1 /* trees.c -- output deflated data using Huffman coding
2  * Copyright (C) 1995-2005 Jean-loup Gailly
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 /*
7  *  ALGORITHM
8  *
9  *      The "deflation" process uses several Huffman trees. The more
10  *      common source values are represented by shorter bit sequences.
11  *
12  *      Each code tree is stored in a compressed form which is itself
13  * a Huffman encoding of the lengths of all the code strings (in
14  * ascending order by source values).  The actual code strings are
15  * reconstructed from the lengths in the inflate process, as described
16  * in the deflate specification.
17  *
18  *  REFERENCES
19  *
20  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
21  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
22  *
23  *      Storer, James A.
24  *          Data Compression:  Methods and Theory, pp. 49-50.
25  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
26  *
27  *      Sedgewick, R.
28  *          Algorithms, p290.
29  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
30  */
31 
32 /* @(#) $Id: trees.c,v 1.1 2007/06/07 17:54:37 jules_rms Exp $ */
33 
34 /* #define GEN_TREES_H */
35 
36 #include "deflate.h"
37 
38 #ifdef DEBUG
39 #  include <ctype.h>
40 #endif
41 
42 /* ===========================================================================
43  * Constants
44  */
45 
46 #define MAX_BL_BITS 7
47 /* Bit length codes must not exceed MAX_BL_BITS bits */
48 
49 #define END_BLOCK 256
50 /* end of block literal code */
51 
52 #define REP_3_6      16
53 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
54 
55 #define REPZ_3_10    17
56 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
57 
58 #define REPZ_11_138  18
59 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
60 
61 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
62    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
63 
64 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
65    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
66 
67 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
68    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
69 
70 local const uch bl_order[BL_CODES]
71    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
72 /* The lengths of the bit length codes are sent in order of decreasing
73  * probability, to avoid transmitting the lengths for unused bit length codes.
74  */
75 
76 #define Buf_size (8 * 2*sizeof(char))
77 /* Number of bits used within bi_buf. (bi_buf might be implemented on
78  * more than 16 bits on some systems.)
79  */
80 
81 /* ===========================================================================
82  * Local data. These are initialized only once.
83  */
84 
85 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
86 
87 #if defined(GEN_TREES_H) || !defined(STDC)
88 /* non ANSI compilers may not accept trees.h */
89 
90 local ct_data static_ltree[L_CODES+2];
91 /* The static literal tree. Since the bit lengths are imposed, there is no
92  * need for the L_CODES extra codes used during heap construction. However
93  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
94  * below).
95  */
96 
97 local ct_data static_dtree[D_CODES];
98 /* The static distance tree. (Actually a trivial tree since all codes use
99  * 5 bits.)
100  */
101 
102 uch _dist_code[DIST_CODE_LEN];
103 /* Distance codes. The first 256 values correspond to the distances
104  * 3 .. 258, the last 256 values correspond to the top 8 bits of
105  * the 15 bit distances.
106  */
107 
108 uch _length_code[MAX_MATCH-MIN_MATCH+1];
109 /* length code for each normalized match length (0 == MIN_MATCH) */
110 
111 local int base_length[LENGTH_CODES];
112 /* First normalized length for each code (0 = MIN_MATCH) */
113 
114 local int base_dist[D_CODES];
115 /* First normalized distance for each code (0 = distance of 1) */
116 
117 #else
118 #  include "trees.h"
119 #endif /* GEN_TREES_H */
120 
121 struct static_tree_desc_s {
122     const ct_data *static_tree;  /* static tree or NULL */
123     const intf *extra_bits;      /* extra bits for each code or NULL */
124     int     extra_base;          /* base index for extra_bits */
125     int     elems;               /* max number of elements in the tree */
126     int     max_length;          /* max bit length for the codes */
127 };
128 
129 local static_tree_desc  static_l_desc =
130 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
131 
132 local static_tree_desc  static_d_desc =
133 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
134 
135 local static_tree_desc  static_bl_desc =
136 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
137 
138 /* ===========================================================================
139  * Local (static) routines in this file.
140  */
141 
142 local void tr_static_init OF((void));
143 local void init_block     OF((deflate_state *s));
144 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
145 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
146 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
147 local void build_tree     OF((deflate_state *s, tree_desc *desc));
148 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
149 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
150 local int  build_bl_tree  OF((deflate_state *s));
151 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
152                               int blcodes));
153 local void compress_block OF((deflate_state *s, ct_data *ltree,
154                               ct_data *dtree));
155 local void set_data_type  OF((deflate_state *s));
156 local unsigned bi_reverse OF((unsigned value, int length));
157 local void bi_windup      OF((deflate_state *s));
158 local void bi_flush       OF((deflate_state *s));
159 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
160                               int header));
161 
162 #ifdef GEN_TREES_H
163 local void gen_trees_header OF((void));
164 #endif
165 
166 #ifndef DEBUG
167 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
168    /* Send a code of the given tree. c and tree must not have side effects */
169 
170 #else /* DEBUG */
171 #  define send_code(s, c, tree) \
172      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
173        send_bits(s, tree[c].Code, tree[c].Len); }
174 #endif
175 
176 /* ===========================================================================
177  * Output a short LSB first on the stream.
178  * IN assertion: there is enough room in pendingBuf.
179  */
180 #define put_short(s, w) { \
181     put_byte(s, (uch)((w) & 0xff)); \
182     put_byte(s, (uch)((ush)(w) >> 8)); \
183 }
184 
185 /* ===========================================================================
186  * Send a value on a given number of bits.
187  * IN assertion: length <= 16 and value fits in length bits.
188  */
189 #ifdef DEBUG
190 local void send_bits      OF((deflate_state *s, int value, int length));
191 
send_bits(deflate_state * s,int value,int length)192 local void send_bits (deflate_state *s, int value, int length)
193 {
194     Tracevv((stderr," l %2d v %4x ", length, value));
195     Assert(length > 0 && length <= 15, "invalid length");
196     s->bits_sent += (ulg)length;
197 
198     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
199      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
200      * unused bits in value.
201      */
202     if (s->bi_valid > (int)Buf_size - length) {
203         s->bi_buf |= (value << s->bi_valid);
204         put_short(s, s->bi_buf);
205         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
206         s->bi_valid += (int) (length - Buf_size);
207     } else {
208         s->bi_buf |= value << s->bi_valid;
209         s->bi_valid += length;
210     }
211 }
212 #else /* !DEBUG */
213 
214 #define send_bits(s, value, length) \
215 { int len = length;\
216   if (s->bi_valid > (int)Buf_size - len) {\
217     int val = value;\
218     s->bi_buf |= (val << s->bi_valid);\
219     put_short(s, s->bi_buf);\
220     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
221     s->bi_valid += len - Buf_size;\
222   } else {\
223     s->bi_buf |= (value) << s->bi_valid;\
224     s->bi_valid += len;\
225   }\
226 }
227 #endif /* DEBUG */
228 
229 
230 /* the arguments must not have side effects */
231 
232 /* ===========================================================================
233  * Initialize the various 'constant' tables.
234  */
tr_static_init()235 local void tr_static_init()
236 {
237 #if defined(GEN_TREES_H) || !defined(STDC)
238     static int static_init_done = 0;
239     int n;        /* iterates over tree elements */
240     int bits;     /* bit counter */
241     int length;   /* length value */
242     int code;     /* code value */
243     int dist;     /* distance index */
244     ush bl_count[MAX_BITS+1];
245     /* number of codes at each bit length for an optimal tree */
246 
247     if (static_init_done) return;
248 
249     /* For some embedded targets, global variables are not initialized: */
250     static_l_desc.static_tree = static_ltree;
251     static_l_desc.extra_bits = extra_lbits;
252     static_d_desc.static_tree = static_dtree;
253     static_d_desc.extra_bits = extra_dbits;
254     static_bl_desc.extra_bits = extra_blbits;
255 
256     /* Initialize the mapping length (0..255) -> length code (0..28) */
257     length = 0;
258     for (code = 0; code < LENGTH_CODES-1; code++) {
259         base_length[code] = length;
260         for (n = 0; n < (1<<extra_lbits[code]); n++) {
261             _length_code[length++] = (uch)code;
262         }
263     }
264     Assert (length == 256, "tr_static_init: length != 256");
265     /* Note that the length 255 (match length 258) can be represented
266      * in two different ways: code 284 + 5 bits or code 285, so we
267      * overwrite length_code[255] to use the best encoding:
268      */
269     _length_code[length-1] = (uch)code;
270 
271     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
272     dist = 0;
273     for (code = 0 ; code < 16; code++) {
274         base_dist[code] = dist;
275         for (n = 0; n < (1<<extra_dbits[code]); n++) {
276             _dist_code[dist++] = (uch)code;
277         }
278     }
279     Assert (dist == 256, "tr_static_init: dist != 256");
280     dist >>= 7; /* from now on, all distances are divided by 128 */
281     for ( ; code < D_CODES; code++) {
282         base_dist[code] = dist << 7;
283         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
284             _dist_code[256 + dist++] = (uch)code;
285         }
286     }
287     Assert (dist == 256, "tr_static_init: 256+dist != 512");
288 
289     /* Construct the codes of the static literal tree */
290     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
291     n = 0;
292     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
293     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
294     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
295     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
296     /* Codes 286 and 287 do not exist, but we must include them in the
297      * tree construction to get a canonical Huffman tree (longest code
298      * all ones)
299      */
300     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
301 
302     /* The static distance tree is trivial: */
303     for (n = 0; n < D_CODES; n++) {
304         static_dtree[n].Len = 5;
305         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
306     }
307     static_init_done = 1;
308 
309 #  ifdef GEN_TREES_H
310     gen_trees_header();
311 #  endif
312 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
313 }
314 
315 /* ===========================================================================
316  * Genererate the file trees.h describing the static trees.
317  */
318 #ifdef GEN_TREES_H
319 #  ifndef DEBUG
320 #    include <stdio.h>
321 #  endif
322 
323 #  define SEPARATOR(i, last, width) \
324       ((i) == (last)? "\n};\n\n" :    \
325        ((i) % (width) == (width)-1 ? ",\n" : ", "))
326 
gen_trees_header()327 void gen_trees_header()
328 {
329     FILE *header = fopen("trees.h", "w");
330     int i;
331 
332     Assert (header != NULL, "Can't open trees.h");
333     fprintf(header,
334             "/* header created automatically with -DGEN_TREES_H */\n\n");
335 
336     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
337     for (i = 0; i < L_CODES+2; i++) {
338         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
339                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
340     }
341 
342     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
343     for (i = 0; i < D_CODES; i++) {
344         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
345                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
346     }
347 
348     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
349     for (i = 0; i < DIST_CODE_LEN; i++) {
350         fprintf(header, "%2u%s", _dist_code[i],
351                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
352     }
353 
354     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
355     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
356         fprintf(header, "%2u%s", _length_code[i],
357                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
358     }
359 
360     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
361     for (i = 0; i < LENGTH_CODES; i++) {
362         fprintf(header, "%1u%s", base_length[i],
363                 SEPARATOR(i, LENGTH_CODES-1, 20));
364     }
365 
366     fprintf(header, "local const int base_dist[D_CODES] = {\n");
367     for (i = 0; i < D_CODES; i++) {
368         fprintf(header, "%5u%s", base_dist[i],
369                 SEPARATOR(i, D_CODES-1, 10));
370     }
371 
372     fclose(header);
373 }
374 #endif /* GEN_TREES_H */
375 
376 /* ===========================================================================
377  * Initialize the tree data structures for a new zlib stream.
378  */
_tr_init(deflate_state * s)379 void _tr_init(deflate_state *s)
380 {
381     tr_static_init();
382 
383     s->l_desc.dyn_tree = s->dyn_ltree;
384     s->l_desc.stat_desc = &static_l_desc;
385 
386     s->d_desc.dyn_tree = s->dyn_dtree;
387     s->d_desc.stat_desc = &static_d_desc;
388 
389     s->bl_desc.dyn_tree = s->bl_tree;
390     s->bl_desc.stat_desc = &static_bl_desc;
391 
392     s->bi_buf = 0;
393     s->bi_valid = 0;
394     s->last_eob_len = 8; /* enough lookahead for inflate */
395 #ifdef DEBUG
396     s->compressed_len = 0L;
397     s->bits_sent = 0L;
398 #endif
399 
400     /* Initialize the first block of the first file: */
401     init_block(s);
402 }
403 
404 /* ===========================================================================
405  * Initialize a new block.
406  */
init_block(deflate_state * s)407 local void init_block (deflate_state *s)
408 {
409     int n; /* iterates over tree elements */
410 
411     /* Initialize the trees. */
412     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
413     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
414     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
415 
416     s->dyn_ltree[END_BLOCK].Freq = 1;
417     s->opt_len = s->static_len = 0L;
418     s->last_lit = s->matches = 0;
419 }
420 
421 #define SMALLEST 1
422 /* Index within the heap array of least frequent node in the Huffman tree */
423 
424 
425 /* ===========================================================================
426  * Remove the smallest element from the heap and recreate the heap with
427  * one less element. Updates heap and heap_len.
428  */
429 #define pqremove(s, tree, top) \
430 {\
431     top = s->heap[SMALLEST]; \
432     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
433     pqdownheap(s, tree, SMALLEST); \
434 }
435 
436 /* ===========================================================================
437  * Compares to subtrees, using the tree depth as tie breaker when
438  * the subtrees have equal frequency. This minimizes the worst case length.
439  */
440 #define smaller(tree, n, m, depth) \
441    (tree[n].Freq < tree[m].Freq || \
442    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
443 
444 /* ===========================================================================
445  * Restore the heap property by moving down the tree starting at node k,
446  * exchanging a node with the smallest of its two sons if necessary, stopping
447  * when the heap property is re-established (each father smaller than its
448  * two sons).
449  */
pqdownheap(deflate_state * s,ct_data * tree,int k)450 local void pqdownheap (deflate_state *s,
451                        ct_data *tree,  /* the tree to restore */
452                        int k)               /* node to move down */
453 {
454     int v = s->heap[k];
455     int j = k << 1;  /* left son of k */
456     while (j <= s->heap_len) {
457         /* Set j to the smallest of the two sons: */
458         if (j < s->heap_len &&
459             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
460             j++;
461         }
462         /* Exit if v is smaller than both sons */
463         if (smaller(tree, v, s->heap[j], s->depth)) break;
464 
465         /* Exchange v with the smallest son */
466         s->heap[k] = s->heap[j];  k = j;
467 
468         /* And continue down the tree, setting j to the left son of k */
469         j <<= 1;
470     }
471     s->heap[k] = v;
472 }
473 
474 /* ===========================================================================
475  * Compute the optimal bit lengths for a tree and update the total bit length
476  * for the current block.
477  * IN assertion: the fields freq and dad are set, heap[heap_max] and
478  *    above are the tree nodes sorted by increasing frequency.
479  * OUT assertions: the field len is set to the optimal bit length, the
480  *     array bl_count contains the frequencies for each bit length.
481  *     The length opt_len is updated; static_len is also updated if stree is
482  *     not null.
483  */
gen_bitlen(deflate_state * s,tree_desc * desc)484 local void gen_bitlen (deflate_state *s, tree_desc *desc)
485 {
486     ct_data *tree        = desc->dyn_tree;
487     int max_code         = desc->max_code;
488     const ct_data *stree = desc->stat_desc->static_tree;
489     const intf *extra    = desc->stat_desc->extra_bits;
490     int base             = desc->stat_desc->extra_base;
491     int max_length       = desc->stat_desc->max_length;
492     int h;              /* heap index */
493     int n, m;           /* iterate over the tree elements */
494     int bits;           /* bit length */
495     int xbits;          /* extra bits */
496     ush f;              /* frequency */
497     int overflow = 0;   /* number of elements with bit length too large */
498 
499     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
500 
501     /* In a first pass, compute the optimal bit lengths (which may
502      * overflow in the case of the bit length tree).
503      */
504     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
505 
506     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
507         n = s->heap[h];
508         bits = tree[tree[n].Dad].Len + 1;
509         if (bits > max_length) bits = max_length, overflow++;
510         tree[n].Len = (ush)bits;
511         /* We overwrite tree[n].Dad which is no longer needed */
512 
513         if (n > max_code) continue; /* not a leaf node */
514 
515         s->bl_count[bits]++;
516         xbits = 0;
517         if (n >= base) xbits = extra[n-base];
518         f = tree[n].Freq;
519         s->opt_len += (ulg)f * (bits + xbits);
520         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
521     }
522     if (overflow == 0) return;
523 
524     Trace((stderr,"\nbit length overflow\n"));
525     /* This happens for example on obj2 and pic of the Calgary corpus */
526 
527     /* Find the first bit length which could increase: */
528     do {
529         bits = max_length-1;
530         while (s->bl_count[bits] == 0) bits--;
531         s->bl_count[bits]--;      /* move one leaf down the tree */
532         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
533         s->bl_count[max_length]--;
534         /* The brother of the overflow item also moves one step up,
535          * but this does not affect bl_count[max_length]
536          */
537         overflow -= 2;
538     } while (overflow > 0);
539 
540     /* Now recompute all bit lengths, scanning in increasing frequency.
541      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
542      * lengths instead of fixing only the wrong ones. This idea is taken
543      * from 'ar' written by Haruhiko Okumura.)
544      */
545     for (bits = max_length; bits != 0; bits--) {
546         n = s->bl_count[bits];
547         while (n != 0) {
548             m = s->heap[--h];
549             if (m > max_code) continue;
550             if ((unsigned) tree[m].Len != (unsigned) bits) {
551                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
552                 s->opt_len += ((long)bits - (long)tree[m].Len)
553                               *(long)tree[m].Freq;
554                 tree[m].Len = (ush)bits;
555             }
556             n--;
557         }
558     }
559 }
560 
561 /* ===========================================================================
562  * Generate the codes for a given tree and bit counts (which need not be
563  * optimal).
564  * IN assertion: the array bl_count contains the bit length statistics for
565  * the given tree and the field len is set for all tree elements.
566  * OUT assertion: the field code is set for all tree elements of non
567  *     zero code length.
568  */
gen_codes(ct_data * tree,int max_code,ushf * bl_count)569 local void gen_codes (ct_data *tree,             /* the tree to decorate */
570                       int max_code,              /* largest code with non zero frequency */
571                       ushf *bl_count)            /* number of codes at each bit length */
572 {
573     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
574     ush code_ = 0;              /* running code value */
575     int bits;                  /* bit index */
576     int n;                     /* code index */
577 
578     /* The distribution counts are first used to generate the code values
579      * without bit reversal.
580      */
581     for (bits = 1; bits <= MAX_BITS; bits++) {
582         next_code[bits] = code_ = (code_ + bl_count[bits-1]) << 1;
583     }
584     /* Check that the bit counts in bl_count are consistent. The last code
585      * must be all ones.
586      */
587     Assert (code_ + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
588             "inconsistent bit counts");
589     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
590 
591     for (n = 0;  n <= max_code; n++) {
592         int len = tree[n].Len;
593         if (len == 0) continue;
594         /* Now reverse the bits */
595         tree[n].Code = bi_reverse(next_code[len]++, len);
596 
597         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
598              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
599     }
600 }
601 
602 /* ===========================================================================
603  * Construct one Huffman tree and assigns the code bit strings and lengths.
604  * Update the total bit length for the current block.
605  * IN assertion: the field freq is set for all tree elements.
606  * OUT assertions: the fields len and code are set to the optimal bit length
607  *     and corresponding code. The length opt_len is updated; static_len is
608  *     also updated if stree is not null. The field max_code is set.
609  */
build_tree(deflate_state * s,tree_desc * desc)610 local void build_tree (deflate_state *s,
611                        tree_desc *desc) /* the tree descriptor */
612 {
613     ct_data *tree         = desc->dyn_tree;
614     const ct_data *stree  = desc->stat_desc->static_tree;
615     int elems             = desc->stat_desc->elems;
616     int n, m;          /* iterate over heap elements */
617     int max_code = -1; /* largest code with non zero frequency */
618     int node;          /* new node being created */
619 
620     /* Construct the initial heap, with least frequent element in
621      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
622      * heap[0] is not used.
623      */
624     s->heap_len = 0, s->heap_max = HEAP_SIZE;
625 
626     for (n = 0; n < elems; n++) {
627         if (tree[n].Freq != 0) {
628             s->heap[++(s->heap_len)] = max_code = n;
629             s->depth[n] = 0;
630         } else {
631             tree[n].Len = 0;
632         }
633     }
634 
635     /* The pkzip format requires that at least one distance code exists,
636      * and that at least one bit should be sent even if there is only one
637      * possible code. So to avoid special checks later on we force at least
638      * two codes of non zero frequency.
639      */
640     while (s->heap_len < 2) {
641         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
642         tree[node].Freq = 1;
643         s->depth[node] = 0;
644         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
645         /* node is 0 or 1 so it does not have extra bits */
646     }
647     desc->max_code = max_code;
648 
649     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
650      * establish sub-heaps of increasing lengths:
651      */
652     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
653 
654     /* Construct the Huffman tree by repeatedly combining the least two
655      * frequent nodes.
656      */
657     node = elems;              /* next internal node of the tree */
658     do {
659         pqremove(s, tree, n);  /* n = node of least frequency */
660         m = s->heap[SMALLEST]; /* m = node of next least frequency */
661 
662         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
663         s->heap[--(s->heap_max)] = m;
664 
665         /* Create a new node father of n and m */
666         tree[node].Freq = tree[n].Freq + tree[m].Freq;
667         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
668                                 s->depth[n] : s->depth[m]) + 1);
669         tree[n].Dad = tree[m].Dad = (ush)node;
670 #ifdef DUMP_BL_TREE
671         if (tree == s->bl_tree) {
672             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
673                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
674         }
675 #endif
676         /* and insert the new node in the heap */
677         s->heap[SMALLEST] = node++;
678         pqdownheap(s, tree, SMALLEST);
679 
680     } while (s->heap_len >= 2);
681 
682     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
683 
684     /* At this point, the fields freq and dad are set. We can now
685      * generate the bit lengths.
686      */
687     gen_bitlen(s, (tree_desc *)desc);
688 
689     /* The field len is now set, we can generate the bit codes */
690     gen_codes ((ct_data *)tree, max_code, s->bl_count);
691 }
692 
693 /* ===========================================================================
694  * Scan a literal or distance tree to determine the frequencies of the codes
695  * in the bit length tree.
696  */
scan_tree(deflate_state * s,ct_data * tree,int max_code)697 local void scan_tree (deflate_state *s,
698                       ct_data *tree,   /* the tree to be scanned */
699                       int max_code)    /* and its largest code of non zero frequency */
700 {
701     int n;                     /* iterates over all tree elements */
702     int prevlen = -1;          /* last emitted length */
703     int curlen;                /* length of current code */
704     int nextlen = tree[0].Len; /* length of next code */
705     int count = 0;             /* repeat count of the current code */
706     int max_count = 7;         /* max repeat count */
707     int min_count = 4;         /* min repeat count */
708 
709     if (nextlen == 0) max_count = 138, min_count = 3;
710     tree[max_code+1].Len = (ush)0xffff; /* guard */
711 
712     for (n = 0; n <= max_code; n++) {
713         curlen = nextlen; nextlen = tree[n+1].Len;
714         if (++count < max_count && curlen == nextlen) {
715             continue;
716         } else if (count < min_count) {
717             s->bl_tree[curlen].Freq += count;
718         } else if (curlen != 0) {
719             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
720             s->bl_tree[REP_3_6].Freq++;
721         } else if (count <= 10) {
722             s->bl_tree[REPZ_3_10].Freq++;
723         } else {
724             s->bl_tree[REPZ_11_138].Freq++;
725         }
726         count = 0; prevlen = curlen;
727         if (nextlen == 0) {
728             max_count = 138, min_count = 3;
729         } else if (curlen == nextlen) {
730             max_count = 6, min_count = 3;
731         } else {
732             max_count = 7, min_count = 4;
733         }
734     }
735 }
736 
737 /* ===========================================================================
738  * Send a literal or distance tree in compressed form, using the codes in
739  * bl_tree.
740  */
send_tree(deflate_state * s,ct_data * tree,int max_code)741 local void send_tree (deflate_state *s,
742                       ct_data *tree, /* the tree to be scanned */
743                       int max_code)       /* and its largest code of non zero frequency */
744 {
745     int n;                     /* iterates over all tree elements */
746     int prevlen = -1;          /* last emitted length */
747     int curlen;                /* length of current code */
748     int nextlen = tree[0].Len; /* length of next code */
749     int count = 0;             /* repeat count of the current code */
750     int max_count = 7;         /* max repeat count */
751     int min_count = 4;         /* min repeat count */
752 
753     /* tree[max_code+1].Len = -1; */  /* guard already set */
754     if (nextlen == 0) max_count = 138, min_count = 3;
755 
756     for (n = 0; n <= max_code; n++) {
757         curlen = nextlen; nextlen = tree[n+1].Len;
758         if (++count < max_count && curlen == nextlen) {
759             continue;
760         } else if (count < min_count) {
761             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
762 
763         } else if (curlen != 0) {
764             if (curlen != prevlen) {
765                 send_code(s, curlen, s->bl_tree); count--;
766             }
767             Assert(count >= 3 && count <= 6, " 3_6?");
768             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
769 
770         } else if (count <= 10) {
771             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
772 
773         } else {
774             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
775         }
776         count = 0; prevlen = curlen;
777         if (nextlen == 0) {
778             max_count = 138, min_count = 3;
779         } else if (curlen == nextlen) {
780             max_count = 6, min_count = 3;
781         } else {
782             max_count = 7, min_count = 4;
783         }
784     }
785 }
786 
787 /* ===========================================================================
788  * Construct the Huffman tree for the bit lengths and return the index in
789  * bl_order of the last bit length code to send.
790  */
build_bl_tree(deflate_state * s)791 local int build_bl_tree (deflate_state *s)
792 {
793     int max_blindex;  /* index of last bit length code of non zero freq */
794 
795     /* Determine the bit length frequencies for literal and distance trees */
796     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
797     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
798 
799     /* Build the bit length tree: */
800     build_tree(s, (tree_desc *)(&(s->bl_desc)));
801     /* opt_len now includes the length of the tree representations, except
802      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
803      */
804 
805     /* Determine the number of bit length codes to send. The pkzip format
806      * requires that at least 4 bit length codes be sent. (appnote.txt says
807      * 3 but the actual value used is 4.)
808      */
809     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
810         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
811     }
812     /* Update opt_len to include the bit length tree and counts */
813     s->opt_len += 3*(max_blindex+1) + 5+5+4;
814     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
815             s->opt_len, s->static_len));
816 
817     return max_blindex;
818 }
819 
820 /* ===========================================================================
821  * Send the header for a block using dynamic Huffman trees: the counts, the
822  * lengths of the bit length codes, the literal tree and the distance tree.
823  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
824  */
send_all_trees(deflate_state * s,int lcodes,int dcodes,int blcodes)825 local void send_all_trees (deflate_state *s,
826                            int lcodes, int dcodes, int blcodes) /* number of codes for each tree */
827 {
828     int rank;                    /* index in bl_order */
829 
830     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
831     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
832             "too many codes");
833     Tracev((stderr, "\nbl counts: "));
834     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
835     send_bits(s, dcodes-1,   5);
836     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
837     for (rank = 0; rank < blcodes; rank++) {
838         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
839         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
840     }
841     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
842 
843     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
844     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
845 
846     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
847     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
848 }
849 
850 /* ===========================================================================
851  * Send a stored block
852  */
_tr_stored_block(deflate_state * s,charf * buf,ulg stored_len,int eof)853 void _tr_stored_block (deflate_state *s, charf *buf, ulg stored_len, int eof)
854 {
855     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
856 #ifdef DEBUG
857     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
858     s->compressed_len += (stored_len + 4) << 3;
859 #endif
860     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
861 }
862 
863 /* ===========================================================================
864  * Send one empty static block to give enough lookahead for inflate.
865  * This takes 10 bits, of which 7 may remain in the bit buffer.
866  * The current inflate code requires 9 bits of lookahead. If the
867  * last two codes for the previous block (real code plus EOB) were coded
868  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
869  * the last real code. In this case we send two empty static blocks instead
870  * of one. (There are no problems if the previous block is stored or fixed.)
871  * To simplify the code, we assume the worst case of last real code encoded
872  * on one bit only.
873  */
_tr_align(deflate_state * s)874 void _tr_align (deflate_state *s)
875 {
876     send_bits(s, STATIC_TREES<<1, 3);
877     send_code(s, END_BLOCK, static_ltree);
878 #ifdef DEBUG
879     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
880 #endif
881     bi_flush(s);
882     /* Of the 10 bits for the empty block, we have already sent
883      * (10 - bi_valid) bits. The lookahead for the last real code (before
884      * the EOB of the previous block) was thus at least one plus the length
885      * of the EOB plus what we have just sent of the empty static block.
886      */
887     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
888         send_bits(s, STATIC_TREES<<1, 3);
889         send_code(s, END_BLOCK, static_ltree);
890 #ifdef DEBUG
891         s->compressed_len += 10L;
892 #endif
893         bi_flush(s);
894     }
895     s->last_eob_len = 7;
896 }
897 
898 /* ===========================================================================
899  * Determine the best encoding for the current block: dynamic trees, static
900  * trees or store, and output the encoded block to the zip file.
901  */
_tr_flush_block(deflate_state * s,charf * buf,ulg stored_len,int eof)902 void _tr_flush_block (deflate_state *s,
903                       charf *buf,       /* input block, or NULL if too old */
904                       ulg stored_len,   /* length of input block */
905                       int eof)          /* true if this is the last block for a file */
906 {
907     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
908     int max_blindex = 0;  /* index of last bit length code of non zero freq */
909 
910     /* Build the Huffman trees unless a stored block is forced */
911     if (s->level > 0) {
912 
913         /* Check if the file is binary or text */
914         if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN)
915             set_data_type(s);
916 
917         /* Construct the literal and distance trees */
918         build_tree(s, (tree_desc *)(&(s->l_desc)));
919         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
920                 s->static_len));
921 
922         build_tree(s, (tree_desc *)(&(s->d_desc)));
923         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
924                 s->static_len));
925         /* At this point, opt_len and static_len are the total bit lengths of
926          * the compressed block data, excluding the tree representations.
927          */
928 
929         /* Build the bit length tree for the above two trees, and get the index
930          * in bl_order of the last bit length code to send.
931          */
932         max_blindex = build_bl_tree(s);
933 
934         /* Determine the best encoding. Compute the block lengths in bytes. */
935         opt_lenb = (s->opt_len+3+7)>>3;
936         static_lenb = (s->static_len+3+7)>>3;
937 
938         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
939                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
940                 s->last_lit));
941 
942         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
943 
944     } else {
945         Assert(buf != (char*)0, "lost buf");
946         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
947     }
948 
949 #ifdef FORCE_STORED
950     if (buf != (char*)0) { /* force stored block */
951 #else
952     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
953                        /* 4: two words for the lengths */
954 #endif
955         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
956          * Otherwise we can't have processed more than WSIZE input bytes since
957          * the last block flush, because compression would have been
958          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
959          * transform a block into a stored block.
960          */
961         _tr_stored_block(s, buf, stored_len, eof);
962 
963 #ifdef FORCE_STATIC
964     } else if (static_lenb >= 0) { /* force static trees */
965 #else
966     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
967 #endif
968         send_bits(s, (STATIC_TREES<<1)+eof, 3);
969         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
970 #ifdef DEBUG
971         s->compressed_len += 3 + s->static_len;
972 #endif
973     } else {
974         send_bits(s, (DYN_TREES<<1)+eof, 3);
975         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
976                        max_blindex+1);
977         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
978 #ifdef DEBUG
979         s->compressed_len += 3 + s->opt_len;
980 #endif
981     }
982     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
983     /* The above check is made mod 2^32, for files larger than 512 MB
984      * and uLong implemented on 32 bits.
985      */
986     init_block(s);
987 
988     if (eof) {
989         bi_windup(s);
990 #ifdef DEBUG
991         s->compressed_len += 7;  /* align on byte boundary */
992 #endif
993     }
994     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
995            s->compressed_len-7*eof));
996 }
997 
998 /* ===========================================================================
999  * Save the match info and tally the frequency counts. Return true if
1000  * the current block must be flushed.
1001  */
1002 int _tr_tally (deflate_state *s,
1003                unsigned dist,  /* distance of matched string */
1004                unsigned lc)    /* match length-MIN_MATCH or unmatched char (if dist==0) */
1005 {
1006     s->d_buf[s->last_lit] = (ush)dist;
1007     s->l_buf[s->last_lit++] = (uch)lc;
1008     if (dist == 0) {
1009         /* lc is the unmatched char */
1010         s->dyn_ltree[lc].Freq++;
1011     } else {
1012         s->matches++;
1013         /* Here, lc is the match length - MIN_MATCH */
1014         dist--;             /* dist = match distance - 1 */
1015         Assert((ush)dist < (ush)MAX_DIST(s) &&
1016                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1017                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1018 
1019         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1020         s->dyn_dtree[d_code(dist)].Freq++;
1021     }
1022 
1023 #ifdef TRUNCATE_BLOCK
1024     /* Try to guess if it is profitable to stop the current block here */
1025     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1026         /* Compute an upper bound for the compressed length */
1027         ulg out_length = (ulg)s->last_lit*8L;
1028         ulg in_length = (ulg)((long)s->strstart - s->block_start);
1029         int dcode;
1030         for (dcode = 0; dcode < D_CODES; dcode++) {
1031             out_length += (ulg)s->dyn_dtree[dcode].Freq *
1032                 (5L+extra_dbits[dcode]);
1033         }
1034         out_length >>= 3;
1035         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1036                s->last_lit, in_length, out_length,
1037                100L - out_length*100L/in_length));
1038         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1039     }
1040 #endif
1041     return (s->last_lit == s->lit_bufsize-1);
1042     /* We avoid equality with lit_bufsize because of wraparound at 64K
1043      * on 16 bit machines and because stored blocks are restricted to
1044      * 64K-1 bytes.
1045      */
1046 }
1047 
1048 /* ===========================================================================
1049  * Send the block data compressed using the given Huffman trees
1050  */
1051 local void compress_block (deflate_state *s,
1052                            ct_data *ltree, /* literal tree */
1053                            ct_data *dtree) /* distance tree */
1054 {
1055     unsigned dist;      /* distance of matched string */
1056     int lc;             /* match length or unmatched char (if dist == 0) */
1057     unsigned lx = 0;    /* running index in l_buf */
1058     unsigned code_;     /* the code to send */
1059     int extra;          /* number of extra bits to send */
1060 
1061     if (s->last_lit != 0) do {
1062         dist = s->d_buf[lx];
1063         lc = s->l_buf[lx++];
1064         if (dist == 0) {
1065             send_code(s, lc, ltree); /* send a literal byte */
1066             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1067         } else {
1068             /* Here, lc is the match length - MIN_MATCH */
1069             code_ = _length_code[lc];
1070             send_code(s, code_+LITERALS+1, ltree); /* send the length code */
1071             extra = extra_lbits[code_];
1072             if (extra != 0) {
1073                 lc -= base_length[code_];
1074                 send_bits(s, lc, extra);       /* send the extra length bits */
1075             }
1076             dist--; /* dist is now the match distance - 1 */
1077             code_ = d_code(dist);
1078             Assert (code_ < D_CODES, "bad d_code");
1079 
1080             send_code(s, code_, dtree);       /* send the distance code */
1081             extra = extra_dbits[code_];
1082             if (extra != 0) {
1083                 dist -= base_dist[code_];
1084                 send_bits(s, dist, extra);   /* send the extra distance bits */
1085             }
1086         } /* literal or match pair ? */
1087 
1088         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1089         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1090                "pendingBuf overflow");
1091 
1092     } while (lx < s->last_lit);
1093 
1094     send_code(s, END_BLOCK, ltree);
1095     s->last_eob_len = ltree[END_BLOCK].Len;
1096 }
1097 
1098 /* ===========================================================================
1099  * Set the data type to BINARY or TEXT, using a crude approximation:
1100  * set it to Z_TEXT if all symbols are either printable characters (33 to 255)
1101  * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise.
1102  * IN assertion: the fields Freq of dyn_ltree are set.
1103  */
1104 local void set_data_type (deflate_state *s)
1105 {
1106     int n;
1107 
1108     for (n = 0; n < 9; n++)
1109         if (s->dyn_ltree[n].Freq != 0)
1110             break;
1111     if (n == 9)
1112         for (n = 14; n < 32; n++)
1113             if (s->dyn_ltree[n].Freq != 0)
1114                 break;
1115     s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY;
1116 }
1117 
1118 /* ===========================================================================
1119  * Reverse the first len bits of a code, using straightforward code (a faster
1120  * method would use a table)
1121  * IN assertion: 1 <= len <= 15
1122  */
1123 local unsigned bi_reverse (unsigned code_, int len)
1124 {
1125     unsigned res = 0;
1126     do {
1127         res |= code_ & 1;
1128         code_ >>= 1, res <<= 1;
1129     } while (--len > 0);
1130     return res >> 1;
1131 }
1132 
1133 /* ===========================================================================
1134  * Flush the bit buffer, keeping at most 7 bits in it.
1135  */
1136 local void bi_flush (deflate_state *s)
1137 {
1138     if (s->bi_valid == 16) {
1139         put_short(s, s->bi_buf);
1140         s->bi_buf = 0;
1141         s->bi_valid = 0;
1142     } else if (s->bi_valid >= 8) {
1143         put_byte(s, (Byte)s->bi_buf);
1144         s->bi_buf >>= 8;
1145         s->bi_valid -= 8;
1146     }
1147 }
1148 
1149 /* ===========================================================================
1150  * Flush the bit buffer and align the output on a byte boundary
1151  */
1152 local void bi_windup (deflate_state *s)
1153 {
1154     if (s->bi_valid > 8) {
1155         put_short(s, s->bi_buf);
1156     } else if (s->bi_valid > 0) {
1157         put_byte(s, (Byte)s->bi_buf);
1158     }
1159     s->bi_buf = 0;
1160     s->bi_valid = 0;
1161 #ifdef DEBUG
1162     s->bits_sent = (s->bits_sent+7) & ~7;
1163 #endif
1164 }
1165 
1166 /* ===========================================================================
1167  * Copy a stored block, storing first the length and its
1168  * one's complement if requested.
1169  */
1170 local void copy_block(deflate_state *s,
1171                       charf    *buf,    /* the input data */
1172                       unsigned len,     /* its length */
1173                       int      header)  /* true if block header must be written */
1174 {
1175     bi_windup(s);        /* align on byte boundary */
1176     s->last_eob_len = 8; /* enough lookahead for inflate */
1177 
1178     if (header) {
1179         put_short(s, (ush)len);
1180         put_short(s, (ush)~len);
1181 #ifdef DEBUG
1182         s->bits_sent += 2*16;
1183 #endif
1184     }
1185 #ifdef DEBUG
1186     s->bits_sent += (ulg)len<<3;
1187 #endif
1188     while (len--) {
1189         put_byte(s, *buf++);
1190     }
1191 }
1192