1 /*
2  * This source code is a product of Sun Microsystems, Inc. and is provided
3  * for unrestricted use.  Users may copy or modify this source code without
4  * charge.
5  *
6  * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
7  * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
8  * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
9  *
10  * Sun source code is provided with no support and without any obligation on
11  * the part of Sun Microsystems, Inc. to assist in its use, correction,
12  * modification or enhancement.
13  *
14  * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
15  * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
16  * OR ANY PART THEREOF.
17  *
18  * In no event will Sun Microsystems, Inc. be liable for any lost revenue
19  * or profits or other special, indirect and consequential damages, even if
20  * Sun has been advised of the possibility of such damages.
21  *
22  * Sun Microsystems, Inc.
23  * 2550 Garcia Avenue
24  * Mountain View, California  94043
25  */
26 
27 #define SUPERCEDED
28 
29 /*
30  * g711.c
31  *
32  * u-law, A-law and linear PCM conversions.
33  */
34 #define	SIGN_BIT	(0x80)		/* Sign bit for a A-law byte. */
35 #define	QUANT_MASK	(0xf)		/* Quantization field mask. */
36 #define	NSEGS		(8)		/* Number of A-law segments. */
37 #define	SEG_SHIFT	(4)		/* Left shift for segment number. */
38 #define	SEG_MASK	(0x70)		/* Segment field mask. */
39 
40 /* copy from CCITT G.711 specifications */
41 static const unsigned char _u2a[128] = {		/* u- to A-law conversions */
42 	1,	1,	2,	2,	3,	3,	4,	4,
43 	5,	5,	6,	6,	7,	7,	8,	8,
44 	9,	10,	11,	12,	13,	14,	15,	16,
45 	17,	18,	19,	20,	21,	22,	23,	24,
46 	25,	27,	29,	31,	33,	34,	35,	36,
47 	37,	38,	39,	40,	41,	42,	43,	44,
48 	46,	48,	49,	50,	51,	52,	53,	54,
49 	55,	56,	57,	58,	59,	60,	61,	62,
50 	64,	65,	66,	67,	68,	69,	70,	71,
51 	72,	73,	74,	75,	76,	77,	78,	79,
52 	81,	82,	83,	84,	85,	86,	87,	88,
53 	89,	90,	91,	92,	93,	94,	95,	96,
54 	97,	98,	99,	100,	101,	102,	103,	104,
55 	105,	106,	107,	108,	109,	110,	111,	112,
56 	113,	114,	115,	116,	117,	118,	119,	120,
57 	121,	122,	123,	124,	125,	126,	127,	128};
58 
59 static const unsigned char _a2u[128] = {		/* A- to u-law conversions */
60 	1,	3,	5,	7,	9,	11,	13,	15,
61 	16,	17,	18,	19,	20,	21,	22,	23,
62 	24,	25,	26,	27,	28,	29,	30,	31,
63 	32,	32,	33,	33,	34,	34,	35,	35,
64 	36,	37,	38,	39,	40,	41,	42,	43,
65 	44,	45,	46,	47,	48,	48,	49,	49,
66 	50,	51,	52,	53,	54,	55,	56,	57,
67 	58,	59,	60,	61,	62,	63,	64,	64,
68 	65,	66,	67,	68,	69,	70,	71,	72,
69 	73,	74,	75,	76,	77,	78,	79,	79,
70 	80,	81,	82,	83,	84,	85,	86,	87,
71 	88,	89,	90,	91,	92,	93,	94,	95,
72 	96,	97,	98,	99,	100,	101,	102,	103,
73 	104,	105,	106,	107,	108,	109,	110,	111,
74 	112,	113,	114,	115,	116,	117,	118,	119,
75 	120,	121,	122,	123,	124,	125,	126,	127};
76 
77 /* see libst.h */
78 #ifdef	SUPERCEDED
79 
80 static const short seg_end[8] = {0xFF, 0x1FF, 0x3FF, 0x7FF,
81 			    0xFFF, 0x1FFF, 0x3FFF, 0x7FFF};
82 
83 static int
search(val,table,size)84 search(val, table, size)
85 	int		val;
86 	short		*table;
87 	int		size;
88 {
89 	int		i;
90 
91 	for (i = 0; i < size; i++) {
92 		if (val <= *table++)
93 			return (i);
94 	}
95 	return (size);
96 }
97 
98 /*
99  * linear2alaw() - Convert a 16-bit linear PCM value to 8-bit A-law
100  *
101  * linear2alaw() accepts an 16-bit integer and encodes it as A-law data.
102  *
103  *		Linear Input Code	Compressed Code
104  *	------------------------	---------------
105  *	0000000wxyza			000wxyz
106  *	0000001wxyza			001wxyz
107  *	000001wxyzab			010wxyz
108  *	00001wxyzabc			011wxyz
109  *	0001wxyzabcd			100wxyz
110  *	001wxyzabcde			101wxyz
111  *	01wxyzabcdef			110wxyz
112  *	1wxyzabcdefg			111wxyz
113  *
114  * For further information see John C. Bellamy's Digital Telephony, 1982,
115  * John Wiley & Sons, pps 98-111 and 472-476.
116  */
117 unsigned char
_af_linear2alaw(pcm_val)118 _af_linear2alaw(pcm_val)
119 	int		pcm_val;	/* 2's complement (16-bit range) */
120 {
121 	int		mask;
122 	int		seg;
123 	unsigned char	aval;
124 
125 	if (pcm_val >= 0) {
126 		mask = 0xD5;		/* sign (7th) bit = 1 */
127 	} else {
128 		mask = 0x55;		/* sign bit = 0 */
129 		pcm_val = -pcm_val - 8;
130 	}
131 
132 	/* Convert the scaled magnitude to segment number. */
133 	seg = search(pcm_val, seg_end, 8);
134 
135 	/* Combine the sign, segment, and quantization bits. */
136 
137 	if (seg >= 8)		/* out of range, return maximum value. */
138 		return (0x7F ^ mask);
139 	else {
140 		aval = seg << SEG_SHIFT;
141 		if (seg < 2)
142 			aval |= (pcm_val >> 4) & QUANT_MASK;
143 		else
144 			aval |= (pcm_val >> (seg + 3)) & QUANT_MASK;
145 		return (aval ^ mask);
146 	}
147 }
148 
149 /*
150  * alaw2linear() - Convert an A-law value to 16-bit linear PCM
151  *
152  */
153 int
_af_alaw2linear(a_val)154 _af_alaw2linear(a_val)
155 	unsigned char	a_val;
156 {
157 	int		t;
158 	int		seg;
159 
160 	a_val ^= 0x55;
161 
162 	t = (a_val & QUANT_MASK) << 4;
163 	seg = ((unsigned)a_val & SEG_MASK) >> SEG_SHIFT;
164 	switch (seg) {
165 	case 0:
166 		t += 8;
167 		break;
168 	case 1:
169 		t += 0x108;
170 		break;
171 	default:
172 		t += 0x108;
173 		t <<= seg - 1;
174 	}
175 	return ((a_val & SIGN_BIT) ? t : -t);
176 }
177 
178 #define	BIAS		(0x84)		/* Bias for linear code. */
179 
180 /*
181  * linear2ulaw() - Convert a linear PCM value to u-law
182  *
183  * In order to simplify the encoding process, the original linear magnitude
184  * is biased by adding 33 which shifts the encoding range from (0 - 8158) to
185  * (33 - 8191). The result can be seen in the following encoding table:
186  *
187  *	Biased Linear Input Code	Compressed Code
188  *	------------------------	---------------
189  *	00000001wxyza			000wxyz
190  *	0000001wxyzab			001wxyz
191  *	000001wxyzabc			010wxyz
192  *	00001wxyzabcd			011wxyz
193  *	0001wxyzabcde			100wxyz
194  *	001wxyzabcdef			101wxyz
195  *	01wxyzabcdefg			110wxyz
196  *	1wxyzabcdefgh			111wxyz
197  *
198  * Each biased linear code has a leading 1 which identifies the segment
199  * number. The value of the segment number is equal to 7 minus the number
200  * of leading 0's. The quantization interval is directly available as the
201  * four bits wxyz.  * The trailing bits (a - h) are ignored.
202  *
203  * Ordinarily the complement of the resulting code word is used for
204  * transmission, and so the code word is complemented before it is returned.
205  *
206  * For further information see John C. Bellamy's Digital Telephony, 1982,
207  * John Wiley & Sons, pps 98-111 and 472-476.
208  */
209 
210 /* 2's complement (16-bit range) */
_af_linear2ulaw(int pcm_val)211 unsigned char _af_linear2ulaw (int pcm_val)
212 {
213 	int		mask;
214 	int		seg;
215 	unsigned char	uval;
216 
217 	/* Get the sign and the magnitude of the value. */
218 	if (pcm_val < 0) {
219 		pcm_val = BIAS - pcm_val;
220 		mask = 0x7F;
221 	} else {
222 		pcm_val += BIAS;
223 		mask = 0xFF;
224 	}
225 
226 	/* Convert the scaled magnitude to segment number. */
227 	seg = search(pcm_val, seg_end, 8);
228 
229 	/*
230 	 * Combine the sign, segment, quantization bits;
231 	 * and complement the code word.
232 	 */
233 	if (seg >= 8)		/* out of range, return maximum value. */
234 		return (0x7F ^ mask);
235 	else {
236 		uval = (seg << 4) | ((pcm_val >> (seg + 3)) & 0xF);
237 		return (uval ^ mask);
238 	}
239 
240 }
241 
242 /*
243  * ulaw2linear() - Convert a u-law value to 16-bit linear PCM
244  *
245  * First, a biased linear code is derived from the code word. An unbiased
246  * output can then be obtained by subtracting 33 from the biased code.
247  *
248  * Note that this function expects to be passed the complement of the
249  * original code word. This is in keeping with ISDN conventions.
250  */
_af_ulaw2linear(unsigned char u_val)251 int _af_ulaw2linear (unsigned char u_val)
252 {
253 	int		t;
254 
255 	/* Complement to obtain normal u-law value. */
256 	u_val = ~u_val;
257 
258 	/*
259 	 * Extract and bias the quantization bits. Then
260 	 * shift up by the segment number and subtract out the bias.
261 	 */
262 	t = ((u_val & QUANT_MASK) << 3) + BIAS;
263 	t <<= ((unsigned)u_val & SEG_MASK) >> SEG_SHIFT;
264 
265 	return ((u_val & SIGN_BIT) ? (BIAS - t) : (t - BIAS));
266 }
267 
268 #endif
269