1 #include "stdio.h"
2 #ifndef mips
3 #include "stdlib.h"
4 #endif
5 #include "xlisp.h"
6 #include "sound.h"
7 
8 #include "falloc.h"
9 #include "cext.h"
10 #include "allpoles.h"
11 
12 void allpoles_free(snd_susp_type a_susp);
13 
14 
15 typedef struct allpoles_susp_struct {
16     snd_susp_node susp;
17     int64_t terminate_cnt;
18     boolean logically_stopped;
19     sound_type x_snd;
20     int x_snd_cnt;
21     sample_block_values_type x_snd_ptr;
22 
23     long ak_len;
24     LVAL ak_array;
25     double gain;
26     double *ak_coefs;
27     double *zk_buf;
28     long index;
29 } allpoles_susp_node, *allpoles_susp_type;
30 
31 
allpoles_s_fetch(snd_susp_type a_susp,snd_list_type snd_list)32 void allpoles_s_fetch(snd_susp_type a_susp, snd_list_type snd_list)
33 {
34     allpoles_susp_type susp = (allpoles_susp_type) a_susp;
35     int cnt = 0; /* how many samples computed */
36     int togo;
37     int n;
38     sample_block_type out;
39     register sample_block_values_type out_ptr;
40 
41     register sample_block_values_type out_ptr_reg;
42 
43     register long ak_len_reg;
44     register double gain_reg;
45     register double * ak_coefs_reg;
46     register double * zk_buf_reg;
47     register long index_reg;
48     register sample_type x_snd_scale_reg = susp->x_snd->scale;
49     register sample_block_values_type x_snd_ptr_reg;
50     falloc_sample_block(out, "allpoles_s_fetch");
51     out_ptr = out->samples;
52     snd_list->block = out;
53 
54     while (cnt < max_sample_block_len) { /* outer loop */
55         /* first compute how many samples to generate in inner loop: */
56         /* don't overflow the output sample block: */
57         togo = max_sample_block_len - cnt;
58 
59         /* don't run past the x_snd input sample block: */
60         susp_check_term_log_samples(x_snd, x_snd_ptr, x_snd_cnt);
61         togo = min(togo, susp->x_snd_cnt);
62 
63         /* don't run past terminate time */
64         if (susp->terminate_cnt != UNKNOWN &&
65             susp->terminate_cnt <= susp->susp.current + cnt + togo) {
66             togo = (int) (susp->terminate_cnt - (susp->susp.current + cnt));
67             if (togo < 0) togo = 0;  /* avoids rounding errros */
68             if (togo == 0) break;
69         }
70 
71 
72         /* don't run past logical stop time */
73         if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
74             int64_t to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
75             /* break if to_stop == 0 (we're at the logical stop)
76              * AND cnt > 0 (we're not at the beginning of the
77              * output block).
78              */
79             if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
80             if (to_stop < togo) {
81                 if (to_stop == 0) {
82                     if (cnt) {
83                         togo = 0;
84                         break;
85                     } else /* keep togo as is: since cnt == 0, we
86                             * can set the logical stop flag on this
87                             * output block
88                             */
89                         susp->logically_stopped = true;
90                 } else /* limit togo so we can start a new
91                         * block at the LST
92                         */
93                     togo = (int) to_stop;
94             }
95         }
96 
97 
98       if (susp->ak_array == NULL) {
99              togo = 0; /* indicate termination */
100              break;    /* we're done */
101       }
102       else if (!vectorp(susp->ak_array))
103            xlerror("array expected", susp->ak_array);
104       else if (susp->ak_coefs == NULL)
105            {
106                long i;
107                susp->ak_len = getsize(susp->ak_array);
108                if (susp->ak_len < 1) xlerror("array has not elements", susp->ak_array);
109                susp->ak_coefs = (double *) calloc(susp->ak_len, sizeof(double));
110                susp->zk_buf   = (double *) calloc(susp->ak_len, sizeof(double));
111 
112               /* at this point we have a new array and a place to put ak coefs */
113               for(i=0; i < susp->ak_len; i++) {
114                  LVAL elem = getelement(susp->ak_array,i);
115                  if (ntype(elem) != FLONUM) {
116                       xlerror("flonum expected", elem);
117                  }
118                  susp->ak_coefs[i] = getflonum(elem);
119               }
120 
121             }
122 
123         n = togo;
124         ak_len_reg = susp->ak_len;
125         gain_reg = susp->gain;
126         ak_coefs_reg = susp->ak_coefs;
127         zk_buf_reg = susp->zk_buf;
128         index_reg = susp->index;
129         x_snd_ptr_reg = susp->x_snd_ptr;
130         out_ptr_reg = out_ptr;
131         if (n) do { /* the inner sample computation loop */
132             double z0; long xi; long xj;            z0 = (x_snd_scale_reg * *x_snd_ptr_reg++)*gain_reg;
133             for (xi=0; xi < ak_len_reg ; xi++) {
134                 xj = index_reg + xi; if (xj >= ak_len_reg) xj -= ak_len_reg;
135                 z0 +=  ak_coefs_reg[xi] * zk_buf_reg[xj];
136             }
137             zk_buf_reg[index_reg] = z0;
138             index_reg++; if (index_reg == ak_len_reg) index_reg = 0;
139             *out_ptr_reg++ = (sample_type) z0;
140         } while (--n); /* inner loop */
141 
142         susp->zk_buf = zk_buf_reg;
143         susp->index = index_reg;
144         /* using x_snd_ptr_reg is a bad idea on RS/6000: */
145         susp->x_snd_ptr += togo;
146         out_ptr += togo;
147         susp_took(x_snd_cnt, togo);
148         cnt += togo;
149     } /* outer loop */
150 
151     /* test for termination */
152     if (togo == 0 && cnt == 0) {
153         snd_list_terminate(snd_list);
154     } else {
155         snd_list->block_len = cnt;
156         susp->susp.current += cnt;
157     }
158     /* test for logical stop */
159     if (susp->logically_stopped) {
160         snd_list->logically_stopped = true;
161     } else if (susp->susp.log_stop_cnt == susp->susp.current) {
162         susp->logically_stopped = true;
163     }
164 } /* allpoles_s_fetch */
165 
166 
allpoles_toss_fetch(snd_susp_type a_susp,snd_list_type snd_list)167 void allpoles_toss_fetch(snd_susp_type a_susp, snd_list_type snd_list)
168 {
169     allpoles_susp_type susp = (allpoles_susp_type) a_susp;
170     time_type final_time = susp->susp.t0;
171     int n;
172 
173     /* fetch samples from x_snd up to final_time for this block of zeros */
174     while ((ROUNDBIG((final_time - susp->x_snd->t0) * susp->x_snd->sr)) >=
175            susp->x_snd->current)
176         susp_get_samples(x_snd, x_snd_ptr, x_snd_cnt);
177     /* convert to normal processing when we hit final_count */
178     /* we want each signal positioned at final_time */
179     n = (int) ROUNDBIG((final_time - susp->x_snd->t0) * susp->x_snd->sr -
180          (susp->x_snd->current - susp->x_snd_cnt));
181     susp->x_snd_ptr += n;
182     susp_took(x_snd_cnt, n);
183     susp->susp.fetch = susp->susp.keep_fetch;
184     (*(susp->susp.fetch))(a_susp, snd_list);
185 }
186 
187 
allpoles_mark(snd_susp_type a_susp)188 void allpoles_mark(snd_susp_type a_susp)
189 {
190     allpoles_susp_type susp = (allpoles_susp_type) a_susp;
191     if (susp->ak_array) mark(susp->ak_array);
192     sound_xlmark(susp->x_snd);
193 }
194 
195 
allpoles_free(snd_susp_type a_susp)196 void allpoles_free(snd_susp_type a_susp)
197 {
198     allpoles_susp_type susp = (allpoles_susp_type) a_susp;
199 
200      free(susp->zk_buf);
201      free(susp->ak_coefs);
202      susp->ak_array = NULL;  /* free array */
203     sound_unref(susp->x_snd);
204     ffree_generic(susp, sizeof(allpoles_susp_node), "allpoles_free");
205 }
206 
207 
allpoles_print_tree(snd_susp_type a_susp,int n)208 void allpoles_print_tree(snd_susp_type a_susp, int n)
209 {
210     allpoles_susp_type susp = (allpoles_susp_type) a_susp;
211     indent(n);
212     stdputstr("x_snd:");
213     sound_print_tree_1(susp->x_snd, n);
214 }
215 
216 
snd_make_allpoles(sound_type x_snd,LVAL ak_array,double gain)217 sound_type snd_make_allpoles(sound_type x_snd, LVAL ak_array, double gain)
218 {
219     register allpoles_susp_type susp;
220     rate_type sr = x_snd->sr;
221     time_type t0 = x_snd->t0;
222     sample_type scale_factor = 1.0F;
223     time_type t0_min = t0;
224     falloc_generic(susp, allpoles_susp_node, "snd_make_allpoles");
225     susp->ak_len = 0;
226     susp->ak_array = ak_array;
227     susp->gain = gain;
228     susp->ak_coefs = NULL;
229     susp->zk_buf = NULL;
230     susp->index = 0;
231     susp->susp.fetch = allpoles_s_fetch;
232     susp->terminate_cnt = UNKNOWN;
233     /* handle unequal start times, if any */
234     if (t0 < x_snd->t0) sound_prepend_zeros(x_snd, t0);
235     /* minimum start time over all inputs: */
236     t0_min = min(x_snd->t0, t0);
237     /* how many samples to toss before t0: */
238     susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
239     if (susp->susp.toss_cnt > 0) {
240         susp->susp.keep_fetch = susp->susp.fetch;
241         susp->susp.fetch = allpoles_toss_fetch;
242     }
243 
244     /* initialize susp state */
245     susp->susp.free = allpoles_free;
246     susp->susp.sr = sr;
247     susp->susp.t0 = t0;
248     susp->susp.mark = allpoles_mark;
249     susp->susp.print_tree = allpoles_print_tree;
250     susp->susp.name = "allpoles";
251     susp->logically_stopped = false;
252     susp->susp.log_stop_cnt = logical_stop_cnt_cvt(x_snd);
253     susp->susp.current = 0;
254     susp->x_snd = x_snd;
255     susp->x_snd_cnt = 0;
256     return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
257 }
258 
259 
snd_allpoles(sound_type x_snd,LVAL ak_array,double gain)260 sound_type snd_allpoles(sound_type x_snd, LVAL ak_array, double gain)
261 {
262     sound_type x_snd_copy = sound_copy(x_snd);
263     return snd_make_allpoles(x_snd_copy, ak_array, gain);
264 }
265