1 /* inftrees.c -- generate Huffman trees for efficient decoding
2  * Copyright (C) 1995-2005 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 #include "zutil.h"
7 #include "inftrees.h"
8 
9 #define MAXBITS 15
10 
11 const char inflate_copyright[] =
12    " inflate 1.2.3 Copyright 1995-2005 Mark Adler ";
13 /*
14   If you use the zlib library in a product, an acknowledgment is welcome
15   in the documentation of your product. If for some reason you cannot
16   include such an acknowledgment, I would appreciate that you keep this
17   copyright string in the executable of your product.
18  */
19 
20 /*
21    Build a set of tables to decode the provided canonical Huffman code.
22    The code lengths are lens[0..codes-1].  The result starts at *table,
23    whose indices are 0..2^bits-1.  work is a writable array of at least
24    lens shorts, which is used as a work area.  type is the type of code
25    to be generated, CODES, LENS, or DISTS.  On return, zero is success,
26    -1 is an invalid code, and +1 means that ENOUGH isn't enough.  table
27    on return points to the next available entry's address.  bits is the
28    requested root table index bits, and on return it is the actual root
29    table index bits.  It will differ if the request is greater than the
30    longest code or if it is less than the shortest code.
31  */
inflate_table(codetype type,unsigned short FAR * lens,unsigned codes,code FAR * FAR * table,unsigned FAR * bits,unsigned short FAR * work)32 int inflate_table (codetype type,
33                    unsigned short FAR *lens,
34                    unsigned codes,
35                    code FAR * FAR *table,
36                    unsigned FAR *bits,
37                    unsigned short FAR *work)
38 {
39     unsigned len;               /* a code's length in bits */
40     unsigned sym;               /* index of code symbols */
41     unsigned min, max;          /* minimum and maximum code lengths */
42     unsigned root;              /* number of index bits for root table */
43     unsigned curr;              /* number of index bits for current table */
44     unsigned drop;              /* code bits to drop for sub-table */
45     int left;                   /* number of prefix codes available */
46     unsigned used;              /* code entries in table used */
47     unsigned huff;              /* Huffman code */
48     unsigned incr;              /* for incrementing code, index */
49     unsigned fill;              /* index for replicating entries */
50     unsigned low;               /* low bits for current root entry */
51     unsigned mask;              /* mask for low root bits */
52     code thisx;                  /* table entry for duplication */
53     code FAR *next;             /* next available space in table */
54     const unsigned short FAR *base;     /* base value table to use */
55     const unsigned short FAR *extra;    /* extra bits table to use */
56     int end;                    /* use base and extra for symbol > end */
57     unsigned short count[MAXBITS+1];    /* number of codes of each length */
58     unsigned short offs[MAXBITS+1];     /* offsets in table for each length */
59     static const unsigned short lbase[31] = { /* Length codes 257..285 base */
60         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
61         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
62     static const unsigned short lext[31] = { /* Length codes 257..285 extra */
63         16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
64         19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 201, 196};
65     static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
66         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
67         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
68         8193, 12289, 16385, 24577, 0, 0};
69     static const unsigned short dext[32] = { /* Distance codes 0..29 extra */
70         16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
71         23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
72         28, 28, 29, 29, 64, 64};
73 
74     /*
75        Process a set of code lengths to create a canonical Huffman code.  The
76        code lengths are lens[0..codes-1].  Each length corresponds to the
77        symbols 0..codes-1.  The Huffman code is generated by first sorting the
78        symbols by length from short to long, and retaining the symbol order
79        for codes with equal lengths.  Then the code starts with all zero bits
80        for the first code of the shortest length, and the codes are integer
81        increments for the same length, and zeros are appended as the length
82        increases.  For the deflate format, these bits are stored backwards
83        from their more natural integer increment ordering, and so when the
84        decoding tables are built in the large loop below, the integer codes
85        are incremented backwards.
86 
87        This routine assumes, but does not check, that all of the entries in
88        lens[] are in the range 0..MAXBITS.  The caller must assure this.
89        1..MAXBITS is interpreted as that code length.  zero means that that
90        symbol does not occur in this code.
91 
92        The codes are sorted by computing a count of codes for each length,
93        creating from that a table of starting indices for each length in the
94        sorted table, and then entering the symbols in order in the sorted
95        table.  The sorted table is work[], with that space being provided by
96        the caller.
97 
98        The length counts are used for other purposes as well, i.e. finding
99        the minimum and maximum length codes, determining if there are any
100        codes at all, checking for a valid set of lengths, and looking ahead
101        at length counts to determine sub-table sizes when building the
102        decoding tables.
103      */
104 
105     /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
106     for (len = 0; len <= MAXBITS; len++)
107         count[len] = 0;
108     for (sym = 0; sym < codes; sym++)
109         count[lens[sym]]++;
110 
111     /* bound code lengths, force root to be within code lengths */
112     root = *bits;
113     for (max = MAXBITS; max >= 1; max--)
114         if (count[max] != 0) break;
115     if (root > max) root = max;
116     if (max == 0) {                     /* no symbols to code at all */
117         thisx.op = (unsigned char)64;    /* invalid code marker */
118         thisx.bits = (unsigned char)1;
119         thisx.val = (unsigned short)0;
120         *(*table)++ = thisx;             /* make a table to force an error */
121         *(*table)++ = thisx;
122         *bits = 1;
123         return 0;     /* no symbols, but wait for decoding to report error */
124     }
125     for (min = 1; min <= MAXBITS; min++)
126         if (count[min] != 0) break;
127     if (root < min) root = min;
128 
129     /* check for an over-subscribed or incomplete set of lengths */
130     left = 1;
131     for (len = 1; len <= MAXBITS; len++) {
132         left <<= 1;
133         left -= count[len];
134         if (left < 0) return -1;        /* over-subscribed */
135     }
136     if (left > 0 && (type == CODES || max != 1))
137         return -1;                      /* incomplete set */
138 
139     /* generate offsets into symbol table for each length for sorting */
140     offs[1] = 0;
141     for (len = 1; len < MAXBITS; len++)
142         offs[len + 1] = offs[len] + count[len];
143 
144     /* sort symbols by length, by symbol order within each length */
145     for (sym = 0; sym < codes; sym++)
146         if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
147 
148     /*
149        Create and fill in decoding tables.  In this loop, the table being
150        filled is at next and has curr index bits.  The code being used is huff
151        with length len.  That code is converted to an index by dropping drop
152        bits off of the bottom.  For codes where len is less than drop + curr,
153        those top drop + curr - len bits are incremented through all values to
154        fill the table with replicated entries.
155 
156        root is the number of index bits for the root table.  When len exceeds
157        root, sub-tables are created pointed to by the root entry with an index
158        of the low root bits of huff.  This is saved in low to check for when a
159        new sub-table should be started.  drop is zero when the root table is
160        being filled, and drop is root when sub-tables are being filled.
161 
162        When a new sub-table is needed, it is necessary to look ahead in the
163        code lengths to determine what size sub-table is needed.  The length
164        counts are used for this, and so count[] is decremented as codes are
165        entered in the tables.
166 
167        used keeps track of how many table entries have been allocated from the
168        provided *table space.  It is checked when a LENS table is being made
169        against the space in *table, ENOUGH, minus the maximum space needed by
170        the worst case distance code, MAXD.  This should never happen, but the
171        sufficiency of ENOUGH has not been proven exhaustively, hence the check.
172        This assumes that when type == LENS, bits == 9.
173 
174        sym increments through all symbols, and the loop terminates when
175        all codes of length max, i.e. all codes, have been processed.  This
176        routine permits incomplete codes, so another loop after this one fills
177        in the rest of the decoding tables with invalid code markers.
178      */
179 
180     /* set up for code type */
181     switch (type) {
182     case CODES:
183         base = extra = work;    /* dummy value--not used */
184         end = 19;
185         break;
186     case LENS:
187         base = lbase;
188         base -= 257;
189         extra = lext;
190         extra -= 257;
191         end = 256;
192         break;
193     default:            /* DISTS */
194         base = dbase;
195         extra = dext;
196         end = -1;
197     }
198 
199     /* initialize state for loop */
200     huff = 0;                   /* starting code */
201     sym = 0;                    /* starting code symbol */
202     len = min;                  /* starting code length */
203     next = *table;              /* current table to fill in */
204     curr = root;                /* current table index bits */
205     drop = 0;                   /* current bits to drop from code for index */
206     low = (unsigned)(-1);       /* trigger new sub-table when len > root */
207     used = 1U << root;          /* use root table entries */
208     mask = used - 1;            /* mask for comparing low */
209 
210     /* check available table space */
211     if (type == LENS && used >= ENOUGH - MAXD)
212         return 1;
213 
214     /* process all codes and make table entries */
215     for (;;) {
216         /* create table entry */
217         thisx.bits = (unsigned char)(len - drop);
218         if ((int)(work[sym]) < end) {
219             thisx.op = (unsigned char)0;
220             thisx.val = work[sym];
221         }
222         else if ((int)(work[sym]) > end) {
223             thisx.op = (unsigned char)(extra[work[sym]]);
224             thisx.val = base[work[sym]];
225         }
226         else {
227             thisx.op = (unsigned char)(32 + 64);         /* end of block */
228             thisx.val = 0;
229         }
230 
231         /* replicate for those indices with low len bits equal to huff */
232         incr = 1U << (len - drop);
233         fill = 1U << curr;
234         min = fill;                 /* save offset to next table */
235         do {
236             fill -= incr;
237             next[(huff >> drop) + fill] = thisx;
238         } while (fill != 0);
239 
240         /* backwards increment the len-bit code huff */
241         incr = 1U << (len - 1);
242         while (huff & incr)
243             incr >>= 1;
244         if (incr != 0) {
245             huff &= incr - 1;
246             huff += incr;
247         }
248         else
249             huff = 0;
250 
251         /* go to next symbol, update count, len */
252         sym++;
253         if (--(count[len]) == 0) {
254             if (len == max) break;
255             len = lens[work[sym]];
256         }
257 
258         /* create new sub-table if needed */
259         if (len > root && (huff & mask) != low) {
260             /* if first time, transition to sub-tables */
261             if (drop == 0)
262                 drop = root;
263 
264             /* increment past last table */
265             next += min;            /* here min is 1 << curr */
266 
267             /* determine length of next table */
268             curr = len - drop;
269             left = (int)(1 << curr);
270             while (curr + drop < max) {
271                 left -= count[curr + drop];
272                 if (left <= 0) break;
273                 curr++;
274                 left <<= 1;
275             }
276 
277             /* check for enough space */
278             used += 1U << curr;
279             if (type == LENS && used >= ENOUGH - MAXD)
280                 return 1;
281 
282             /* point entry in root table to sub-table */
283             low = huff & mask;
284             (*table)[low].op = (unsigned char)curr;
285             (*table)[low].bits = (unsigned char)root;
286             (*table)[low].val = (unsigned short)(next - *table);
287         }
288     }
289 
290     /*
291        Fill in rest of table for incomplete codes.  This loop is similar to the
292        loop above in incrementing huff for table indices.  It is assumed that
293        len is equal to curr + drop, so there is no loop needed to increment
294        through high index bits.  When the current sub-table is filled, the loop
295        drops back to the root table to fill in any remaining entries there.
296      */
297     thisx.op = (unsigned char)64;                /* invalid code marker */
298     thisx.bits = (unsigned char)(len - drop);
299     thisx.val = (unsigned short)0;
300     while (huff != 0) {
301         /* when done with sub-table, drop back to root table */
302         if (drop != 0 && (huff & mask) != low) {
303             drop = 0;
304             len = root;
305             next = *table;
306             thisx.bits = (unsigned char)len;
307         }
308 
309         /* put invalid code marker in table */
310         next[huff >> drop] = thisx;
311 
312         /* backwards increment the len-bit code huff */
313         incr = 1U << (len - 1);
314         while (huff & incr)
315             incr >>= 1;
316         if (incr != 0) {
317             huff &= incr - 1;
318             huff += incr;
319         }
320         else
321             huff = 0;
322     }
323 
324     /* set return parameters */
325     *table += used;
326     *bits = root;
327     return 0;
328 }
329