1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
2
3 /*
4 QM Vamp Plugin Set
5
6 Centre for Digital Music, Queen Mary, University of London.
7
8 This program is free software; you can redistribute it and/or
9 modify it under the terms of the GNU General Public License as
10 published by the Free Software Foundation; either version 2 of the
11 License, or (at your option) any later version. See the file
12 COPYING included with this distribution for more information.
13 */
14
15 #ifdef COMPILER_MSVC
16 #include <ardourext/float_cast.h>
17 #endif
18 #include "OnsetDetect.h"
19
20 #include <dsp/onsets/DetectionFunction.h>
21 #include <dsp/onsets/PeakPicking.h>
22 #include <dsp/tempotracking/TempoTrack.h>
23
24 using std::string;
25 using std::vector;
26 using std::cerr;
27 using std::endl;
28
29 float OnsetDetector::m_preferredStepSecs = 0.01161;
30
31 class OnsetDetectorData
32 {
33 public:
OnsetDetectorData(const DFConfig & config)34 OnsetDetectorData(const DFConfig &config) : dfConfig(config) {
35 df = new DetectionFunction(config);
36 }
~OnsetDetectorData()37 ~OnsetDetectorData() {
38 delete df;
39 }
reset()40 void reset() {
41 delete df;
42 df = new DetectionFunction(dfConfig);
43 dfOutput.clear();
44 origin = Vamp::RealTime::zeroTime;
45 }
46
47 DFConfig dfConfig;
48 DetectionFunction *df;
49 vector<double> dfOutput;
50 Vamp::RealTime origin;
51 };
52
53
OnsetDetector(float inputSampleRate)54 OnsetDetector::OnsetDetector(float inputSampleRate) :
55 Vamp::Plugin(inputSampleRate),
56 m_d(0),
57 m_dfType(DF_COMPLEXSD),
58 m_sensitivity(50),
59 m_whiten(false)
60 {
61 }
62
~OnsetDetector()63 OnsetDetector::~OnsetDetector()
64 {
65 delete m_d;
66 }
67
68 string
getIdentifier() const69 OnsetDetector::getIdentifier() const
70 {
71 return "qm-onsetdetector";
72 }
73
74 string
getName() const75 OnsetDetector::getName() const
76 {
77 return "Note Onset Detector";
78 }
79
80 string
getDescription() const81 OnsetDetector::getDescription() const
82 {
83 return "Estimate individual note onset positions";
84 }
85
86 string
getMaker() const87 OnsetDetector::getMaker() const
88 {
89 return "Queen Mary, University of London";
90 }
91
92 int
getPluginVersion() const93 OnsetDetector::getPluginVersion() const
94 {
95 return 3;
96 }
97
98 string
getCopyright() const99 OnsetDetector::getCopyright() const
100 {
101 return "Plugin by Christian Landone, Chris Duxbury and Juan Pablo Bello. Copyright (c) 2006-2009 QMUL - All Rights Reserved";
102 }
103
104 OnsetDetector::ParameterList
getParameterDescriptors() const105 OnsetDetector::getParameterDescriptors() const
106 {
107 ParameterList list;
108
109 ParameterDescriptor desc;
110 desc.identifier = "dftype";
111 desc.name = "Onset Detection Function Type";
112 desc.description = "Method used to calculate the onset detection function";
113 desc.minValue = 0;
114 desc.maxValue = 4;
115 desc.defaultValue = 3;
116 desc.isQuantized = true;
117 desc.quantizeStep = 1;
118 desc.valueNames.push_back("High-Frequency Content");
119 desc.valueNames.push_back("Spectral Difference");
120 desc.valueNames.push_back("Phase Deviation");
121 desc.valueNames.push_back("Complex Domain");
122 desc.valueNames.push_back("Broadband Energy Rise");
123 list.push_back(desc);
124
125 desc.identifier = "sensitivity";
126 desc.name = "Onset Detector Sensitivity";
127 desc.description = "Sensitivity of peak-picker for onset detection";
128 desc.minValue = 0;
129 desc.maxValue = 100;
130 desc.defaultValue = 50;
131 desc.isQuantized = true;
132 desc.quantizeStep = 1;
133 desc.unit = "%";
134 desc.valueNames.clear();
135 list.push_back(desc);
136
137 desc.identifier = "whiten";
138 desc.name = "Adaptive Whitening";
139 desc.description = "Normalize frequency bin magnitudes relative to recent peak levels";
140 desc.minValue = 0;
141 desc.maxValue = 1;
142 desc.defaultValue = 0;
143 desc.isQuantized = true;
144 desc.quantizeStep = 1;
145 desc.unit = "";
146 list.push_back(desc);
147
148 return list;
149 }
150
151 float
getParameter(std::string name) const152 OnsetDetector::getParameter(std::string name) const
153 {
154 if (name == "dftype") {
155 switch (m_dfType) {
156 case DF_HFC: return 0;
157 case DF_SPECDIFF: return 1;
158 case DF_PHASEDEV: return 2;
159 default: case DF_COMPLEXSD: return 3;
160 case DF_BROADBAND: return 4;
161 }
162 } else if (name == "sensitivity") {
163 return m_sensitivity;
164 } else if (name == "whiten") {
165 return m_whiten ? 1.0 : 0.0;
166 }
167 return 0.0;
168 }
169
170 void
setParameter(std::string name,float value)171 OnsetDetector::setParameter(std::string name, float value)
172 {
173 if (name == "dftype") {
174 int dfType = m_dfType;
175 switch (lrintf(value)) {
176 case 0: dfType = DF_HFC; break;
177 case 1: dfType = DF_SPECDIFF; break;
178 case 2: dfType = DF_PHASEDEV; break;
179 default: case 3: dfType = DF_COMPLEXSD; break;
180 case 4: dfType = DF_BROADBAND; break;
181 }
182 if (dfType == m_dfType) return;
183 m_dfType = dfType;
184 m_program = "";
185 } else if (name == "sensitivity") {
186 if (m_sensitivity == value) return;
187 m_sensitivity = value;
188 m_program = "";
189 } else if (name == "whiten") {
190 if (m_whiten == (value > 0.5)) return;
191 m_whiten = (value > 0.5);
192 m_program = "";
193 }
194 }
195
196 OnsetDetector::ProgramList
getPrograms() const197 OnsetDetector::getPrograms() const
198 {
199 ProgramList programs;
200 programs.push_back("");
201 programs.push_back("General purpose");
202 programs.push_back("Soft onsets");
203 programs.push_back("Percussive onsets");
204 return programs;
205 }
206
207 std::string
getCurrentProgram() const208 OnsetDetector::getCurrentProgram() const
209 {
210 if (m_program == "") return "";
211 else return m_program;
212 }
213
214 void
selectProgram(std::string program)215 OnsetDetector::selectProgram(std::string program)
216 {
217 if (program == "General purpose") {
218 setParameter("dftype", 3); // complex
219 setParameter("sensitivity", 50);
220 setParameter("whiten", 0);
221 } else if (program == "Soft onsets") {
222 setParameter("dftype", 3); // complex
223 setParameter("sensitivity", 40);
224 setParameter("whiten", 1);
225 } else if (program == "Percussive onsets") {
226 setParameter("dftype", 4); // broadband energy rise
227 setParameter("sensitivity", 40);
228 setParameter("whiten", 0);
229 } else {
230 return;
231 }
232 m_program = program;
233 }
234
235 bool
initialise(size_t channels,size_t stepSize,size_t blockSize)236 OnsetDetector::initialise(size_t channels, size_t stepSize, size_t blockSize)
237 {
238 if (m_d) {
239 delete m_d;
240 m_d = 0;
241 }
242
243 if (channels < getMinChannelCount() ||
244 channels > getMaxChannelCount()) {
245 std::cerr << "OnsetDetector::initialise: Unsupported channel count: "
246 << channels << std::endl;
247 return false;
248 }
249
250 if (stepSize != getPreferredStepSize()) {
251 std::cerr << "WARNING: OnsetDetector::initialise: Possibly sub-optimal step size for this sample rate: "
252 << stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl;
253 }
254
255 if (blockSize != getPreferredBlockSize()) {
256 std::cerr << "WARNING: OnsetDetector::initialise: Possibly sub-optimal block size for this sample rate: "
257 << blockSize << " (wanted " << (getPreferredBlockSize()) << ")" << std::endl;
258 }
259
260 DFConfig dfConfig;
261 dfConfig.DFType = m_dfType;
262 dfConfig.stepSize = stepSize;
263 dfConfig.frameLength = blockSize;
264 dfConfig.dbRise = 6.0 - m_sensitivity / 16.6667;
265 dfConfig.adaptiveWhitening = m_whiten;
266 dfConfig.whiteningRelaxCoeff = -1;
267 dfConfig.whiteningFloor = -1;
268
269 m_d = new OnsetDetectorData(dfConfig);
270 return true;
271 }
272
273 void
reset()274 OnsetDetector::reset()
275 {
276 if (m_d) m_d->reset();
277 }
278
279 size_t
getPreferredStepSize() const280 OnsetDetector::getPreferredStepSize() const
281 {
282 size_t step = size_t(m_inputSampleRate * m_preferredStepSecs + 0.0001);
283 if (step < 1) step = 1;
284 // std::cerr << "OnsetDetector::getPreferredStepSize: input sample rate is " << m_inputSampleRate << ", step size is " << step << std::endl;
285 return step;
286 }
287
288 size_t
getPreferredBlockSize() const289 OnsetDetector::getPreferredBlockSize() const
290 {
291 return getPreferredStepSize() * 2;
292 }
293
294 OnsetDetector::OutputList
getOutputDescriptors() const295 OnsetDetector::getOutputDescriptors() const
296 {
297 OutputList list;
298
299 float stepSecs = m_preferredStepSecs;
300 // if (m_d) stepSecs = m_d->dfConfig.stepSecs;
301
302 OutputDescriptor onsets;
303 onsets.identifier = "onsets";
304 onsets.name = "Note Onsets";
305 onsets.description = "Perceived note onset positions";
306 onsets.unit = "";
307 onsets.hasFixedBinCount = true;
308 onsets.binCount = 0;
309 onsets.sampleType = OutputDescriptor::VariableSampleRate;
310 onsets.sampleRate = 1.0 / stepSecs;
311
312 OutputDescriptor df;
313 df.identifier = "detection_fn";
314 df.name = "Onset Detection Function";
315 df.description = "Probability function of note onset likelihood";
316 df.unit = "";
317 df.hasFixedBinCount = true;
318 df.binCount = 1;
319 df.hasKnownExtents = false;
320 df.isQuantized = false;
321 df.sampleType = OutputDescriptor::OneSamplePerStep;
322
323 OutputDescriptor sdf;
324 sdf.identifier = "smoothed_df";
325 sdf.name = "Smoothed Detection Function";
326 sdf.description = "Smoothed probability function used for peak-picking";
327 sdf.unit = "";
328 sdf.hasFixedBinCount = true;
329 sdf.binCount = 1;
330 sdf.hasKnownExtents = false;
331 sdf.isQuantized = false;
332
333 sdf.sampleType = OutputDescriptor::VariableSampleRate;
334
335 //!!! SV doesn't seem to handle these correctly in getRemainingFeatures
336 // sdf.sampleType = OutputDescriptor::FixedSampleRate;
337 sdf.sampleRate = 1.0 / stepSecs;
338
339 list.push_back(onsets);
340 list.push_back(df);
341 list.push_back(sdf);
342
343 return list;
344 }
345
346 OnsetDetector::FeatureSet
process(const float * const * inputBuffers,Vamp::RealTime timestamp)347 OnsetDetector::process(const float *const *inputBuffers,
348 Vamp::RealTime timestamp)
349 {
350 if (!m_d) {
351 cerr << "ERROR: OnsetDetector::process: "
352 << "OnsetDetector has not been initialised"
353 << endl;
354 return FeatureSet();
355 }
356
357 size_t len = m_d->dfConfig.frameLength / 2 + 1;
358
359 // float mean = 0.f;
360 // for (size_t i = 0; i < len; ++i) {
361 //// std::cerr << inputBuffers[0][i] << " ";
362 // mean += inputBuffers[0][i];
363 // }
364 //// std::cerr << std::endl;
365 // mean /= len;
366
367 // std::cerr << "OnsetDetector::process(" << timestamp << "): "
368 // << "dftype " << m_dfType << ", sens " << m_sensitivity
369 // << ", len " << len << ", mean " << mean << std::endl;
370
371 double *reals = new double[len];
372 double *imags = new double[len];
373
374 // We only support a single input channel
375
376 for (size_t i = 0; i < len; ++i) {
377 reals[i] = inputBuffers[0][i*2];
378 imags[i] = inputBuffers[0][i*2+1];
379 }
380
381 double output = m_d->df->processFrequencyDomain(reals, imags);
382
383 delete[] reals;
384 delete[] imags;
385
386 if (m_d->dfOutput.empty()) m_d->origin = timestamp;
387
388 m_d->dfOutput.push_back(output);
389
390 FeatureSet returnFeatures;
391
392 Feature feature;
393 feature.hasTimestamp = false;
394 feature.values.push_back(output);
395
396 // std::cerr << "df: " << output << std::endl;
397
398 returnFeatures[1].push_back(feature); // detection function is output 1
399 return returnFeatures;
400 }
401
402 OnsetDetector::FeatureSet
getRemainingFeatures()403 OnsetDetector::getRemainingFeatures()
404 {
405 if (!m_d) {
406 cerr << "ERROR: OnsetDetector::getRemainingFeatures: "
407 << "OnsetDetector has not been initialised"
408 << endl;
409 return FeatureSet();
410 }
411
412 if (m_dfType == DF_BROADBAND) {
413 for (size_t i = 0; i < m_d->dfOutput.size(); ++i) {
414 if (m_d->dfOutput[i] < ((110 - m_sensitivity) *
415 m_d->dfConfig.frameLength) / 200) {
416 m_d->dfOutput[i] = 0;
417 }
418 }
419 }
420
421 double aCoeffs[] = { 1.0000, -0.5949, 0.2348 };
422 double bCoeffs[] = { 0.1600, 0.3200, 0.1600 };
423
424 FeatureSet returnFeatures;
425
426 PPickParams ppParams;
427 ppParams.length = m_d->dfOutput.size();
428 // tau and cutoff appear to be unused in PeakPicking, but I've
429 // inserted some moderately plausible values rather than leave
430 // them unset. The QuadThresh values come from trial and error.
431 // The rest of these are copied from ttParams in the BeatTracker
432 // code: I don't claim to know whether they're good or not --cc
433 ppParams.tau = m_d->dfConfig.stepSize / m_inputSampleRate;
434 ppParams.alpha = 9;
435 ppParams.cutoff = m_inputSampleRate/4;
436 ppParams.LPOrd = 2;
437 ppParams.LPACoeffs = aCoeffs;
438 ppParams.LPBCoeffs = bCoeffs;
439 ppParams.WinT.post = 8;
440 ppParams.WinT.pre = 7;
441 ppParams.QuadThresh.a = (100 - m_sensitivity) / 1000.0;
442 ppParams.QuadThresh.b = 0;
443 ppParams.QuadThresh.c = (100 - m_sensitivity) / 1500.0;
444
445 PeakPicking peakPicker(ppParams);
446
447 double *ppSrc = new double[ppParams.length];
448 for (unsigned int i = 0; i < ppParams.length; ++i) {
449 ppSrc[i] = m_d->dfOutput[i];
450 }
451
452 vector<int> onsets;
453 peakPicker.process(ppSrc, ppParams.length, onsets);
454
455 for (size_t i = 0; i < onsets.size(); ++i) {
456
457 size_t index = onsets[i];
458
459 if (m_dfType != DF_BROADBAND) {
460 double prevDiff = 0.0;
461 while (index > 1) {
462 double diff = ppSrc[index] - ppSrc[index-1];
463 if (diff < prevDiff * 0.9) break;
464 prevDiff = diff;
465 --index;
466 }
467 }
468
469 size_t frame = index * m_d->dfConfig.stepSize;
470
471 Feature feature;
472 feature.hasTimestamp = true;
473 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
474 (frame, lrintf(m_inputSampleRate));
475
476 returnFeatures[0].push_back(feature); // onsets are output 0
477 }
478
479 for (unsigned int i = 0; i < ppParams.length; ++i) {
480
481 Feature feature;
482 // feature.hasTimestamp = false;
483 feature.hasTimestamp = true;
484 size_t frame = i * m_d->dfConfig.stepSize;
485 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
486 (frame, lrintf(m_inputSampleRate));
487
488 feature.values.push_back(ppSrc[i]);
489 returnFeatures[2].push_back(feature); // smoothed df is output 2
490 }
491
492 return returnFeatures;
493 }
494
495