1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31 
32 // Google Mock - a framework for writing C++ mock classes.
33 //
34 // This file implements some commonly used actions.
35 
36 #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
37 #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
38 
39 #include <algorithm>
40 #include <string>
41 
42 #ifndef _WIN32_WCE
43 #include <errno.h>
44 #endif
45 
46 #include <gmock/gmock-printers.h>
47 #include <gmock/internal/gmock-internal-utils.h>
48 #include <gmock/internal/gmock-port.h>
49 
50 namespace testing {
51 
52 // To implement an action Foo, define:
53 //   1. a class FooAction that implements the ActionInterface interface, and
54 //   2. a factory function that creates an Action object from a
55 //      const FooAction*.
56 //
57 // The two-level delegation design follows that of Matcher, providing
58 // consistency for extension developers.  It also eases ownership
59 // management as Action objects can now be copied like plain values.
60 
61 namespace internal {
62 
63 template <typename F>
64 class MonomorphicDoDefaultActionImpl;
65 
66 template <typename F1, typename F2>
67 class ActionAdaptor;
68 
69 // BuiltInDefaultValue<T>::Get() returns the "built-in" default
70 // value for type T, which is NULL when T is a pointer type, 0 when T
71 // is a numeric type, false when T is bool, or "" when T is string or
72 // std::string.  For any other type T, this value is undefined and the
73 // function will abort the process.
74 template <typename T>
75 class BuiltInDefaultValue {
76  public:
77   // This function returns true iff type T has a built-in default value.
Exists()78   static bool Exists() { return false; }
Get()79   static T Get() {
80     Assert(false, __FILE__, __LINE__,
81            "Default action undefined for the function return type.");
82     return internal::Invalid<T>();
83     // The above statement will never be reached, but is required in
84     // order for this function to compile.
85   }
86 };
87 
88 // This partial specialization says that we use the same built-in
89 // default value for T and const T.
90 template <typename T>
91 class BuiltInDefaultValue<const T> {
92  public:
Exists()93   static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
Get()94   static T Get() { return BuiltInDefaultValue<T>::Get(); }
95 };
96 
97 // This partial specialization defines the default values for pointer
98 // types.
99 template <typename T>
100 class BuiltInDefaultValue<T*> {
101  public:
Exists()102   static bool Exists() { return true; }
Get()103   static T* Get() { return NULL; }
104 };
105 
106 // The following specializations define the default values for
107 // specific types we care about.
108 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
109   template <> \
110   class BuiltInDefaultValue<type> { \
111    public: \
112     static bool Exists() { return true; } \
113     static type Get() { return value; } \
114   }
115 
116 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
117 #if GTEST_HAS_GLOBAL_STRING
118 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, "");
119 #endif  // GTEST_HAS_GLOBAL_STRING
120 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
121 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
122 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
123 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
124 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
125 
126 // There's no need for a default action for signed wchar_t, as that
127 // type is the same as wchar_t for gcc, and invalid for MSVC.
128 //
129 // There's also no need for a default action for unsigned wchar_t, as
130 // that type is the same as unsigned int for gcc, and invalid for
131 // MSVC.
132 #if GMOCK_WCHAR_T_IS_NATIVE_
133 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
134 #endif
135 
136 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
137 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
138 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
139 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
140 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
141 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
142 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
143 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
144 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
145 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
146 
147 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
148 
149 }  // namespace internal
150 
151 // When an unexpected function call is encountered, Google Mock will
152 // let it return a default value if the user has specified one for its
153 // return type, or if the return type has a built-in default value;
154 // otherwise Google Mock won't know what value to return and will have
155 // to abort the process.
156 //
157 // The DefaultValue<T> class allows a user to specify the
158 // default value for a type T that is both copyable and publicly
159 // destructible (i.e. anything that can be used as a function return
160 // type).  The usage is:
161 //
162 //   // Sets the default value for type T to be foo.
163 //   DefaultValue<T>::Set(foo);
164 template <typename T>
165 class DefaultValue {
166  public:
167   // Sets the default value for type T; requires T to be
168   // copy-constructable and have a public destructor.
Set(T x)169   static void Set(T x) {
170     delete value_;
171     value_ = new T(x);
172   }
173 
174   // Unsets the default value for type T.
Clear()175   static void Clear() {
176     delete value_;
177     value_ = NULL;
178   }
179 
180   // Returns true iff the user has set the default value for type T.
IsSet()181   static bool IsSet() { return value_ != NULL; }
182 
183   // Returns true if T has a default return value set by the user or there
184   // exists a built-in default value.
Exists()185   static bool Exists() {
186     return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
187   }
188 
189   // Returns the default value for type T if the user has set one;
190   // otherwise returns the built-in default value if there is one;
191   // otherwise aborts the process.
Get()192   static T Get() {
193     return value_ == NULL ?
194         internal::BuiltInDefaultValue<T>::Get() : *value_;
195   }
196  private:
197   static const T* value_;
198 };
199 
200 // This partial specialization allows a user to set default values for
201 // reference types.
202 template <typename T>
203 class DefaultValue<T&> {
204  public:
205   // Sets the default value for type T&.
Set(T & x)206   static void Set(T& x) {  // NOLINT
207     address_ = &x;
208   }
209 
210   // Unsets the default value for type T&.
Clear()211   static void Clear() {
212     address_ = NULL;
213   }
214 
215   // Returns true iff the user has set the default value for type T&.
IsSet()216   static bool IsSet() { return address_ != NULL; }
217 
218   // Returns true if T has a default return value set by the user or there
219   // exists a built-in default value.
Exists()220   static bool Exists() {
221     return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
222   }
223 
224   // Returns the default value for type T& if the user has set one;
225   // otherwise returns the built-in default value if there is one;
226   // otherwise aborts the process.
Get()227   static T& Get() {
228     return address_ == NULL ?
229         internal::BuiltInDefaultValue<T&>::Get() : *address_;
230   }
231  private:
232   static T* address_;
233 };
234 
235 // This specialization allows DefaultValue<void>::Get() to
236 // compile.
237 template <>
238 class DefaultValue<void> {
239  public:
Exists()240   static bool Exists() { return true; }
Get()241   static void Get() {}
242 };
243 
244 // Points to the user-set default value for type T.
245 template <typename T>
246 const T* DefaultValue<T>::value_ = NULL;
247 
248 // Points to the user-set default value for type T&.
249 template <typename T>
250 T* DefaultValue<T&>::address_ = NULL;
251 
252 // Implement this interface to define an action for function type F.
253 template <typename F>
254 class ActionInterface {
255  public:
256   typedef typename internal::Function<F>::Result Result;
257   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
258 
ActionInterface()259   ActionInterface() : is_do_default_(false) {}
260 
~ActionInterface()261   virtual ~ActionInterface() {}
262 
263   // Performs the action.  This method is not const, as in general an
264   // action can have side effects and be stateful.  For example, a
265   // get-the-next-element-from-the-collection action will need to
266   // remember the current element.
267   virtual Result Perform(const ArgumentTuple& args) = 0;
268 
269   // Returns true iff this is the DoDefault() action.
IsDoDefault()270   bool IsDoDefault() const { return is_do_default_; }
271 
272  private:
273   template <typename Function>
274   friend class internal::MonomorphicDoDefaultActionImpl;
275 
276   // This private constructor is reserved for implementing
277   // DoDefault(), the default action for a given mock function.
ActionInterface(bool is_do_default)278   explicit ActionInterface(bool is_do_default)
279       : is_do_default_(is_do_default) {}
280 
281   // True iff this action is DoDefault().
282   const bool is_do_default_;
283 
284   GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
285 };
286 
287 // An Action<F> is a copyable and IMMUTABLE (except by assignment)
288 // object that represents an action to be taken when a mock function
289 // of type F is called.  The implementation of Action<T> is just a
290 // linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
291 // Don't inherit from Action!
292 //
293 // You can view an object implementing ActionInterface<F> as a
294 // concrete action (including its current state), and an Action<F>
295 // object as a handle to it.
296 template <typename F>
297 class Action {
298  public:
299   typedef typename internal::Function<F>::Result Result;
300   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
301 
302   // Constructs a null Action.  Needed for storing Action objects in
303   // STL containers.
Action()304   Action() : impl_(NULL) {}
305 
306   // Constructs an Action from its implementation.
Action(ActionInterface<F> * impl)307   explicit Action(ActionInterface<F>* impl) : impl_(impl) {}
308 
309   // Copy constructor.
Action(const Action & action)310   Action(const Action& action) : impl_(action.impl_) {}
311 
312   // This constructor allows us to turn an Action<Func> object into an
313   // Action<F>, as long as F's arguments can be implicitly converted
314   // to Func's and Func's return type can be implicitly converted to
315   // F's.
316   template <typename Func>
317   explicit Action(const Action<Func>& action);
318 
319   // Returns true iff this is the DoDefault() action.
IsDoDefault()320   bool IsDoDefault() const { return impl_->IsDoDefault(); }
321 
322   // Performs the action.  Note that this method is const even though
323   // the corresponding method in ActionInterface is not.  The reason
324   // is that a const Action<F> means that it cannot be re-bound to
325   // another concrete action, not that the concrete action it binds to
326   // cannot change state.  (Think of the difference between a const
327   // pointer and a pointer to const.)
Perform(const ArgumentTuple & args)328   Result Perform(const ArgumentTuple& args) const {
329     return impl_->Perform(args);
330   }
331 
332  private:
333   template <typename F1, typename F2>
334   friend class internal::ActionAdaptor;
335 
336   internal::linked_ptr<ActionInterface<F> > impl_;
337 };
338 
339 // The PolymorphicAction class template makes it easy to implement a
340 // polymorphic action (i.e. an action that can be used in mock
341 // functions of than one type, e.g. Return()).
342 //
343 // To define a polymorphic action, a user first provides a COPYABLE
344 // implementation class that has a Perform() method template:
345 //
346 //   class FooAction {
347 //    public:
348 //     template <typename Result, typename ArgumentTuple>
349 //     Result Perform(const ArgumentTuple& args) const {
350 //       // Processes the arguments and returns a result, using
351 //       // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
352 //     }
353 //     ...
354 //   };
355 //
356 // Then the user creates the polymorphic action using
357 // MakePolymorphicAction(object) where object has type FooAction.  See
358 // the definition of Return(void) and SetArgumentPointee<N>(value) for
359 // complete examples.
360 template <typename Impl>
361 class PolymorphicAction {
362  public:
PolymorphicAction(const Impl & impl)363   explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
364 
365   template <typename F>
366   operator Action<F>() const {
367     return Action<F>(new MonomorphicImpl<F>(impl_));
368   }
369 
370  private:
371   template <typename F>
372   class MonomorphicImpl : public ActionInterface<F> {
373    public:
374     typedef typename internal::Function<F>::Result Result;
375     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
376 
MonomorphicImpl(const Impl & impl)377     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
378 
Perform(const ArgumentTuple & args)379     virtual Result Perform(const ArgumentTuple& args) {
380       return impl_.template Perform<Result>(args);
381     }
382 
383    private:
384     Impl impl_;
385 
386     GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
387   };
388 
389   Impl impl_;
390 
391   GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
392 };
393 
394 // Creates an Action from its implementation and returns it.  The
395 // created Action object owns the implementation.
396 template <typename F>
MakeAction(ActionInterface<F> * impl)397 Action<F> MakeAction(ActionInterface<F>* impl) {
398   return Action<F>(impl);
399 }
400 
401 // Creates a polymorphic action from its implementation.  This is
402 // easier to use than the PolymorphicAction<Impl> constructor as it
403 // doesn't require you to explicitly write the template argument, e.g.
404 //
405 //   MakePolymorphicAction(foo);
406 // vs
407 //   PolymorphicAction<TypeOfFoo>(foo);
408 template <typename Impl>
MakePolymorphicAction(const Impl & impl)409 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
410   return PolymorphicAction<Impl>(impl);
411 }
412 
413 namespace internal {
414 
415 // Allows an Action<F2> object to pose as an Action<F1>, as long as F2
416 // and F1 are compatible.
417 template <typename F1, typename F2>
418 class ActionAdaptor : public ActionInterface<F1> {
419  public:
420   typedef typename internal::Function<F1>::Result Result;
421   typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple;
422 
ActionAdaptor(const Action<F2> & from)423   explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {}
424 
Perform(const ArgumentTuple & args)425   virtual Result Perform(const ArgumentTuple& args) {
426     return impl_->Perform(args);
427   }
428 
429  private:
430   const internal::linked_ptr<ActionInterface<F2> > impl_;
431 
432   GTEST_DISALLOW_ASSIGN_(ActionAdaptor);
433 };
434 
435 // Implements the polymorphic Return(x) action, which can be used in
436 // any function that returns the type of x, regardless of the argument
437 // types.
438 //
439 // Note: The value passed into Return must be converted into
440 // Function<F>::Result when this action is cast to Action<F> rather than
441 // when that action is performed. This is important in scenarios like
442 //
443 // MOCK_METHOD1(Method, T(U));
444 // ...
445 // {
446 //   Foo foo;
447 //   X x(&foo);
448 //   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
449 // }
450 //
451 // In the example above the variable x holds reference to foo which leaves
452 // scope and gets destroyed.  If copying X just copies a reference to foo,
453 // that copy will be left with a hanging reference.  If conversion to T
454 // makes a copy of foo, the above code is safe. To support that scenario, we
455 // need to make sure that the type conversion happens inside the EXPECT_CALL
456 // statement, and conversion of the result of Return to Action<T(U)> is a
457 // good place for that.
458 //
459 template <typename R>
460 class ReturnAction {
461  public:
462   // Constructs a ReturnAction object from the value to be returned.
463   // 'value' is passed by value instead of by const reference in order
464   // to allow Return("string literal") to compile.
ReturnAction(R value)465   explicit ReturnAction(R value) : value_(value) {}
466 
467   // This template type conversion operator allows Return(x) to be
468   // used in ANY function that returns x's type.
469   template <typename F>
470   operator Action<F>() const {
471     // Assert statement belongs here because this is the best place to verify
472     // conditions on F. It produces the clearest error messages
473     // in most compilers.
474     // Impl really belongs in this scope as a local class but can't
475     // because MSVC produces duplicate symbols in different translation units
476     // in this case. Until MS fixes that bug we put Impl into the class scope
477     // and put the typedef both here (for use in assert statement) and
478     // in the Impl class. But both definitions must be the same.
479     typedef typename Function<F>::Result Result;
480     GMOCK_COMPILE_ASSERT_(
481         !internal::is_reference<Result>::value,
482         use_ReturnRef_instead_of_Return_to_return_a_reference);
483     return Action<F>(new Impl<F>(value_));
484   }
485 
486  private:
487   // Implements the Return(x) action for a particular function type F.
488   template <typename F>
489   class Impl : public ActionInterface<F> {
490    public:
491     typedef typename Function<F>::Result Result;
492     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
493 
494     // The implicit cast is necessary when Result has more than one
495     // single-argument constructor (e.g. Result is std::vector<int>) and R
496     // has a type conversion operator template.  In that case, value_(value)
497     // won't compile as the compiler doesn't known which constructor of
498     // Result to call.  implicit_cast forces the compiler to convert R to
499     // Result without considering explicit constructors, thus resolving the
500     // ambiguity. value_ is then initialized using its copy constructor.
Impl(R value)501     explicit Impl(R value)
502         : value_(::testing::internal::implicit_cast<Result>(value)) {}
503 
Perform(const ArgumentTuple &)504     virtual Result Perform(const ArgumentTuple&) { return value_; }
505 
506    private:
507     GMOCK_COMPILE_ASSERT_(!internal::is_reference<Result>::value,
508                           Result_cannot_be_a_reference_type);
509     Result value_;
510 
511     GTEST_DISALLOW_ASSIGN_(Impl);
512   };
513 
514   R value_;
515 
516   GTEST_DISALLOW_ASSIGN_(ReturnAction);
517 };
518 
519 // Implements the ReturnNull() action.
520 class ReturnNullAction {
521  public:
522   // Allows ReturnNull() to be used in any pointer-returning function.
523   template <typename Result, typename ArgumentTuple>
Perform(const ArgumentTuple &)524   static Result Perform(const ArgumentTuple&) {
525     GMOCK_COMPILE_ASSERT_(internal::is_pointer<Result>::value,
526                           ReturnNull_can_be_used_to_return_a_pointer_only);
527     return NULL;
528   }
529 };
530 
531 // Implements the Return() action.
532 class ReturnVoidAction {
533  public:
534   // Allows Return() to be used in any void-returning function.
535   template <typename Result, typename ArgumentTuple>
Perform(const ArgumentTuple &)536   static void Perform(const ArgumentTuple&) {
537     CompileAssertTypesEqual<void, Result>();
538   }
539 };
540 
541 // Implements the polymorphic ReturnRef(x) action, which can be used
542 // in any function that returns a reference to the type of x,
543 // regardless of the argument types.
544 template <typename T>
545 class ReturnRefAction {
546  public:
547   // Constructs a ReturnRefAction object from the reference to be returned.
ReturnRefAction(T & ref)548   explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
549 
550   // This template type conversion operator allows ReturnRef(x) to be
551   // used in ANY function that returns a reference to x's type.
552   template <typename F>
553   operator Action<F>() const {
554     typedef typename Function<F>::Result Result;
555     // Asserts that the function return type is a reference.  This
556     // catches the user error of using ReturnRef(x) when Return(x)
557     // should be used, and generates some helpful error message.
558     GMOCK_COMPILE_ASSERT_(internal::is_reference<Result>::value,
559                           use_Return_instead_of_ReturnRef_to_return_a_value);
560     return Action<F>(new Impl<F>(ref_));
561   }
562 
563  private:
564   // Implements the ReturnRef(x) action for a particular function type F.
565   template <typename F>
566   class Impl : public ActionInterface<F> {
567    public:
568     typedef typename Function<F>::Result Result;
569     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
570 
Impl(T & ref)571     explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
572 
Perform(const ArgumentTuple &)573     virtual Result Perform(const ArgumentTuple&) {
574       return ref_;
575     }
576 
577    private:
578     T& ref_;
579 
580     GTEST_DISALLOW_ASSIGN_(Impl);
581   };
582 
583   T& ref_;
584 
585   GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
586 };
587 
588 // Implements the DoDefault() action for a particular function type F.
589 template <typename F>
590 class MonomorphicDoDefaultActionImpl : public ActionInterface<F> {
591  public:
592   typedef typename Function<F>::Result Result;
593   typedef typename Function<F>::ArgumentTuple ArgumentTuple;
594 
MonomorphicDoDefaultActionImpl()595   MonomorphicDoDefaultActionImpl() : ActionInterface<F>(true) {}
596 
597   // For technical reasons, DoDefault() cannot be used inside a
598   // composite action (e.g. DoAll(...)).  It can only be used at the
599   // top level in an EXPECT_CALL().  If this function is called, the
600   // user must be using DoDefault() inside a composite action, and we
601   // have to generate a run-time error.
Perform(const ArgumentTuple &)602   virtual Result Perform(const ArgumentTuple&) {
603     Assert(false, __FILE__, __LINE__,
604            "You are using DoDefault() inside a composite action like "
605            "DoAll() or WithArgs().  This is not supported for technical "
606            "reasons.  Please instead spell out the default action, or "
607            "assign the default action to an Action variable and use "
608            "the variable in various places.");
609     return internal::Invalid<Result>();
610     // The above statement will never be reached, but is required in
611     // order for this function to compile.
612   }
613 };
614 
615 // Implements the polymorphic DoDefault() action.
616 class DoDefaultAction {
617  public:
618   // This template type conversion operator allows DoDefault() to be
619   // used in any function.
620   template <typename F>
621   operator Action<F>() const {
622     return Action<F>(new MonomorphicDoDefaultActionImpl<F>);
623   }
624 };
625 
626 // Implements the Assign action to set a given pointer referent to a
627 // particular value.
628 template <typename T1, typename T2>
629 class AssignAction {
630  public:
AssignAction(T1 * ptr,T2 value)631   AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
632 
633   template <typename Result, typename ArgumentTuple>
Perform(const ArgumentTuple &)634   void Perform(const ArgumentTuple& /* args */) const {
635     *ptr_ = value_;
636   }
637 
638  private:
639   T1* const ptr_;
640   const T2 value_;
641 
642   GTEST_DISALLOW_ASSIGN_(AssignAction);
643 };
644 
645 #if !GTEST_OS_WINDOWS_MOBILE
646 
647 // Implements the SetErrnoAndReturn action to simulate return from
648 // various system calls and libc functions.
649 template <typename T>
650 class SetErrnoAndReturnAction {
651  public:
SetErrnoAndReturnAction(int errno_value,T result)652   SetErrnoAndReturnAction(int errno_value, T result)
653       : errno_(errno_value),
654         result_(result) {}
655   template <typename Result, typename ArgumentTuple>
Perform(const ArgumentTuple &)656   Result Perform(const ArgumentTuple& /* args */) const {
657     errno = errno_;
658     return result_;
659   }
660 
661  private:
662   const int errno_;
663   const T result_;
664 
665   GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
666 };
667 
668 #endif  // !GTEST_OS_WINDOWS_MOBILE
669 
670 // Implements the SetArgumentPointee<N>(x) action for any function
671 // whose N-th argument (0-based) is a pointer to x's type.  The
672 // template parameter kIsProto is true iff type A is ProtocolMessage,
673 // proto2::Message, or a sub-class of those.
674 template <size_t N, typename A, bool kIsProto>
675 class SetArgumentPointeeAction {
676  public:
677   // Constructs an action that sets the variable pointed to by the
678   // N-th function argument to 'value'.
SetArgumentPointeeAction(const A & value)679   explicit SetArgumentPointeeAction(const A& value) : value_(value) {}
680 
681   template <typename Result, typename ArgumentTuple>
Perform(const ArgumentTuple & args)682   void Perform(const ArgumentTuple& args) const {
683     CompileAssertTypesEqual<void, Result>();
684     *::std::tr1::get<N>(args) = value_;
685   }
686 
687  private:
688   const A value_;
689 
690   GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
691 };
692 
693 template <size_t N, typename Proto>
694 class SetArgumentPointeeAction<N, Proto, true> {
695  public:
696   // Constructs an action that sets the variable pointed to by the
697   // N-th function argument to 'proto'.  Both ProtocolMessage and
698   // proto2::Message have the CopyFrom() method, so the same
699   // implementation works for both.
SetArgumentPointeeAction(const Proto & proto)700   explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
701     proto_->CopyFrom(proto);
702   }
703 
704   template <typename Result, typename ArgumentTuple>
Perform(const ArgumentTuple & args)705   void Perform(const ArgumentTuple& args) const {
706     CompileAssertTypesEqual<void, Result>();
707     ::std::tr1::get<N>(args)->CopyFrom(*proto_);
708   }
709 
710  private:
711   const internal::linked_ptr<Proto> proto_;
712 
713   GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
714 };
715 
716 // Implements the InvokeWithoutArgs(f) action.  The template argument
717 // FunctionImpl is the implementation type of f, which can be either a
718 // function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
719 // Action<F> as long as f's type is compatible with F (i.e. f can be
720 // assigned to a tr1::function<F>).
721 template <typename FunctionImpl>
722 class InvokeWithoutArgsAction {
723  public:
724   // The c'tor makes a copy of function_impl (either a function
725   // pointer or a functor).
InvokeWithoutArgsAction(FunctionImpl function_impl)726   explicit InvokeWithoutArgsAction(FunctionImpl function_impl)
727       : function_impl_(function_impl) {}
728 
729   // Allows InvokeWithoutArgs(f) to be used as any action whose type is
730   // compatible with f.
731   template <typename Result, typename ArgumentTuple>
Perform(const ArgumentTuple &)732   Result Perform(const ArgumentTuple&) { return function_impl_(); }
733 
734  private:
735   FunctionImpl function_impl_;
736 
737   GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction);
738 };
739 
740 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
741 template <class Class, typename MethodPtr>
742 class InvokeMethodWithoutArgsAction {
743  public:
InvokeMethodWithoutArgsAction(Class * obj_ptr,MethodPtr method_ptr)744   InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr)
745       : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
746 
747   template <typename Result, typename ArgumentTuple>
Perform(const ArgumentTuple &)748   Result Perform(const ArgumentTuple&) const {
749     return (obj_ptr_->*method_ptr_)();
750   }
751 
752  private:
753   Class* const obj_ptr_;
754   const MethodPtr method_ptr_;
755 
756   GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction);
757 };
758 
759 // Implements the IgnoreResult(action) action.
760 template <typename A>
761 class IgnoreResultAction {
762  public:
IgnoreResultAction(const A & action)763   explicit IgnoreResultAction(const A& action) : action_(action) {}
764 
765   template <typename F>
766   operator Action<F>() const {
767     // Assert statement belongs here because this is the best place to verify
768     // conditions on F. It produces the clearest error messages
769     // in most compilers.
770     // Impl really belongs in this scope as a local class but can't
771     // because MSVC produces duplicate symbols in different translation units
772     // in this case. Until MS fixes that bug we put Impl into the class scope
773     // and put the typedef both here (for use in assert statement) and
774     // in the Impl class. But both definitions must be the same.
775     typedef typename internal::Function<F>::Result Result;
776 
777     // Asserts at compile time that F returns void.
778     CompileAssertTypesEqual<void, Result>();
779 
780     return Action<F>(new Impl<F>(action_));
781   }
782 
783  private:
784   template <typename F>
785   class Impl : public ActionInterface<F> {
786    public:
787     typedef typename internal::Function<F>::Result Result;
788     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
789 
Impl(const A & action)790     explicit Impl(const A& action) : action_(action) {}
791 
Perform(const ArgumentTuple & args)792     virtual void Perform(const ArgumentTuple& args) {
793       // Performs the action and ignores its result.
794       action_.Perform(args);
795     }
796 
797    private:
798     // Type OriginalFunction is the same as F except that its return
799     // type is IgnoredValue.
800     typedef typename internal::Function<F>::MakeResultIgnoredValue
801         OriginalFunction;
802 
803     const Action<OriginalFunction> action_;
804 
805     GTEST_DISALLOW_ASSIGN_(Impl);
806   };
807 
808   const A action_;
809 
810   GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
811 };
812 
813 // A ReferenceWrapper<T> object represents a reference to type T,
814 // which can be either const or not.  It can be explicitly converted
815 // from, and implicitly converted to, a T&.  Unlike a reference,
816 // ReferenceWrapper<T> can be copied and can survive template type
817 // inference.  This is used to support by-reference arguments in the
818 // InvokeArgument<N>(...) action.  The idea was from "reference
819 // wrappers" in tr1, which we don't have in our source tree yet.
820 template <typename T>
821 class ReferenceWrapper {
822  public:
823   // Constructs a ReferenceWrapper<T> object from a T&.
ReferenceWrapper(T & l_value)824   explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {}  // NOLINT
825 
826   // Allows a ReferenceWrapper<T> object to be implicitly converted to
827   // a T&.
828   operator T&() const { return *pointer_; }
829  private:
830   T* pointer_;
831 };
832 
833 // Allows the expression ByRef(x) to be printed as a reference to x.
834 template <typename T>
PrintTo(const ReferenceWrapper<T> & ref,::std::ostream * os)835 void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) {
836   T& value = ref;
837   UniversalPrinter<T&>::Print(value, os);
838 }
839 
840 // Does two actions sequentially.  Used for implementing the DoAll(a1,
841 // a2, ...) action.
842 template <typename Action1, typename Action2>
843 class DoBothAction {
844  public:
DoBothAction(Action1 action1,Action2 action2)845   DoBothAction(Action1 action1, Action2 action2)
846       : action1_(action1), action2_(action2) {}
847 
848   // This template type conversion operator allows DoAll(a1, ..., a_n)
849   // to be used in ANY function of compatible type.
850   template <typename F>
851   operator Action<F>() const {
852     return Action<F>(new Impl<F>(action1_, action2_));
853   }
854 
855  private:
856   // Implements the DoAll(...) action for a particular function type F.
857   template <typename F>
858   class Impl : public ActionInterface<F> {
859    public:
860     typedef typename Function<F>::Result Result;
861     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
862     typedef typename Function<F>::MakeResultVoid VoidResult;
863 
Impl(const Action<VoidResult> & action1,const Action<F> & action2)864     Impl(const Action<VoidResult>& action1, const Action<F>& action2)
865         : action1_(action1), action2_(action2) {}
866 
Perform(const ArgumentTuple & args)867     virtual Result Perform(const ArgumentTuple& args) {
868       action1_.Perform(args);
869       return action2_.Perform(args);
870     }
871 
872    private:
873     const Action<VoidResult> action1_;
874     const Action<F> action2_;
875 
876     GTEST_DISALLOW_ASSIGN_(Impl);
877   };
878 
879   Action1 action1_;
880   Action2 action2_;
881 
882   GTEST_DISALLOW_ASSIGN_(DoBothAction);
883 };
884 
885 }  // namespace internal
886 
887 // An Unused object can be implicitly constructed from ANY value.
888 // This is handy when defining actions that ignore some or all of the
889 // mock function arguments.  For example, given
890 //
891 //   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
892 //   MOCK_METHOD3(Bar, double(int index, double x, double y));
893 //
894 // instead of
895 //
896 //   double DistanceToOriginWithLabel(const string& label, double x, double y) {
897 //     return sqrt(x*x + y*y);
898 //   }
899 //   double DistanceToOriginWithIndex(int index, double x, double y) {
900 //     return sqrt(x*x + y*y);
901 //   }
902 //   ...
903 //   EXEPCT_CALL(mock, Foo("abc", _, _))
904 //       .WillOnce(Invoke(DistanceToOriginWithLabel));
905 //   EXEPCT_CALL(mock, Bar(5, _, _))
906 //       .WillOnce(Invoke(DistanceToOriginWithIndex));
907 //
908 // you could write
909 //
910 //   // We can declare any uninteresting argument as Unused.
911 //   double DistanceToOrigin(Unused, double x, double y) {
912 //     return sqrt(x*x + y*y);
913 //   }
914 //   ...
915 //   EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
916 //   EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
917 typedef internal::IgnoredValue Unused;
918 
919 // This constructor allows us to turn an Action<From> object into an
920 // Action<To>, as long as To's arguments can be implicitly converted
921 // to From's and From's return type cann be implicitly converted to
922 // To's.
923 template <typename To>
924 template <typename From>
Action(const Action<From> & from)925 Action<To>::Action(const Action<From>& from)
926     : impl_(new internal::ActionAdaptor<To, From>(from)) {}
927 
928 // Creates an action that returns 'value'.  'value' is passed by value
929 // instead of const reference - otherwise Return("string literal")
930 // will trigger a compiler error about using array as initializer.
931 template <typename R>
Return(R value)932 internal::ReturnAction<R> Return(R value) {
933   return internal::ReturnAction<R>(value);
934 }
935 
936 // Creates an action that returns NULL.
ReturnNull()937 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
938   return MakePolymorphicAction(internal::ReturnNullAction());
939 }
940 
941 // Creates an action that returns from a void function.
Return()942 inline PolymorphicAction<internal::ReturnVoidAction> Return() {
943   return MakePolymorphicAction(internal::ReturnVoidAction());
944 }
945 
946 // Creates an action that returns the reference to a variable.
947 template <typename R>
ReturnRef(R & x)948 inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
949   return internal::ReturnRefAction<R>(x);
950 }
951 
952 // Creates an action that does the default action for the give mock function.
DoDefault()953 inline internal::DoDefaultAction DoDefault() {
954   return internal::DoDefaultAction();
955 }
956 
957 // Creates an action that sets the variable pointed by the N-th
958 // (0-based) function argument to 'value'.
959 template <size_t N, typename T>
960 PolymorphicAction<
961   internal::SetArgumentPointeeAction<
962     N, T, internal::IsAProtocolMessage<T>::value> >
SetArgumentPointee(const T & x)963 SetArgumentPointee(const T& x) {
964   return MakePolymorphicAction(internal::SetArgumentPointeeAction<
965       N, T, internal::IsAProtocolMessage<T>::value>(x));
966 }
967 
968 // Creates an action that sets a pointer referent to a given value.
969 template <typename T1, typename T2>
Assign(T1 * ptr,T2 val)970 PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
971   return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
972 }
973 
974 #if !GTEST_OS_WINDOWS_MOBILE
975 
976 // Creates an action that sets errno and returns the appropriate error.
977 template <typename T>
978 PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
SetErrnoAndReturn(int errval,T result)979 SetErrnoAndReturn(int errval, T result) {
980   return MakePolymorphicAction(
981       internal::SetErrnoAndReturnAction<T>(errval, result));
982 }
983 
984 #endif  // !GTEST_OS_WINDOWS_MOBILE
985 
986 // Various overloads for InvokeWithoutArgs().
987 
988 // Creates an action that invokes 'function_impl' with no argument.
989 template <typename FunctionImpl>
990 PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> >
InvokeWithoutArgs(FunctionImpl function_impl)991 InvokeWithoutArgs(FunctionImpl function_impl) {
992   return MakePolymorphicAction(
993       internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl));
994 }
995 
996 // Creates an action that invokes the given method on the given object
997 // with no argument.
998 template <class Class, typename MethodPtr>
999 PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> >
InvokeWithoutArgs(Class * obj_ptr,MethodPtr method_ptr)1000 InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) {
1001   return MakePolymorphicAction(
1002       internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>(
1003           obj_ptr, method_ptr));
1004 }
1005 
1006 // Creates an action that performs an_action and throws away its
1007 // result.  In other words, it changes the return type of an_action to
1008 // void.  an_action MUST NOT return void, or the code won't compile.
1009 template <typename A>
IgnoreResult(const A & an_action)1010 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
1011   return internal::IgnoreResultAction<A>(an_action);
1012 }
1013 
1014 // Creates a reference wrapper for the given L-value.  If necessary,
1015 // you can explicitly specify the type of the reference.  For example,
1016 // suppose 'derived' is an object of type Derived, ByRef(derived)
1017 // would wrap a Derived&.  If you want to wrap a const Base& instead,
1018 // where Base is a base class of Derived, just write:
1019 //
1020 //   ByRef<const Base>(derived)
1021 template <typename T>
ByRef(T & l_value)1022 inline internal::ReferenceWrapper<T> ByRef(T& l_value) {  // NOLINT
1023   return internal::ReferenceWrapper<T>(l_value);
1024 }
1025 
1026 }  // namespace testing
1027 
1028 #endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
1029