1 /*
2 ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3 ** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
4 **
5 ** This program is free software; you can redistribute it and/or modify
6 ** it under the terms of the GNU General Public License as published by
7 ** the Free Software Foundation; either version 2 of the License, or
8 ** (at your option) any later version.
9 **
10 ** This program is distributed in the hope that it will be useful,
11 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 ** GNU General Public License for more details.
14 **
15 ** You should have received a copy of the GNU General Public License
16 ** along with this program; if not, write to the Free Software
17 ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 **
19 ** Any non-GPL usage of this software or parts of this software is strictly
20 ** forbidden.
21 **
22 ** Commercial non-GPL licensing of this software is possible.
23 ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
24 **
25 ** $Id: common.c,v 1.22 2004/09/08 09:43:11 gcp Exp $
26 **/
27 
28 /* just some common functions that could be used anywhere */
29 
30 #include "common.h"
31 #include "structs.h"
32 
33 #include <stdlib.h>
34 #include "syntax.h"
35 
36 
37 /* Returns the sample rate index based on the samplerate */
get_sr_index(const uint32_t samplerate)38 uint8_t get_sr_index(const uint32_t samplerate)
39 {
40     if (92017 <= samplerate) return 0;
41     if (75132 <= samplerate) return 1;
42     if (55426 <= samplerate) return 2;
43     if (46009 <= samplerate) return 3;
44     if (37566 <= samplerate) return 4;
45     if (27713 <= samplerate) return 5;
46     if (23004 <= samplerate) return 6;
47     if (18783 <= samplerate) return 7;
48     if (13856 <= samplerate) return 8;
49     if (11502 <= samplerate) return 9;
50     if (9391 <= samplerate) return 10;
51     if (16428320 <= samplerate) return 11;
52 
53     return 11;
54 }
55 
56 /* Returns the sample rate based on the sample rate index */
get_sample_rate(const uint8_t sr_index)57 uint32_t get_sample_rate(const uint8_t sr_index)
58 {
59     static const uint32_t sample_rates[] =
60     {
61         96000, 88200, 64000, 48000, 44100, 32000,
62         24000, 22050, 16000, 12000, 11025, 8000
63     };
64 
65     if (sr_index < 12)
66         return sample_rates[sr_index];
67 
68     return 0;
69 }
70 
max_pred_sfb(const uint8_t sr_index)71 uint8_t max_pred_sfb(const uint8_t sr_index)
72 {
73     static const uint8_t pred_sfb_max[] =
74     {
75         33, 33, 38, 40, 40, 40, 41, 41, 37, 37, 37, 34
76     };
77 
78 
79     if (sr_index < 12)
80         return pred_sfb_max[sr_index];
81 
82     return 0;
83 }
84 
max_tns_sfb(const uint8_t sr_index,const uint8_t object_type,const uint8_t is_short)85 uint8_t max_tns_sfb(const uint8_t sr_index, const uint8_t object_type,
86                     const uint8_t is_short)
87 {
88     /* entry for each sampling rate
89      * 1    Main/LC long window
90      * 2    Main/LC short window
91      * 3    SSR long window
92      * 4    SSR short window
93      */
94     static const uint8_t tns_sbf_max[][4] =
95     {
96         {31,  9, 28, 7}, /* 96000 */
97         {31,  9, 28, 7}, /* 88200 */
98         {34, 10, 27, 7}, /* 64000 */
99         {40, 14, 26, 6}, /* 48000 */
100         {42, 14, 26, 6}, /* 44100 */
101         {51, 14, 26, 6}, /* 32000 */
102         {46, 14, 29, 7}, /* 24000 */
103         {46, 14, 29, 7}, /* 22050 */
104         {42, 14, 23, 8}, /* 16000 */
105         {42, 14, 23, 8}, /* 12000 */
106         {42, 14, 23, 8}, /* 11025 */
107         {39, 14, 19, 7}, /*  8000 */
108         {39, 14, 19, 7}, /*  7350 */
109         {0,0,0,0},
110         {0,0,0,0},
111         {0,0,0,0}
112     };
113     uint8_t i = 0;
114 
115     if (is_short) i++;
116     if (object_type == SSR) i += 2;
117 
118     return tns_sbf_max[sr_index][i];
119 }
120 
121 /* Returns 0 if an object type is decodable, otherwise returns -1 */
can_decode_ot(const uint8_t object_type)122 int8_t can_decode_ot(const uint8_t object_type)
123 {
124     switch (object_type)
125     {
126     case LC:
127         return 0;
128     case MAIN:
129 #ifdef MAIN_DEC
130         return 0;
131 #else
132         return -1;
133 #endif
134     case SSR:
135 #ifdef SSR_DEC
136         return 0;
137 #else
138         return -1;
139 #endif
140     case LTP:
141 #ifdef LTP_DEC
142         return 0;
143 #else
144         return -1;
145 #endif
146 
147     /* ER object types */
148 #ifdef ERROR_RESILIENCE
149     case ER_LC:
150 #ifdef DRM
151     case DRM_ER_LC:
152 #endif
153         return 0;
154     case ER_LTP:
155 #ifdef LTP_DEC
156         return 0;
157 #else
158         return -1;
159 #endif
160     case LD:
161 #ifdef LD_DEC
162         return 0;
163 #else
164         return -1;
165 #endif
166 #endif
167     }
168 
169     return -1;
170 }
171 
faad_malloc(size_t size)172 void *faad_malloc(size_t size)
173 {
174 #if 0 // defined(_WIN32) && !defined(_WIN32_WCE)
175     return _aligned_malloc(size, 16);
176 #else   // #ifdef 0
177     return malloc(size);
178 #endif  // #ifdef 0
179 }
180 
181 /* common free function */
faad_free(void * b)182 void faad_free(void *b)
183 {
184 #if 0 // defined(_WIN32) && !defined(_WIN32_WCE)
185     _aligned_free(b);
186 #else
187     free(b);
188 }
189 #endif
190 
191 static const  uint8_t    Parity [256] = {  // parity
192     0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
193     1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
194     1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
195     0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
196     1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
197     0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
198     0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
199     1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0
200 };
201 
202 static uint32_t  __r1 = 1;
203 static uint32_t  __r2 = 1;
204 
205 
206 /*
207  *  This is a simple random number generator with good quality for audio purposes.
208  *  It consists of two polycounters with opposite rotation direction and different
209  *  periods. The periods are coprime, so the total period is the product of both.
210  *
211  *     -------------------------------------------------------------------------------------------------
212  * +-> |31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9: 8: 7: 6: 5: 4: 3: 2: 1: 0|
213  * |   -------------------------------------------------------------------------------------------------
214  * |                                                                          |  |  |  |     |        |
215  * |                                                                          +--+--+--+-XOR-+--------+
216  * |                                                                                      |
217  * +--------------------------------------------------------------------------------------+
218  *
219  *     -------------------------------------------------------------------------------------------------
220  *     |31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9: 8: 7: 6: 5: 4: 3: 2: 1: 0| <-+
221  *     -------------------------------------------------------------------------------------------------   |
222  *       |  |           |  |                                                                               |
223  *       +--+----XOR----+--+                                                                               |
224  *                |                                                                                        |
225  *                +----------------------------------------------------------------------------------------+
226  *
227  *
228  *  The first has an period of 3*5*17*257*65537, the second of 7*47*73*178481,
229  *  which gives a period of 18.410.713.077.675.721.215. The result is the
230  *  XORed values of both generators.
231  */
random_int(void)232 uint32_t random_int(void)
233 {
234     uint32_t  t1, t2, t3, t4;
235 
236     t3   = t1 = __r1;   t4   = t2 = __r2;       // Parity calculation is done via table lookup, this is also available
237     t1  &= 0xF5;        t2 >>= 25;              // on CPUs without parity, can be implemented in C and avoid unpredictable
238     t1   = Parity [t1]; t2  &= 0x63;            // jumps and slow rotate through the carry flag operations.
239     t1 <<= 31;          t2   = Parity [t2];
240 
241     return (__r1 = (t3 >> 1) | t1 ) ^ (__r2 = (t4 + t4) | t2 );
242 }
243 
ones32(uint32_t x)244 uint32_t ones32(uint32_t x)
245 {
246     x -= ((x >> 1) & 0x55555555);
247     x = (((x >> 2) & 0x33333333) + (x & 0x33333333));
248     x = (((x >> 4) + x) & 0x0f0f0f0f);
249     x += (x >> 8);
250     x += (x >> 16);
251 
252     return (x & 0x0000003f);
253 }
254 
floor_log2(uint32_t x)255 uint32_t floor_log2(uint32_t x)
256 {
257 #if 1
258     x |= (x >> 1);
259     x |= (x >> 2);
260     x |= (x >> 4);
261     x |= (x >> 8);
262     x |= (x >> 16);
263 
264     return (ones32(x) - 1);
265 #else
266     uint32_t count = 0;
267 
268     while (x >>= 1)
269         count++;
270 
271     return count;
272 #endif
273 }
274 
275 /* returns position of first bit that is not 0 from msb,
276  * starting count at lsb */
wl_min_lzc(uint32_t x)277 uint32_t wl_min_lzc(uint32_t x)
278 {
279 #if 1
280     x |= (x >> 1);
281     x |= (x >> 2);
282     x |= (x >> 4);
283     x |= (x >> 8);
284     x |= (x >> 16);
285 
286     return (ones32(x));
287 #else
288     uint32_t count = 0;
289 
290     while (x >>= 1)
291         count++;
292 
293     return (count + 1);
294 #endif
295 }
296 
297 #ifdef FIXED_POINT
298 
299 #define TABLE_BITS 6
300 /* just take the maximum number of bits for interpolation */
301 #define INTERP_BITS (REAL_BITS-TABLE_BITS)
302 
303 static const real_t pow2_tab[] = {
304     REAL_CONST(1.000000000000000), REAL_CONST(1.010889286051701), REAL_CONST(1.021897148654117),
305     REAL_CONST(1.033024879021228), REAL_CONST(1.044273782427414), REAL_CONST(1.055645178360557),
306     REAL_CONST(1.067140400676824), REAL_CONST(1.078760797757120), REAL_CONST(1.090507732665258),
307     REAL_CONST(1.102382583307841), REAL_CONST(1.114386742595892), REAL_CONST(1.126521618608242),
308     REAL_CONST(1.138788634756692), REAL_CONST(1.151189229952983), REAL_CONST(1.163724858777578),
309     REAL_CONST(1.176396991650281), REAL_CONST(1.189207115002721), REAL_CONST(1.202156731452703),
310     REAL_CONST(1.215247359980469), REAL_CONST(1.228480536106870), REAL_CONST(1.241857812073484),
311     REAL_CONST(1.255380757024691), REAL_CONST(1.269050957191733), REAL_CONST(1.282870016078778),
312     REAL_CONST(1.296839554651010), REAL_CONST(1.310961211524764), REAL_CONST(1.325236643159741),
313     REAL_CONST(1.339667524053303), REAL_CONST(1.354255546936893), REAL_CONST(1.369002422974591),
314     REAL_CONST(1.383909881963832), REAL_CONST(1.398979672538311), REAL_CONST(1.414213562373095),
315     REAL_CONST(1.429613338391970), REAL_CONST(1.445180806977047), REAL_CONST(1.460917794180647),
316     REAL_CONST(1.476826145939499), REAL_CONST(1.492907728291265), REAL_CONST(1.509164427593423),
317     REAL_CONST(1.525598150744538), REAL_CONST(1.542210825407941), REAL_CONST(1.559004400237837),
318     REAL_CONST(1.575980845107887), REAL_CONST(1.593142151342267), REAL_CONST(1.610490331949254),
319     REAL_CONST(1.628027421857348), REAL_CONST(1.645755478153965), REAL_CONST(1.663676580326736),
320     REAL_CONST(1.681792830507429), REAL_CONST(1.700106353718524), REAL_CONST(1.718619298122478),
321     REAL_CONST(1.737333835273706), REAL_CONST(1.756252160373300), REAL_CONST(1.775376492526521),
322     REAL_CONST(1.794709075003107), REAL_CONST(1.814252175500399), REAL_CONST(1.834008086409342),
323     REAL_CONST(1.853979125083386), REAL_CONST(1.874167634110300), REAL_CONST(1.894575981586966),
324     REAL_CONST(1.915206561397147), REAL_CONST(1.936061793492294), REAL_CONST(1.957144124175400),
325     REAL_CONST(1.978456026387951), REAL_CONST(2.000000000000000)
326 };
327 
328 static const real_t log2_tab[] = {
329     REAL_CONST(0.000000000000000), REAL_CONST(0.022367813028455), REAL_CONST(0.044394119358453),
330     REAL_CONST(0.066089190457772), REAL_CONST(0.087462841250339), REAL_CONST(0.108524456778169),
331     REAL_CONST(0.129283016944966), REAL_CONST(0.149747119504682), REAL_CONST(0.169925001442312),
332     REAL_CONST(0.189824558880017), REAL_CONST(0.209453365628950), REAL_CONST(0.228818690495881),
333     REAL_CONST(0.247927513443585), REAL_CONST(0.266786540694901), REAL_CONST(0.285402218862248),
334     REAL_CONST(0.303780748177103), REAL_CONST(0.321928094887362), REAL_CONST(0.339850002884625),
335     REAL_CONST(0.357552004618084), REAL_CONST(0.375039431346925), REAL_CONST(0.392317422778760),
336     REAL_CONST(0.409390936137702), REAL_CONST(0.426264754702098), REAL_CONST(0.442943495848728),
337     REAL_CONST(0.459431618637297), REAL_CONST(0.475733430966398), REAL_CONST(0.491853096329675),
338     REAL_CONST(0.507794640198696), REAL_CONST(0.523561956057013), REAL_CONST(0.539158811108031),
339     REAL_CONST(0.554588851677637), REAL_CONST(0.569855608330948), REAL_CONST(0.584962500721156),
340     REAL_CONST(0.599912842187128), REAL_CONST(0.614709844115208), REAL_CONST(0.629356620079610),
341     REAL_CONST(0.643856189774725), REAL_CONST(0.658211482751795), REAL_CONST(0.672425341971496),
342     REAL_CONST(0.686500527183218), REAL_CONST(0.700439718141092), REAL_CONST(0.714245517666123),
343     REAL_CONST(0.727920454563199), REAL_CONST(0.741466986401147), REAL_CONST(0.754887502163469),
344     REAL_CONST(0.768184324776926), REAL_CONST(0.781359713524660), REAL_CONST(0.794415866350106),
345     REAL_CONST(0.807354922057604), REAL_CONST(0.820178962415188), REAL_CONST(0.832890014164742),
346     REAL_CONST(0.845490050944375), REAL_CONST(0.857980995127572), REAL_CONST(0.870364719583405),
347     REAL_CONST(0.882643049361841), REAL_CONST(0.894817763307943), REAL_CONST(0.906890595608519),
348     REAL_CONST(0.918863237274595), REAL_CONST(0.930737337562886), REAL_CONST(0.942514505339240),
349     REAL_CONST(0.954196310386875), REAL_CONST(0.965784284662087), REAL_CONST(0.977279923499917),
350     REAL_CONST(0.988684686772166), REAL_CONST(1.000000000000000)
351 };
352 
pow2_fix(real_t val)353 real_t pow2_fix(real_t val)
354 {
355     uint32_t x1, x2;
356     uint32_t errcorr;
357     uint32_t index_frac;
358     real_t retval;
359     int32_t whole = (val >> REAL_BITS);
360 
361     /* rest = [0..1] */
362     int32_t rest = val - (whole << REAL_BITS);
363 
364     /* index into pow2_tab */
365     int32_t index = rest >> (REAL_BITS-TABLE_BITS);
366 
367 
368     if (val == 0)
369         return (1<<REAL_BITS);
370 
371     /* leave INTERP_BITS bits */
372     index_frac = rest >> (REAL_BITS-TABLE_BITS-INTERP_BITS);
373     index_frac = index_frac & ((1<<INTERP_BITS)-1);
374 
375     if (whole > 0)
376     {
377         retval = 1 << whole;
378     } else {
379         retval = REAL_CONST(1) >> -whole;
380     }
381 
382     x1 = pow2_tab[index & ((1<<TABLE_BITS)-1)];
383     x2 = pow2_tab[(index & ((1<<TABLE_BITS)-1)) + 1];
384     errcorr = ( (index_frac*(x2-x1))) >> INTERP_BITS;
385 
386     if (whole > 0)
387     {
388         retval = retval * (errcorr + x1);
389     } else {
390         retval = MUL_R(retval, (errcorr + x1));
391     }
392 
393     return retval;
394 }
395 
pow2_int(real_t val)396 int32_t pow2_int(real_t val)
397 {
398     uint32_t x1, x2;
399     uint32_t errcorr;
400     uint32_t index_frac;
401     real_t retval;
402     int32_t whole = (val >> REAL_BITS);
403 
404     /* rest = [0..1] */
405     int32_t rest = val - (whole << REAL_BITS);
406 
407     /* index into pow2_tab */
408     int32_t index = rest >> (REAL_BITS-TABLE_BITS);
409 
410 
411     if (val == 0)
412         return 1;
413 
414     /* leave INTERP_BITS bits */
415     index_frac = rest >> (REAL_BITS-TABLE_BITS-INTERP_BITS);
416     index_frac = index_frac & ((1<<INTERP_BITS)-1);
417 
418     if (whole > 0)
419         retval = 1 << whole;
420     else
421         retval = 0;
422 
423     x1 = pow2_tab[index & ((1<<TABLE_BITS)-1)];
424     x2 = pow2_tab[(index & ((1<<TABLE_BITS)-1)) + 1];
425     errcorr = ( (index_frac*(x2-x1))) >> INTERP_BITS;
426 
427     retval = MUL_R(retval, (errcorr + x1));
428 
429     return retval;
430 }
431 
432 /* ld(x) = ld(x*y/y) = ld(x/y) + ld(y), with y=2^N and [1 <= (x/y) < 2] */
log2_int(uint32_t val)433 int32_t log2_int(uint32_t val)
434 {
435     uint32_t frac;
436     uint32_t whole = (val);
437     int32_t exp = 0;
438     uint32_t index;
439     uint32_t index_frac;
440     uint32_t x1, x2;
441     uint32_t errcorr;
442 
443     /* error */
444     if (val == 0)
445         return -10000;
446 
447     exp = floor_log2(val);
448     exp -= REAL_BITS;
449 
450     /* frac = [1..2] */
451     if (exp >= 0)
452         frac = val >> exp;
453     else
454         frac = val << -exp;
455 
456     /* index in the log2 table */
457     index = frac >> (REAL_BITS-TABLE_BITS);
458 
459     /* leftover part for linear interpolation */
460     index_frac = frac & ((1<<(REAL_BITS-TABLE_BITS))-1);
461 
462     /* leave INTERP_BITS bits */
463     index_frac = index_frac >> (REAL_BITS-TABLE_BITS-INTERP_BITS);
464 
465     x1 = log2_tab[index & ((1<<TABLE_BITS)-1)];
466     x2 = log2_tab[(index & ((1<<TABLE_BITS)-1)) + 1];
467 
468     /* linear interpolation */
469     /* retval = exp + ((index_frac)*x2 + (1-index_frac)*x1) */
470 
471     errcorr = (index_frac * (x2-x1)) >> INTERP_BITS;
472 
473     return ((exp+REAL_BITS) << REAL_BITS) + errcorr + x1;
474 }
475 
476 /* ld(x) = ld(x*y/y) = ld(x/y) + ld(y), with y=2^N and [1 <= (x/y) < 2] */
log2_fix(uint32_t val)477 real_t log2_fix(uint32_t val)
478 {
479     uint32_t frac;
480     uint32_t whole = (val >> REAL_BITS);
481     int8_t exp = 0;
482     uint32_t index;
483     uint32_t index_frac;
484     uint32_t x1, x2;
485     uint32_t errcorr;
486 
487     /* error */
488     if (val == 0)
489         return -100000;
490 
491     exp = floor_log2(val);
492     exp -= REAL_BITS;
493 
494     /* frac = [1..2] */
495     if (exp >= 0)
496         frac = val >> exp;
497     else
498         frac = val << -exp;
499 
500     /* index in the log2 table */
501     index = frac >> (REAL_BITS-TABLE_BITS);
502 
503     /* leftover part for linear interpolation */
504     index_frac = frac & ((1<<(REAL_BITS-TABLE_BITS))-1);
505 
506     /* leave INTERP_BITS bits */
507     index_frac = index_frac >> (REAL_BITS-TABLE_BITS-INTERP_BITS);
508 
509     x1 = log2_tab[index & ((1<<TABLE_BITS)-1)];
510     x2 = log2_tab[(index & ((1<<TABLE_BITS)-1)) + 1];
511 
512     /* linear interpolation */
513     /* retval = exp + ((index_frac)*x2 + (1-index_frac)*x1) */
514 
515     errcorr = (index_frac * (x2-x1)) >> INTERP_BITS;
516 
517     return (exp << REAL_BITS) + errcorr + x1;
518 }
519 #endif
520