1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31 
32 // Google Mock - a framework for writing C++ mock classes.
33 //
34 // This file defines some utilities useful for implementing Google
35 // Mock.  They are subject to change without notice, so please DO NOT
36 // USE THEM IN USER CODE.
37 
38 #ifndef GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
39 #define GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
40 
41 #include <stdio.h>
42 #include <ostream>  // NOLINT
43 #include <string>
44 
45 #include <gmock/internal/gmock-generated-internal-utils.h>
46 #include <gmock/internal/gmock-port.h>
47 #include <gtest/gtest.h>
48 
49 // Concatenates two pre-processor symbols; works for concatenating
50 // built-in macros like __FILE__ and __LINE__.
51 #define GMOCK_CONCAT_TOKEN_IMPL_(foo, bar) foo##bar
52 #define GMOCK_CONCAT_TOKEN_(foo, bar) GMOCK_CONCAT_TOKEN_IMPL_(foo, bar)
53 
54 #ifdef __GNUC__
55 #define GMOCK_ATTRIBUTE_UNUSED_ __attribute__ ((unused))
56 #else
57 #define GMOCK_ATTRIBUTE_UNUSED_
58 #endif  // __GNUC__
59 
60 class ProtocolMessage;
61 namespace proto2 { class Message; }
62 
63 namespace testing {
64 namespace internal {
65 
66 // Converts an identifier name to a space-separated list of lower-case
67 // words.  Each maximum substring of the form [A-Za-z][a-z]*|\d+ is
68 // treated as one word.  For example, both "FooBar123" and
69 // "foo_bar_123" are converted to "foo bar 123".
70 string ConvertIdentifierNameToWords(const char* id_name);
71 
72 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
73 // compiler error iff T1 and T2 are different types.
74 template <typename T1, typename T2>
75 struct CompileAssertTypesEqual;
76 
77 template <typename T>
78 struct CompileAssertTypesEqual<T, T> {
79 };
80 
81 // Removes the reference from a type if it is a reference type,
82 // otherwise leaves it unchanged.  This is the same as
83 // tr1::remove_reference, which is not widely available yet.
84 template <typename T>
85 struct RemoveReference { typedef T type; };  // NOLINT
86 template <typename T>
87 struct RemoveReference<T&> { typedef T type; };  // NOLINT
88 
89 // A handy wrapper around RemoveReference that works when the argument
90 // T depends on template parameters.
91 #define GMOCK_REMOVE_REFERENCE_(T) \
92     typename ::testing::internal::RemoveReference<T>::type
93 
94 // Removes const from a type if it is a const type, otherwise leaves
95 // it unchanged.  This is the same as tr1::remove_const, which is not
96 // widely available yet.
97 template <typename T>
98 struct RemoveConst { typedef T type; };  // NOLINT
99 template <typename T>
100 struct RemoveConst<const T> { typedef T type; };  // NOLINT
101 
102 // MSVC 8.0 has a bug which causes the above definition to fail to
103 // remove the const in 'const int[3]'.  The following specialization
104 // works around the bug.  However, it causes trouble with gcc and thus
105 // needs to be conditionally compiled.
106 #ifdef _MSC_VER
107 template <typename T, size_t N>
108 struct RemoveConst<T[N]> {
109   typedef typename RemoveConst<T>::type type[N];
110 };
111 #endif  // _MSC_VER
112 
113 // A handy wrapper around RemoveConst that works when the argument
114 // T depends on template parameters.
115 #define GMOCK_REMOVE_CONST_(T) \
116     typename ::testing::internal::RemoveConst<T>::type
117 
118 // Adds reference to a type if it is not a reference type,
119 // otherwise leaves it unchanged.  This is the same as
120 // tr1::add_reference, which is not widely available yet.
121 template <typename T>
122 struct AddReference { typedef T& type; };  // NOLINT
123 template <typename T>
124 struct AddReference<T&> { typedef T& type; };  // NOLINT
125 
126 // A handy wrapper around AddReference that works when the argument T
127 // depends on template parameters.
128 #define GMOCK_ADD_REFERENCE_(T) \
129     typename ::testing::internal::AddReference<T>::type
130 
131 // Adds a reference to const on top of T as necessary.  For example,
132 // it transforms
133 //
134 //   char         ==> const char&
135 //   const char   ==> const char&
136 //   char&        ==> const char&
137 //   const char&  ==> const char&
138 //
139 // The argument T must depend on some template parameters.
140 #define GMOCK_REFERENCE_TO_CONST_(T) \
141     GMOCK_ADD_REFERENCE_(const GMOCK_REMOVE_REFERENCE_(T))
142 
143 // PointeeOf<Pointer>::type is the type of a value pointed to by a
144 // Pointer, which can be either a smart pointer or a raw pointer.  The
145 // following default implementation is for the case where Pointer is a
146 // smart pointer.
147 template <typename Pointer>
148 struct PointeeOf {
149   // Smart pointer classes define type element_type as the type of
150   // their pointees.
151   typedef typename Pointer::element_type type;
152 };
153 // This specialization is for the raw pointer case.
154 template <typename T>
155 struct PointeeOf<T*> { typedef T type; };  // NOLINT
156 
157 // GetRawPointer(p) returns the raw pointer underlying p when p is a
158 // smart pointer, or returns p itself when p is already a raw pointer.
159 // The following default implementation is for the smart pointer case.
160 template <typename Pointer>
161 inline typename Pointer::element_type* GetRawPointer(const Pointer& p) {
162   return p.get();
163 }
164 // This overloaded version is for the raw pointer case.
165 template <typename Element>
166 inline Element* GetRawPointer(Element* p) { return p; }
167 
168 // This comparator allows linked_ptr to be stored in sets.
169 template <typename T>
170 struct LinkedPtrLessThan {
171   bool operator()(const ::testing::internal::linked_ptr<T>& lhs,
172                   const ::testing::internal::linked_ptr<T>& rhs) const {
173     return lhs.get() < rhs.get();
174   }
175 };
176 
177 // ImplicitlyConvertible<From, To>::value is a compile-time bool
178 // constant that's true iff type From can be implicitly converted to
179 // type To.
180 template <typename From, typename To>
181 class ImplicitlyConvertible {
182  private:
183   // We need the following helper functions only for their types.
184   // They have no implementations.
185 
186   // MakeFrom() is an expression whose type is From.  We cannot simply
187   // use From(), as the type From may not have a public default
188   // constructor.
189   static From MakeFrom();
190 
191   // These two functions are overloaded.  Given an expression
192   // Helper(x), the compiler will pick the first version if x can be
193   // implicitly converted to type To; otherwise it will pick the
194   // second version.
195   //
196   // The first version returns a value of size 1, and the second
197   // version returns a value of size 2.  Therefore, by checking the
198   // size of Helper(x), which can be done at compile time, we can tell
199   // which version of Helper() is used, and hence whether x can be
200   // implicitly converted to type To.
201   static char Helper(To);
202   static char (&Helper(...))[2];  // NOLINT
203 
204   // We have to put the 'public' section after the 'private' section,
205   // or MSVC refuses to compile the code.
206  public:
207   // MSVC warns about implicitly converting from double to int for
208   // possible loss of data, so we need to temporarily disable the
209   // warning.
210 #ifdef _MSC_VER
211 #pragma warning(push)          // Saves the current warning state.
212 #pragma warning(disable:4244)  // Temporarily disables warning 4244.
213   static const bool value =
214       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
215 #pragma warning(pop)           // Restores the warning state.
216 #else
217   static const bool value =
218       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
219 #endif  // _MSV_VER
220 };
221 template <typename From, typename To>
222 const bool ImplicitlyConvertible<From, To>::value;
223 
224 // Symbian compilation can be done with wchar_t being either a native
225 // type or a typedef.  Using Google Mock with OpenC without wchar_t
226 // should require the definition of _STLP_NO_WCHAR_T.
227 //
228 // MSVC treats wchar_t as a native type usually, but treats it as the
229 // same as unsigned short when the compiler option /Zc:wchar_t- is
230 // specified.  It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t
231 // is a native type.
232 #if (GTEST_OS_SYMBIAN && defined(_STLP_NO_WCHAR_T)) || \
233     (defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED))
234 // wchar_t is a typedef.
235 #else
236 #define GMOCK_WCHAR_T_IS_NATIVE_ 1
237 #endif
238 
239 // signed wchar_t and unsigned wchar_t are NOT in the C++ standard.
240 // Using them is a bad practice and not portable.  So DON'T use them.
241 //
242 // Still, Google Mock is designed to work even if the user uses signed
243 // wchar_t or unsigned wchar_t (obviously, assuming the compiler
244 // supports them).
245 //
246 // To gcc,
247 //   wchar_t == signed wchar_t != unsigned wchar_t == unsigned int
248 #ifdef __GNUC__
249 #define GMOCK_HAS_SIGNED_WCHAR_T_ 1  // signed/unsigned wchar_t are valid types.
250 #endif
251 
252 // In what follows, we use the term "kind" to indicate whether a type
253 // is bool, an integer type (excluding bool), a floating-point type,
254 // or none of them.  This categorization is useful for determining
255 // when a matcher argument type can be safely converted to another
256 // type in the implementation of SafeMatcherCast.
257 enum TypeKind {
258   kBool, kInteger, kFloatingPoint, kOther
259 };
260 
261 // KindOf<T>::value is the kind of type T.
262 template <typename T> struct KindOf {
263   enum { value = kOther };  // The default kind.
264 };
265 
266 // This macro declares that the kind of 'type' is 'kind'.
267 #define GMOCK_DECLARE_KIND_(type, kind) \
268   template <> struct KindOf<type> { enum { value = kind }; }
269 
270 GMOCK_DECLARE_KIND_(bool, kBool);
271 
272 // All standard integer types.
273 GMOCK_DECLARE_KIND_(char, kInteger);
274 GMOCK_DECLARE_KIND_(signed char, kInteger);
275 GMOCK_DECLARE_KIND_(unsigned char, kInteger);
276 GMOCK_DECLARE_KIND_(short, kInteger);  // NOLINT
277 GMOCK_DECLARE_KIND_(unsigned short, kInteger);  // NOLINT
278 GMOCK_DECLARE_KIND_(int, kInteger);
279 GMOCK_DECLARE_KIND_(unsigned int, kInteger);
280 GMOCK_DECLARE_KIND_(long, kInteger);  // NOLINT
281 GMOCK_DECLARE_KIND_(unsigned long, kInteger);  // NOLINT
282 
283 #if GMOCK_WCHAR_T_IS_NATIVE_
284 GMOCK_DECLARE_KIND_(wchar_t, kInteger);
285 #endif
286 
287 // Non-standard integer types.
288 GMOCK_DECLARE_KIND_(Int64, kInteger);
289 GMOCK_DECLARE_KIND_(UInt64, kInteger);
290 
291 // All standard floating-point types.
292 GMOCK_DECLARE_KIND_(float, kFloatingPoint);
293 GMOCK_DECLARE_KIND_(double, kFloatingPoint);
294 GMOCK_DECLARE_KIND_(long double, kFloatingPoint);
295 
296 #undef GMOCK_DECLARE_KIND_
297 
298 // Evaluates to the kind of 'type'.
299 #define GMOCK_KIND_OF_(type) \
300   static_cast< ::testing::internal::TypeKind>( \
301       ::testing::internal::KindOf<type>::value)
302 
303 // Evaluates to true iff integer type T is signed.
304 #define GMOCK_IS_SIGNED_(T) (static_cast<T>(-1) < 0)
305 
306 // LosslessArithmeticConvertibleImpl<kFromKind, From, kToKind, To>::value
307 // is true iff arithmetic type From can be losslessly converted to
308 // arithmetic type To.
309 //
310 // It's the user's responsibility to ensure that both From and To are
311 // raw (i.e. has no CV modifier, is not a pointer, and is not a
312 // reference) built-in arithmetic types, kFromKind is the kind of
313 // From, and kToKind is the kind of To; the value is
314 // implementation-defined when the above pre-condition is violated.
315 template <TypeKind kFromKind, typename From, TypeKind kToKind, typename To>
316 struct LosslessArithmeticConvertibleImpl : public false_type {};
317 
318 // Converting bool to bool is lossless.
319 template <>
320 struct LosslessArithmeticConvertibleImpl<kBool, bool, kBool, bool>
321     : public true_type {};  // NOLINT
322 
323 // Converting bool to any integer type is lossless.
324 template <typename To>
325 struct LosslessArithmeticConvertibleImpl<kBool, bool, kInteger, To>
326     : public true_type {};  // NOLINT
327 
328 // Converting bool to any floating-point type is lossless.
329 template <typename To>
330 struct LosslessArithmeticConvertibleImpl<kBool, bool, kFloatingPoint, To>
331     : public true_type {};  // NOLINT
332 
333 // Converting an integer to bool is lossy.
334 template <typename From>
335 struct LosslessArithmeticConvertibleImpl<kInteger, From, kBool, bool>
336     : public false_type {};  // NOLINT
337 
338 // Converting an integer to another non-bool integer is lossless iff
339 // the target type's range encloses the source type's range.
340 template <typename From, typename To>
341 struct LosslessArithmeticConvertibleImpl<kInteger, From, kInteger, To>
342     : public bool_constant<
343       // When converting from a smaller size to a larger size, we are
344       // fine as long as we are not converting from signed to unsigned.
345       ((sizeof(From) < sizeof(To)) &&
346        (!GMOCK_IS_SIGNED_(From) || GMOCK_IS_SIGNED_(To))) ||
347       // When converting between the same size, the signedness must match.
348       ((sizeof(From) == sizeof(To)) &&
349        (GMOCK_IS_SIGNED_(From) == GMOCK_IS_SIGNED_(To)))> {};  // NOLINT
350 
351 #undef GMOCK_IS_SIGNED_
352 
353 // Converting an integer to a floating-point type may be lossy, since
354 // the format of a floating-point number is implementation-defined.
355 template <typename From, typename To>
356 struct LosslessArithmeticConvertibleImpl<kInteger, From, kFloatingPoint, To>
357     : public false_type {};  // NOLINT
358 
359 // Converting a floating-point to bool is lossy.
360 template <typename From>
361 struct LosslessArithmeticConvertibleImpl<kFloatingPoint, From, kBool, bool>
362     : public false_type {};  // NOLINT
363 
364 // Converting a floating-point to an integer is lossy.
365 template <typename From, typename To>
366 struct LosslessArithmeticConvertibleImpl<kFloatingPoint, From, kInteger, To>
367     : public false_type {};  // NOLINT
368 
369 // Converting a floating-point to another floating-point is lossless
370 // iff the target type is at least as big as the source type.
371 template <typename From, typename To>
372 struct LosslessArithmeticConvertibleImpl<
373   kFloatingPoint, From, kFloatingPoint, To>
374     : public bool_constant<sizeof(From) <= sizeof(To)> {};  // NOLINT
375 
376 // LosslessArithmeticConvertible<From, To>::value is true iff arithmetic
377 // type From can be losslessly converted to arithmetic type To.
378 //
379 // It's the user's responsibility to ensure that both From and To are
380 // raw (i.e. has no CV modifier, is not a pointer, and is not a
381 // reference) built-in arithmetic types; the value is
382 // implementation-defined when the above pre-condition is violated.
383 template <typename From, typename To>
384 struct LosslessArithmeticConvertible
385     : public LosslessArithmeticConvertibleImpl<
386   GMOCK_KIND_OF_(From), From, GMOCK_KIND_OF_(To), To> {};  // NOLINT
387 
388 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
389 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
390 // of those.
391 template <typename T>
392 struct IsAProtocolMessage
393     : public bool_constant<
394   ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
395   ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
396 };
397 
398 // When the compiler sees expression IsContainerTest<C>(0), the first
399 // overload of IsContainerTest will be picked if C is an STL-style
400 // container class (since C::const_iterator* is a valid type and 0 can
401 // be converted to it), while the second overload will be picked
402 // otherwise (since C::const_iterator will be an invalid type in this
403 // case).  Therefore, we can determine whether C is a container class
404 // by checking the type of IsContainerTest<C>(0).  The value of the
405 // expression is insignificant.
406 typedef int IsContainer;
407 template <class C>
408 IsContainer IsContainerTest(typename C::const_iterator*) { return 0; }
409 
410 typedef char IsNotContainer;
411 template <class C>
412 IsNotContainer IsContainerTest(...) { return '\0'; }
413 
414 // This interface knows how to report a Google Mock failure (either
415 // non-fatal or fatal).
416 class FailureReporterInterface {
417  public:
418   // The type of a failure (either non-fatal or fatal).
419   enum FailureType {
420     NONFATAL, FATAL
421   };
422 
423   virtual ~FailureReporterInterface() {}
424 
425   // Reports a failure that occurred at the given source file location.
426   virtual void ReportFailure(FailureType type, const char* file, int line,
427                              const string& message) = 0;
428 };
429 
430 // Returns the failure reporter used by Google Mock.
431 FailureReporterInterface* GetFailureReporter();
432 
433 // Asserts that condition is true; aborts the process with the given
434 // message if condition is false.  We cannot use LOG(FATAL) or CHECK()
435 // as Google Mock might be used to mock the log sink itself.  We
436 // inline this function to prevent it from showing up in the stack
437 // trace.
438 inline void Assert(bool condition, const char* file, int line,
439                    const string& msg) {
440   if (!condition) {
441     GetFailureReporter()->ReportFailure(FailureReporterInterface::FATAL,
442                                         file, line, msg);
443   }
444 }
445 inline void Assert(bool condition, const char* file, int line) {
446   Assert(condition, file, line, "Assertion failed.");
447 }
448 
449 // Verifies that condition is true; generates a non-fatal failure if
450 // condition is false.
451 inline void Expect(bool condition, const char* file, int line,
452                    const string& msg) {
453   if (!condition) {
454     GetFailureReporter()->ReportFailure(FailureReporterInterface::NONFATAL,
455                                         file, line, msg);
456   }
457 }
458 inline void Expect(bool condition, const char* file, int line) {
459   Expect(condition, file, line, "Expectation failed.");
460 }
461 
462 // Severity level of a log.
463 enum LogSeverity {
464   INFO = 0,
465   WARNING = 1,
466 };
467 
468 // Valid values for the --gmock_verbose flag.
469 
470 // All logs (informational and warnings) are printed.
471 const char kInfoVerbosity[] = "info";
472 // Only warnings are printed.
473 const char kWarningVerbosity[] = "warning";
474 // No logs are printed.
475 const char kErrorVerbosity[] = "error";
476 
477 // Returns true iff a log with the given severity is visible according
478 // to the --gmock_verbose flag.
479 bool LogIsVisible(LogSeverity severity);
480 
481 // Prints the given message to stdout iff 'severity' >= the level
482 // specified by the --gmock_verbose flag.  If stack_frames_to_skip >=
483 // 0, also prints the stack trace excluding the top
484 // stack_frames_to_skip frames.  In opt mode, any positive
485 // stack_frames_to_skip is treated as 0, since we don't know which
486 // function calls will be inlined by the compiler and need to be
487 // conservative.
488 void Log(LogSeverity severity, const string& message, int stack_frames_to_skip);
489 
490 // TODO(wan@google.com): group all type utilities together.
491 
492 // Type traits.
493 
494 // is_reference<T>::value is non-zero iff T is a reference type.
495 template <typename T> struct is_reference : public false_type {};
496 template <typename T> struct is_reference<T&> : public true_type {};
497 
498 // type_equals<T1, T2>::value is non-zero iff T1 and T2 are the same type.
499 template <typename T1, typename T2> struct type_equals : public false_type {};
500 template <typename T> struct type_equals<T, T> : public true_type {};
501 
502 // remove_reference<T>::type removes the reference from type T, if any.
503 template <typename T> struct remove_reference { typedef T type; };  // NOLINT
504 template <typename T> struct remove_reference<T&> { typedef T type; }; // NOLINT
505 
506 // Invalid<T>() returns an invalid value of type T.  This is useful
507 // when a value of type T is needed for compilation, but the statement
508 // will not really be executed (or we don't care if the statement
509 // crashes).
510 template <typename T>
511 inline T Invalid() {
512   return *static_cast<typename remove_reference<T>::type*>(NULL);
513 }
514 template <>
515 inline void Invalid<void>() {}
516 
517 // Utilities for native arrays.
518 
519 // ArrayEq() compares two k-dimensional native arrays using the
520 // elements' operator==, where k can be any integer >= 0.  When k is
521 // 0, ArrayEq() degenerates into comparing a single pair of values.
522 
523 template <typename T, typename U>
524 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
525 
526 // This generic version is used when k is 0.
527 template <typename T, typename U>
528 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
529 
530 // This overload is used when k >= 1.
531 template <typename T, typename U, size_t N>
532 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
533   return internal::ArrayEq(lhs, N, rhs);
534 }
535 
536 // This helper reduces code bloat.  If we instead put its logic inside
537 // the previous ArrayEq() function, arrays with different sizes would
538 // lead to different copies of the template code.
539 template <typename T, typename U>
540 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
541   for (size_t i = 0; i != size; i++) {
542     if (!internal::ArrayEq(lhs[i], rhs[i]))
543       return false;
544   }
545   return true;
546 }
547 
548 // Finds the first element in the iterator range [begin, end) that
549 // equals elem.  Element may be a native array type itself.
550 template <typename Iter, typename Element>
551 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
552   for (Iter it = begin; it != end; ++it) {
553     if (internal::ArrayEq(*it, elem))
554       return it;
555   }
556   return end;
557 }
558 
559 // CopyArray() copies a k-dimensional native array using the elements'
560 // operator=, where k can be any integer >= 0.  When k is 0,
561 // CopyArray() degenerates into copying a single value.
562 
563 template <typename T, typename U>
564 void CopyArray(const T* from, size_t size, U* to);
565 
566 // This generic version is used when k is 0.
567 template <typename T, typename U>
568 inline void CopyArray(const T& from, U* to) { *to = from; }
569 
570 // This overload is used when k >= 1.
571 template <typename T, typename U, size_t N>
572 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
573   internal::CopyArray(from, N, *to);
574 }
575 
576 // This helper reduces code bloat.  If we instead put its logic inside
577 // the previous CopyArray() function, arrays with different sizes
578 // would lead to different copies of the template code.
579 template <typename T, typename U>
580 void CopyArray(const T* from, size_t size, U* to) {
581   for (size_t i = 0; i != size; i++) {
582     internal::CopyArray(from[i], to + i);
583   }
584 }
585 
586 // The relation between an NativeArray object (see below) and the
587 // native array it represents.
588 enum RelationToSource {
589   kReference,  // The NativeArray references the native array.
590   kCopy        // The NativeArray makes a copy of the native array and
591                // owns the copy.
592 };
593 
594 // Adapts a native array to a read-only STL-style container.  Instead
595 // of the complete STL container concept, this adaptor only implements
596 // members useful for Google Mock's container matchers.  New members
597 // should be added as needed.  To simplify the implementation, we only
598 // support Element being a raw type (i.e. having no top-level const or
599 // reference modifier).  It's the client's responsibility to satisfy
600 // this requirement.  Element can be an array type itself (hence
601 // multi-dimensional arrays are supported).
602 template <typename Element>
603 class NativeArray {
604  public:
605   // STL-style container typedefs.
606   typedef Element value_type;
607   typedef const Element* const_iterator;
608 
609   // Constructs from a native array.
610   NativeArray(const Element* array, size_t count, RelationToSource relation) {
611     Init(array, count, relation);
612   }
613 
614   // Copy constructor.
615   NativeArray(const NativeArray& rhs) {
616     Init(rhs.array_, rhs.size_, rhs.relation_to_source_);
617   }
618 
619   ~NativeArray() {
620     // Ensures that the user doesn't instantiate NativeArray with a
621     // const or reference type.
622     testing::StaticAssertTypeEq<Element,
623         GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Element))>();
624     if (relation_to_source_ == kCopy)
625       delete[] array_;
626   }
627 
628   // STL-style container methods.
629   size_t size() const { return size_; }
630   const_iterator begin() const { return array_; }
631   const_iterator end() const { return array_ + size_; }
632   bool operator==(const NativeArray& rhs) const {
633     return size() == rhs.size() &&
634         ArrayEq(begin(), size(), rhs.begin());
635   }
636 
637  private:
638   // Not implemented as we don't want to support assignment.
639   void operator=(const NativeArray& rhs);
640 
641   // Initializes this object; makes a copy of the input array if
642   // 'relation' is kCopy.
643   void Init(const Element* array, size_t a_size, RelationToSource relation) {
644     if (relation == kReference) {
645       array_ = array;
646     } else {
647       Element* const copy = new Element[a_size];
648       CopyArray(array, a_size, copy);
649       array_ = copy;
650     }
651     size_ = a_size;
652     relation_to_source_ = relation;
653   }
654 
655   const Element* array_;
656   size_t size_;
657   RelationToSource relation_to_source_;
658 };
659 
660 // Given a raw type (i.e. having no top-level reference or const
661 // modifier) RawContainer that's either an STL-style container or a
662 // native array, class StlContainerView<RawContainer> has the
663 // following members:
664 //
665 //   - type is a type that provides an STL-style container view to
666 //     (i.e. implements the STL container concept for) RawContainer;
667 //   - const_reference is a type that provides a reference to a const
668 //     RawContainer;
669 //   - ConstReference(raw_container) returns a const reference to an STL-style
670 //     container view to raw_container, which is a RawContainer.
671 //   - Copy(raw_container) returns an STL-style container view of a
672 //     copy of raw_container, which is a RawContainer.
673 //
674 // This generic version is used when RawContainer itself is already an
675 // STL-style container.
676 template <class RawContainer>
677 class StlContainerView {
678  public:
679   typedef RawContainer type;
680   typedef const type& const_reference;
681 
682   static const_reference ConstReference(const RawContainer& container) {
683     // Ensures that RawContainer is not a const type.
684     testing::StaticAssertTypeEq<RawContainer,
685         GMOCK_REMOVE_CONST_(RawContainer)>();
686     return container;
687   }
688   static type Copy(const RawContainer& container) { return container; }
689 };
690 
691 // This specialization is used when RawContainer is a native array type.
692 template <typename Element, size_t N>
693 class StlContainerView<Element[N]> {
694  public:
695   typedef GMOCK_REMOVE_CONST_(Element) RawElement;
696   typedef internal::NativeArray<RawElement> type;
697   // NativeArray<T> can represent a native array either by value or by
698   // reference (selected by a constructor argument), so 'const type'
699   // can be used to reference a const native array.  We cannot
700   // 'typedef const type& const_reference' here, as that would mean
701   // ConstReference() has to return a reference to a local variable.
702   typedef const type const_reference;
703 
704   static const_reference ConstReference(const Element (&array)[N]) {
705     // Ensures that Element is not a const type.
706     testing::StaticAssertTypeEq<Element, RawElement>();
707 #if GTEST_OS_SYMBIAN
708     // The Nokia Symbian compiler confuses itself in template instantiation
709     // for this call without the cast to Element*:
710     // function call '[testing::internal::NativeArray<char *>].NativeArray(
711     //     {lval} const char *[4], long, testing::internal::RelationToSource)'
712     //     does not match
713     // 'testing::internal::NativeArray<char *>::NativeArray(
714     //     char *const *, unsigned int, testing::internal::RelationToSource)'
715     // (instantiating: 'testing::internal::ContainsMatcherImpl
716     //     <const char * (&)[4]>::Matches(const char * (&)[4]) const')
717     // (instantiating: 'testing::internal::StlContainerView<char *[4]>::
718     //     ConstReference(const char * (&)[4])')
719     // (and though the N parameter type is mismatched in the above explicit
720     // conversion of it doesn't help - only the conversion of the array).
721     return type(const_cast<Element*>(&array[0]), N, kReference);
722 #else
723     return type(array, N, kReference);
724 #endif  // GTEST_OS_SYMBIAN
725   }
726   static type Copy(const Element (&array)[N]) {
727 #if GTEST_OS_SYMBIAN
728     return type(const_cast<Element*>(&array[0]), N, kCopy);
729 #else
730     return type(array, N, kCopy);
731 #endif  // GTEST_OS_SYMBIAN
732   }
733 };
734 
735 // This specialization is used when RawContainer is a native array
736 // represented as a (pointer, size) tuple.
737 template <typename ElementPointer, typename Size>
738 class StlContainerView< ::std::tr1::tuple<ElementPointer, Size> > {
739  public:
740   typedef GMOCK_REMOVE_CONST_(
741       typename internal::PointeeOf<ElementPointer>::type) RawElement;
742   typedef internal::NativeArray<RawElement> type;
743   typedef const type const_reference;
744 
745   static const_reference ConstReference(
746       const ::std::tr1::tuple<ElementPointer, Size>& array) {
747     using ::std::tr1::get;
748     return type(get<0>(array), get<1>(array), kReference);
749   }
750   static type Copy(const ::std::tr1::tuple<ElementPointer, Size>& array) {
751     using ::std::tr1::get;
752     return type(get<0>(array), get<1>(array), kCopy);
753   }
754 };
755 
756 // The following specialization prevents the user from instantiating
757 // StlContainer with a reference type.
758 template <typename T> class StlContainerView<T&>;
759 
760 }  // namespace internal
761 }  // namespace testing
762 
763 #endif  // GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
764