], Tk_CanvasPsY(canvas, control[7]));
842     } else {
843 	closed = 0;
844 	control[6] = pointPtr[0];
845 	control[7] = pointPtr[1];
846 	sprintf(buffer, "%.15g %.15g moveto\n",
847 		control[6], Tk_CanvasPsY(canvas, control[7]));
848     }
849     Tcl_AppendResult(interp, buffer, (char *) NULL);
850 
851     /*
852      * Cycle through all the remaining points in the curve, generating
853      * a curve section for each vertex in the linear path.
854      */
855 
856     for (i = numPoints-2, pointPtr += 2; i > 0; i--, pointPtr += 2) {
857 	control[2] = 0.333*control[6] + 0.667*pointPtr[0];
858 	control[3] = 0.333*control[7] + 0.667*pointPtr[1];
859 
860 	/*
861 	 * Set up the last two control points.  This is done
862 	 * differently for the last spline of an open curve
863 	 * than for other cases.
864 	 */
865 
866 	if ((i == 1) && !closed) {
867 	    control[6] = pointPtr[2];
868 	    control[7] = pointPtr[3];
869 	} else {
870 	    control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
871 	    control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
872 	}
873 	control[4] = 0.333*control[6] + 0.667*pointPtr[0];
874 	control[5] = 0.333*control[7] + 0.667*pointPtr[1];
875 
876 	sprintf(buffer, "%.15g %.15g %.15g %.15g %.15g %.15g curveto\n",
877 		control[2], Tk_CanvasPsY(canvas, control[3]),
878 		control[4], Tk_CanvasPsY(canvas, control[5]),
879 		control[6], Tk_CanvasPsY(canvas, control[7]));
880 	Tcl_AppendResult(interp, buffer, (char *) NULL);
881     }
882 }
883