1 /*
2  * WMA compatible decoder
3  * Copyright (c) 2002 The FFmpeg Project.
4  *
5  * This library is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU Lesser General Public
7  * License as published by the Free Software Foundation; either
8  * version 2 of the License, or (at your option) any later version.
9  *
10  * This library is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public
16  * License along with this library; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  */
19 
20 /**
21  * @file wmadec.c
22  * WMA compatible decoder.
23  */
24 
25 #include "avcodec.h"
26 #include "dsputil.h"
27 
28 /* size of blocks */
29 #define BLOCK_MIN_BITS 7
30 #define BLOCK_MAX_BITS 11
31 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
32 
33 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
34 
35 /* XXX: find exact max size */
36 #define HIGH_BAND_MAX_SIZE 16
37 
38 #define NB_LSP_COEFS 10
39 
40 /* XXX: is it a suitable value ? */
41 #define MAX_CODED_SUPERFRAME_SIZE 16384
42 
43 #define MAX_CHANNELS 2
44 
45 #define NOISE_TAB_SIZE 8192
46 
47 #define LSP_POW_BITS 7
48 
49 typedef struct WMADecodeContext {
50     GetBitContext gb;
51     int sample_rate;
52     int nb_channels;
53     int bit_rate;
54     int version; /* 1 = 0x160 (WMAV1), 2 = 0x161 (WMAV2) */
55     int block_align;
56     int use_bit_reservoir;
57     int use_variable_block_len;
58     int use_exp_vlc;  /* exponent coding: 0 = lsp, 1 = vlc + delta */
59     int use_noise_coding; /* true if perceptual noise is added */
60     int byte_offset_bits;
61     VLC exp_vlc;
62     int exponent_sizes[BLOCK_NB_SIZES];
63     uint16_t exponent_bands[BLOCK_NB_SIZES][25];
64     int high_band_start[BLOCK_NB_SIZES]; /* index of first coef in high band */
65     int coefs_start;               /* first coded coef */
66     int coefs_end[BLOCK_NB_SIZES]; /* max number of coded coefficients */
67     int exponent_high_sizes[BLOCK_NB_SIZES];
68     int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
69     VLC hgain_vlc;
70 
71     /* coded values in high bands */
72     int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
73     int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
74 
75     /* there are two possible tables for spectral coefficients */
76     VLC coef_vlc[2];
77     uint16_t *run_table[2];
78     uint16_t *level_table[2];
79     /* frame info */
80     int frame_len;       /* frame length in samples */
81     int frame_len_bits;  /* frame_len = 1 << frame_len_bits */
82     int nb_block_sizes;  /* number of block sizes */
83     /* block info */
84     int reset_block_lengths;
85     int block_len_bits; /* log2 of current block length */
86     int next_block_len_bits; /* log2 of next block length */
87     int prev_block_len_bits; /* log2 of prev block length */
88     int block_len; /* block length in samples */
89     int block_num; /* block number in current frame */
90     int block_pos; /* current position in frame */
91     uint8_t ms_stereo; /* true if mid/side stereo mode */
92     uint8_t channel_coded[MAX_CHANNELS]; /* true if channel is coded */
93     float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE] __attribute__((aligned(16)));
94     float max_exponent[MAX_CHANNELS];
95     int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
96     float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE] __attribute__((aligned(16)));
97     MDCTContext mdct_ctx[BLOCK_NB_SIZES];
98     float *windows[BLOCK_NB_SIZES];
99     FFTSample mdct_tmp[BLOCK_MAX_SIZE] __attribute__((aligned(16))); /* temporary storage for imdct */
100     /* output buffer for one frame and the last for IMDCT windowing */
101     float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2] __attribute__((aligned(16)));
102     /* last frame info */
103     uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
104     int last_bitoffset;
105     int last_superframe_len;
106     float noise_table[NOISE_TAB_SIZE];
107     int noise_index;
108     float noise_mult; /* XXX: suppress that and integrate it in the noise array */
109     /* lsp_to_curve tables */
110     float lsp_cos_table[BLOCK_MAX_SIZE];
111     float lsp_pow_e_table[256];
112     float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
113     float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
114 
115 #ifdef TRACE
116     int frame_count;
117 #endif
118 } WMADecodeContext;
119 
120 typedef struct CoefVLCTable {
121     int n; /* total number of codes */
122     const uint32_t *huffcodes; /* VLC bit values */
123     const uint8_t *huffbits;   /* VLC bit size */
124     const uint16_t *levels; /* table to build run/level tables */
125 } CoefVLCTable;
126 
127 static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len);
128 
129 #include "wmadata.h"
130 
131 #ifdef TRACE
dump_shorts(const char * name,const short * tab,int n)132 static void dump_shorts(const char *name, const short *tab, int n)
133 {
134     int i;
135 
136     tprintf("%s[%d]:\n", name, n);
137     for(i=0;i<n;i++) {
138         if ((i & 7) == 0)
139             tprintf("%4d: ", i);
140         tprintf(" %5d.0", tab[i]);
141         if ((i & 7) == 7)
142             tprintf("\n");
143     }
144 }
145 
dump_floats(const char * name,int prec,const float * tab,int n)146 static void dump_floats(const char *name, int prec, const float *tab, int n)
147 {
148     int i;
149 
150     tprintf("%s[%d]:\n", name, n);
151     for(i=0;i<n;i++) {
152         if ((i & 7) == 0)
153             tprintf("%4d: ", i);
154         tprintf(" %8.*f", prec, tab[i]);
155         if ((i & 7) == 7)
156             tprintf("\n");
157     }
158     if ((i & 7) != 0)
159         tprintf("\n");
160 }
161 #endif
162 
163 /* XXX: use same run/length optimization as mpeg decoders */
init_coef_vlc(VLC * vlc,uint16_t ** prun_table,uint16_t ** plevel_table,const CoefVLCTable * vlc_table)164 static void init_coef_vlc(VLC *vlc,
165                           uint16_t **prun_table, uint16_t **plevel_table,
166                           const CoefVLCTable *vlc_table)
167 {
168     int n = vlc_table->n;
169     const uint8_t *table_bits = vlc_table->huffbits;
170     const uint32_t *table_codes = vlc_table->huffcodes;
171     const uint16_t *levels_table = vlc_table->levels;
172     uint16_t *run_table, *level_table;
173     const uint16_t *p;
174     int i, l, j, level;
175 
176     init_vlc(vlc, 9, n, table_bits, 1, 1, table_codes, 4, 4);
177 
178     run_table = av_malloc(n * sizeof(uint16_t));
179     level_table = av_malloc(n * sizeof(uint16_t));
180     p = levels_table;
181     i = 2;
182     level = 1;
183     while (i < n) {
184         l = *p++;
185         for(j=0;j<l;j++) {
186             run_table[i] = j;
187             level_table[i] = level;
188             i++;
189         }
190         level++;
191     }
192     *prun_table = run_table;
193     *plevel_table = level_table;
194 }
195 
wma_decode_init(AVCodecContext * avctx)196 static int wma_decode_init(AVCodecContext * avctx)
197 {
198     WMADecodeContext *s = avctx->priv_data;
199     int i, flags1, flags2;
200     float *window;
201     uint8_t *extradata;
202     float bps1, high_freq, bps;
203     int sample_rate1;
204     int coef_vlc_table;
205 
206 
207     s->sample_rate = avctx->sample_rate;
208     s->nb_channels = avctx->channels;
209     s->bit_rate = avctx->bit_rate;
210     s->block_align = avctx->block_align;
211 
212     if (avctx->codec->id == CODEC_ID_WMAV1) {
213         s->version = 1;
214     } else {
215         s->version = 2;
216     }
217 
218     /* extract flag infos */
219     flags1 = 0;
220     flags2 = 0;
221     extradata = avctx->extradata;
222     if (s->version == 1 && avctx->extradata_size >= 4) {
223         flags1 = extradata[0] | (extradata[1] << 8);
224         flags2 = extradata[2] | (extradata[3] << 8);
225     } else if (s->version == 2 && avctx->extradata_size >= 6) {
226         flags1 = extradata[0] | (extradata[1] << 8) |
227             (extradata[2] << 16) | (extradata[3] << 24);
228         flags2 = extradata[4] | (extradata[5] << 8);
229     }
230     s->use_exp_vlc = flags2 & 0x0001;
231     s->use_bit_reservoir = flags2 & 0x0002;
232     s->use_variable_block_len = flags2 & 0x0004;
233 
234     /* compute MDCT block size */
235     if (s->sample_rate <= 16000) {
236         s->frame_len_bits = 9;
237     } else if (s->sample_rate <= 22050 ||
238                (s->sample_rate <= 32000 && s->version == 1)) {
239         s->frame_len_bits = 10;
240     } else {
241         s->frame_len_bits = 11;
242     }
243     s->frame_len = 1 << s->frame_len_bits;
244     if (s->use_variable_block_len) {
245         int nb_max, nb;
246         nb = ((flags2 >> 3) & 3) + 1;
247         if ((s->bit_rate / s->nb_channels) >= 32000)
248             nb += 2;
249         nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
250         if (nb > nb_max)
251             nb = nb_max;
252         s->nb_block_sizes = nb + 1;
253     } else {
254         s->nb_block_sizes = 1;
255     }
256 
257     /* init rate dependant parameters */
258     s->use_noise_coding = 1;
259     high_freq = s->sample_rate * 0.5;
260 
261     /* if version 2, then the rates are normalized */
262     sample_rate1 = s->sample_rate;
263     if (s->version == 2) {
264         if (sample_rate1 >= 44100)
265             sample_rate1 = 44100;
266         else if (sample_rate1 >= 22050)
267             sample_rate1 = 22050;
268         else if (sample_rate1 >= 16000)
269             sample_rate1 = 16000;
270         else if (sample_rate1 >= 11025)
271             sample_rate1 = 11025;
272         else if (sample_rate1 >= 8000)
273             sample_rate1 = 8000;
274     }
275 
276     bps = (float)s->bit_rate / (float)(s->nb_channels * s->sample_rate);
277     s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0)) + 2;
278 
279     /* compute high frequency value and choose if noise coding should
280        be activated */
281     bps1 = bps;
282     if (s->nb_channels == 2)
283         bps1 = bps * 1.6;
284     if (sample_rate1 == 44100) {
285         if (bps1 >= 0.61)
286             s->use_noise_coding = 0;
287         else
288             high_freq = high_freq * 0.4;
289     } else if (sample_rate1 == 22050) {
290         if (bps1 >= 1.16)
291             s->use_noise_coding = 0;
292         else if (bps1 >= 0.72)
293             high_freq = high_freq * 0.7;
294         else
295             high_freq = high_freq * 0.6;
296     } else if (sample_rate1 == 16000) {
297         if (bps > 0.5)
298             high_freq = high_freq * 0.5;
299         else
300             high_freq = high_freq * 0.3;
301     } else if (sample_rate1 == 11025) {
302         high_freq = high_freq * 0.7;
303     } else if (sample_rate1 == 8000) {
304         if (bps <= 0.625) {
305             high_freq = high_freq * 0.5;
306         } else if (bps > 0.75) {
307             s->use_noise_coding = 0;
308         } else {
309             high_freq = high_freq * 0.65;
310         }
311     } else {
312         if (bps >= 0.8) {
313             high_freq = high_freq * 0.75;
314         } else if (bps >= 0.6) {
315             high_freq = high_freq * 0.6;
316         } else {
317             high_freq = high_freq * 0.5;
318         }
319     }
320     dprintf("flags1=0x%x flags2=0x%x\n", flags1, flags2);
321     dprintf("version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
322            s->version, s->nb_channels, s->sample_rate, s->bit_rate,
323            s->block_align);
324     dprintf("bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
325            bps, bps1, high_freq, s->byte_offset_bits);
326     dprintf("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
327            s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
328 
329     /* compute the scale factor band sizes for each MDCT block size */
330     {
331         int a, b, pos, lpos, k, block_len, i, j, n;
332         const uint8_t *table;
333 
334         if (s->version == 1) {
335             s->coefs_start = 3;
336         } else {
337             s->coefs_start = 0;
338         }
339         for(k = 0; k < s->nb_block_sizes; k++) {
340             block_len = s->frame_len >> k;
341 
342             if (s->version == 1) {
343                 lpos = 0;
344                 for(i=0;i<25;i++) {
345                     a = wma_critical_freqs[i];
346                     b = s->sample_rate;
347                     pos = ((block_len * 2 * a)  + (b >> 1)) / b;
348                     if (pos > block_len)
349                         pos = block_len;
350                     s->exponent_bands[0][i] = pos - lpos;
351                     if (pos >= block_len) {
352                         i++;
353                         break;
354                     }
355                     lpos = pos;
356                 }
357                 s->exponent_sizes[0] = i;
358             } else {
359                 /* hardcoded tables */
360                 table = NULL;
361                 a = s->frame_len_bits - BLOCK_MIN_BITS - k;
362                 if (a < 3) {
363                     if (s->sample_rate >= 44100)
364                         table = exponent_band_44100[a];
365                     else if (s->sample_rate >= 32000)
366                         table = exponent_band_32000[a];
367                     else if (s->sample_rate >= 22050)
368                         table = exponent_band_22050[a];
369                 }
370                 if (table) {
371                     n = *table++;
372                     for(i=0;i<n;i++)
373                         s->exponent_bands[k][i] = table[i];
374                     s->exponent_sizes[k] = n;
375                 } else {
376                     j = 0;
377                     lpos = 0;
378                     for(i=0;i<25;i++) {
379                         a = wma_critical_freqs[i];
380                         b = s->sample_rate;
381                         pos = ((block_len * 2 * a)  + (b << 1)) / (4 * b);
382                         pos <<= 2;
383                         if (pos > block_len)
384                             pos = block_len;
385                         if (pos > lpos)
386                             s->exponent_bands[k][j++] = pos - lpos;
387                         if (pos >= block_len)
388                             break;
389                         lpos = pos;
390                     }
391                     s->exponent_sizes[k] = j;
392                 }
393             }
394 
395             /* max number of coefs */
396             s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
397             /* high freq computation */
398             s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
399                                           s->sample_rate + 0.5);
400             n = s->exponent_sizes[k];
401             j = 0;
402             pos = 0;
403             for(i=0;i<n;i++) {
404                 int start, end;
405                 start = pos;
406                 pos += s->exponent_bands[k][i];
407                 end = pos;
408                 if (start < s->high_band_start[k])
409                     start = s->high_band_start[k];
410                 if (end > s->coefs_end[k])
411                     end = s->coefs_end[k];
412                 if (end > start)
413                     s->exponent_high_bands[k][j++] = end - start;
414             }
415             s->exponent_high_sizes[k] = j;
416 #if 0
417             tprintf("%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
418                   s->frame_len >> k,
419                   s->coefs_end[k],
420                   s->high_band_start[k],
421                   s->exponent_high_sizes[k]);
422             for(j=0;j<s->exponent_high_sizes[k];j++)
423                 tprintf(" %d", s->exponent_high_bands[k][j]);
424             tprintf("\n");
425 #endif
426         }
427     }
428 
429 #ifdef TRACE
430     {
431         int i, j;
432         for(i = 0; i < s->nb_block_sizes; i++) {
433             tprintf("%5d: n=%2d:",
434                    s->frame_len >> i,
435                    s->exponent_sizes[i]);
436             for(j=0;j<s->exponent_sizes[i];j++)
437                 tprintf(" %d", s->exponent_bands[i][j]);
438             tprintf("\n");
439         }
440     }
441 #endif
442 
443     /* init MDCT */
444     for(i = 0; i < s->nb_block_sizes; i++)
445         ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1);
446 
447     /* init MDCT windows : simple sinus window */
448     for(i = 0; i < s->nb_block_sizes; i++) {
449         int n, j;
450         float alpha;
451         n = 1 << (s->frame_len_bits - i);
452         window = av_malloc(sizeof(float) * n);
453         alpha = M_PI / (2.0 * n);
454         for(j=0;j<n;j++) {
455             window[n - j - 1] = sin((j + 0.5) * alpha);
456         }
457         s->windows[i] = window;
458     }
459 
460     s->reset_block_lengths = 1;
461 
462     if (s->use_noise_coding) {
463 
464         /* init the noise generator */
465         if (s->use_exp_vlc)
466             s->noise_mult = 0.02;
467         else
468             s->noise_mult = 0.04;
469 
470 #ifdef TRACE
471         for(i=0;i<NOISE_TAB_SIZE;i++)
472             s->noise_table[i] = 1.0 * s->noise_mult;
473 #else
474         {
475             unsigned int seed;
476             float norm;
477             seed = 1;
478             norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
479             for(i=0;i<NOISE_TAB_SIZE;i++) {
480                 seed = seed * 314159 + 1;
481                 s->noise_table[i] = (float)((int)seed) * norm;
482             }
483         }
484 #endif
485         init_vlc(&s->hgain_vlc, 9, sizeof(hgain_huffbits),
486                  hgain_huffbits, 1, 1,
487                  hgain_huffcodes, 2, 2);
488     }
489 
490     if (s->use_exp_vlc) {
491         init_vlc(&s->exp_vlc, 9, sizeof(scale_huffbits),
492                  scale_huffbits, 1, 1,
493                  scale_huffcodes, 4, 4);
494     } else {
495         wma_lsp_to_curve_init(s, s->frame_len);
496     }
497 
498     /* choose the VLC tables for the coefficients */
499     coef_vlc_table = 2;
500     if (s->sample_rate >= 32000) {
501         if (bps1 < 0.72)
502             coef_vlc_table = 0;
503         else if (bps1 < 1.16)
504             coef_vlc_table = 1;
505     }
506 
507     init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
508                   &coef_vlcs[coef_vlc_table * 2]);
509     init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
510                   &coef_vlcs[coef_vlc_table * 2 + 1]);
511     return 0;
512 }
513 
514 /* interpolate values for a bigger or smaller block. The block must
515    have multiple sizes */
interpolate_array(float * scale,int old_size,int new_size)516 static void interpolate_array(float *scale, int old_size, int new_size)
517 {
518     int i, j, jincr, k;
519     float v;
520 
521     if (new_size > old_size) {
522         jincr = new_size / old_size;
523         j = new_size;
524         for(i = old_size - 1; i >=0; i--) {
525             v = scale[i];
526             k = jincr;
527             do {
528                 scale[--j] = v;
529             } while (--k);
530         }
531     } else if (new_size < old_size) {
532         j = 0;
533         jincr = old_size / new_size;
534         for(i = 0; i < new_size; i++) {
535             scale[i] = scale[j];
536             j += jincr;
537         }
538     }
539 }
540 
541 /* compute x^-0.25 with an exponent and mantissa table. We use linear
542    interpolation to reduce the mantissa table size at a small speed
543    expense (linear interpolation approximately doubles the number of
544    bits of precision). */
pow_m1_4(WMADecodeContext * s,float x)545 static inline float pow_m1_4(WMADecodeContext *s, float x)
546 {
547     union {
548         float f;
549         unsigned int v;
550     } u, t;
551     unsigned int e, m;
552     float a, b;
553 
554     u.f = x;
555     e = u.v >> 23;
556     m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
557     /* build interpolation scale: 1 <= t < 2. */
558     t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
559     a = s->lsp_pow_m_table1[m];
560     b = s->lsp_pow_m_table2[m];
561     return s->lsp_pow_e_table[e] * (a + b * t.f);
562 }
563 
wma_lsp_to_curve_init(WMADecodeContext * s,int frame_len)564 static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len)
565 {
566     float wdel, a, b;
567     int i, e, m;
568 
569     wdel = M_PI / frame_len;
570     for(i=0;i<frame_len;i++)
571         s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
572 
573     /* tables for x^-0.25 computation */
574     for(i=0;i<256;i++) {
575         e = i - 126;
576         s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
577     }
578 
579     /* NOTE: these two tables are needed to avoid two operations in
580        pow_m1_4 */
581     b = 1.0;
582     for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
583         m = (1 << LSP_POW_BITS) + i;
584         a = (float)m * (0.5 / (1 << LSP_POW_BITS));
585         a = pow(a, -0.25);
586         s->lsp_pow_m_table1[i] = 2 * a - b;
587         s->lsp_pow_m_table2[i] = b - a;
588         b = a;
589     }
590 #if 0
591     for(i=1;i<20;i++) {
592         float v, r1, r2;
593         v = 5.0 / i;
594         r1 = pow_m1_4(s, v);
595         r2 = pow(v,-0.25);
596         printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1);
597     }
598 #endif
599 }
600 
601 /* NOTE: We use the same code as Vorbis here */
602 /* XXX: optimize it further with SSE/3Dnow */
wma_lsp_to_curve(WMADecodeContext * s,float * out,float * val_max_ptr,int n,float * lsp)603 static void wma_lsp_to_curve(WMADecodeContext *s,
604                              float *out, float *val_max_ptr,
605                              int n, float *lsp)
606 {
607     int i, j;
608     float p, q, w, v, val_max;
609 
610     val_max = 0;
611     for(i=0;i<n;i++) {
612         p = 0.5f;
613         q = 0.5f;
614         w = s->lsp_cos_table[i];
615         for(j=1;j<NB_LSP_COEFS;j+=2){
616             q *= w - lsp[j - 1];
617             p *= w - lsp[j];
618         }
619         p *= p * (2.0f - w);
620         q *= q * (2.0f + w);
621         v = p + q;
622         v = pow_m1_4(s, v);
623         if (v > val_max)
624             val_max = v;
625         out[i] = v;
626     }
627     *val_max_ptr = val_max;
628 }
629 
630 /* decode exponents coded with LSP coefficients (same idea as Vorbis) */
decode_exp_lsp(WMADecodeContext * s,int ch)631 static void decode_exp_lsp(WMADecodeContext *s, int ch)
632 {
633     float lsp_coefs[NB_LSP_COEFS];
634     int val, i;
635 
636     for(i = 0; i < NB_LSP_COEFS; i++) {
637         if (i == 0 || i >= 8)
638             val = get_bits(&s->gb, 3);
639         else
640             val = get_bits(&s->gb, 4);
641         lsp_coefs[i] = lsp_codebook[i][val];
642     }
643 
644     wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
645                      s->block_len, lsp_coefs);
646 }
647 
648 /* decode exponents coded with VLC codes */
decode_exp_vlc(WMADecodeContext * s,int ch)649 static int decode_exp_vlc(WMADecodeContext *s, int ch)
650 {
651     int last_exp, n, code;
652     const uint16_t *ptr, *band_ptr;
653     float v, *q, max_scale, *q_end;
654 
655     band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
656     ptr = band_ptr;
657     q = s->exponents[ch];
658     q_end = q + s->block_len;
659     max_scale = 0;
660     if (s->version == 1) {
661         last_exp = get_bits(&s->gb, 5) + 10;
662         /* XXX: use a table */
663         v = pow(10, last_exp * (1.0 / 16.0));
664         max_scale = v;
665         n = *ptr++;
666         do {
667             *q++ = v;
668         } while (--n);
669     }
670     last_exp = 36;
671     while (q < q_end) {
672         code = get_vlc(&s->gb, &s->exp_vlc);
673         if (code < 0)
674             return -1;
675         /* NOTE: this offset is the same as MPEG4 AAC ! */
676         last_exp += code - 60;
677         /* XXX: use a table */
678         v = pow(10, last_exp * (1.0 / 16.0));
679         if (v > max_scale)
680             max_scale = v;
681         n = *ptr++;
682         do {
683             *q++ = v;
684         } while (--n);
685     }
686     s->max_exponent[ch] = max_scale;
687     return 0;
688 }
689 
690 /* return 0 if OK. return 1 if last block of frame. return -1 if
691    unrecorrable error. */
wma_decode_block(WMADecodeContext * s)692 static int wma_decode_block(WMADecodeContext *s)
693 {
694     int n, v, a, ch, code, bsize;
695     int coef_nb_bits, total_gain, parse_exponents;
696     float window[BLOCK_MAX_SIZE * 2];
697     int nb_coefs[MAX_CHANNELS];
698     float mdct_norm;
699 
700 #ifdef TRACE
701     tprintf("***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
702 #endif
703 
704     /* compute current block length */
705     if (s->use_variable_block_len) {
706         n = av_log2(s->nb_block_sizes - 1) + 1;
707 
708         if (s->reset_block_lengths) {
709             s->reset_block_lengths = 0;
710             v = get_bits(&s->gb, n);
711             if (v >= s->nb_block_sizes)
712                 return -1;
713             s->prev_block_len_bits = s->frame_len_bits - v;
714             v = get_bits(&s->gb, n);
715             if (v >= s->nb_block_sizes)
716                 return -1;
717             s->block_len_bits = s->frame_len_bits - v;
718         } else {
719             /* update block lengths */
720             s->prev_block_len_bits = s->block_len_bits;
721             s->block_len_bits = s->next_block_len_bits;
722         }
723         v = get_bits(&s->gb, n);
724         if (v >= s->nb_block_sizes)
725             return -1;
726         s->next_block_len_bits = s->frame_len_bits - v;
727     } else {
728         /* fixed block len */
729         s->next_block_len_bits = s->frame_len_bits;
730         s->prev_block_len_bits = s->frame_len_bits;
731         s->block_len_bits = s->frame_len_bits;
732     }
733 
734     /* now check if the block length is coherent with the frame length */
735     s->block_len = 1 << s->block_len_bits;
736     if ((s->block_pos + s->block_len) > s->frame_len)
737         return -1;
738 
739     if (s->nb_channels == 2) {
740         s->ms_stereo = get_bits(&s->gb, 1);
741     }
742     v = 0;
743     for(ch = 0; ch < s->nb_channels; ch++) {
744         a = get_bits(&s->gb, 1);
745         s->channel_coded[ch] = a;
746         v |= a;
747     }
748     /* if no channel coded, no need to go further */
749     /* XXX: fix potential framing problems */
750     if (!v)
751         goto next;
752 
753     bsize = s->frame_len_bits - s->block_len_bits;
754 
755     /* read total gain and extract corresponding number of bits for
756        coef escape coding */
757     total_gain = 1;
758     for(;;) {
759         a = get_bits(&s->gb, 7);
760         total_gain += a;
761         if (a != 127)
762             break;
763     }
764 
765     if (total_gain < 15)
766         coef_nb_bits = 13;
767     else if (total_gain < 32)
768         coef_nb_bits = 12;
769     else if (total_gain < 40)
770         coef_nb_bits = 11;
771     else if (total_gain < 45)
772         coef_nb_bits = 10;
773     else
774         coef_nb_bits = 9;
775 
776     /* compute number of coefficients */
777     n = s->coefs_end[bsize] - s->coefs_start;
778     for(ch = 0; ch < s->nb_channels; ch++)
779         nb_coefs[ch] = n;
780 
781     /* complex coding */
782     if (s->use_noise_coding) {
783 
784         for(ch = 0; ch < s->nb_channels; ch++) {
785             if (s->channel_coded[ch]) {
786                 int i, n, a;
787                 n = s->exponent_high_sizes[bsize];
788                 for(i=0;i<n;i++) {
789                     a = get_bits(&s->gb, 1);
790                     s->high_band_coded[ch][i] = a;
791                     /* if noise coding, the coefficients are not transmitted */
792                     if (a)
793                         nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
794                 }
795             }
796         }
797         for(ch = 0; ch < s->nb_channels; ch++) {
798             if (s->channel_coded[ch]) {
799                 int i, n, val, code;
800 
801                 n = s->exponent_high_sizes[bsize];
802                 val = (int)0x80000000;
803                 for(i=0;i<n;i++) {
804                     if (s->high_band_coded[ch][i]) {
805                         if (val == (int)0x80000000) {
806                             val = get_bits(&s->gb, 7) - 19;
807                         } else {
808                             code = get_vlc(&s->gb, &s->hgain_vlc);
809                             if (code < 0)
810                                 return -1;
811                             val += code - 18;
812                         }
813                         s->high_band_values[ch][i] = val;
814                     }
815                 }
816             }
817         }
818     }
819 
820     /* exposant can be interpolated in short blocks. */
821     parse_exponents = 1;
822     if (s->block_len_bits != s->frame_len_bits) {
823         parse_exponents = get_bits(&s->gb, 1);
824     }
825 
826     if (parse_exponents) {
827         for(ch = 0; ch < s->nb_channels; ch++) {
828             if (s->channel_coded[ch]) {
829                 if (s->use_exp_vlc) {
830                     if (decode_exp_vlc(s, ch) < 0)
831                         return -1;
832                 } else {
833                     decode_exp_lsp(s, ch);
834                 }
835             }
836         }
837     } else {
838         for(ch = 0; ch < s->nb_channels; ch++) {
839             if (s->channel_coded[ch]) {
840                 interpolate_array(s->exponents[ch], 1 << s->prev_block_len_bits,
841                                   s->block_len);
842             }
843         }
844     }
845 
846     /* parse spectral coefficients : just RLE encoding */
847     for(ch = 0; ch < s->nb_channels; ch++) {
848         if (s->channel_coded[ch]) {
849             VLC *coef_vlc;
850             int level, run, sign, tindex;
851             int16_t *ptr, *eptr;
852             const uint16_t *level_table, *run_table;
853 
854             /* special VLC tables are used for ms stereo because
855                there is potentially less energy there */
856             tindex = (ch == 1 && s->ms_stereo);
857             coef_vlc = &s->coef_vlc[tindex];
858             run_table = s->run_table[tindex];
859             level_table = s->level_table[tindex];
860             /* XXX: optimize */
861             ptr = &s->coefs1[ch][0];
862             eptr = ptr + nb_coefs[ch];
863             memset(ptr, 0, s->block_len * sizeof(int16_t));
864             for(;;) {
865                 code = get_vlc(&s->gb, coef_vlc);
866                 if (code < 0)
867                     return -1;
868                 if (code == 1) {
869                     /* EOB */
870                     break;
871                 } else if (code == 0) {
872                     /* escape */
873                     level = get_bits(&s->gb, coef_nb_bits);
874                     /* NOTE: this is rather suboptimal. reading
875                        block_len_bits would be better */
876                     run = get_bits(&s->gb, s->frame_len_bits);
877                 } else {
878                     /* normal code */
879                     run = run_table[code];
880                     level = level_table[code];
881                 }
882                 sign = get_bits(&s->gb, 1);
883                 if (!sign)
884                     level = -level;
885                 ptr += run;
886                 if (ptr >= eptr)
887                     return -1;
888                 *ptr++ = level;
889                 /* NOTE: EOB can be omitted */
890                 if (ptr >= eptr)
891                     break;
892             }
893         }
894         if (s->version == 1 && s->nb_channels >= 2) {
895             align_get_bits(&s->gb);
896         }
897     }
898 
899     /* normalize */
900     {
901         int n4 = s->block_len / 2;
902         mdct_norm = 1.0 / (float)n4;
903         if (s->version == 1) {
904             mdct_norm *= sqrt(n4);
905         }
906     }
907 
908     /* finally compute the MDCT coefficients */
909     for(ch = 0; ch < s->nb_channels; ch++) {
910         if (s->channel_coded[ch]) {
911             int16_t *coefs1;
912             float *coefs, *exponents, mult, mult1, noise, *exp_ptr;
913             int i, j, n, n1, last_high_band;
914             float exp_power[HIGH_BAND_MAX_SIZE];
915 
916             coefs1 = s->coefs1[ch];
917             exponents = s->exponents[ch];
918             mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
919             mult *= mdct_norm;
920             coefs = s->coefs[ch];
921             if (s->use_noise_coding) {
922                 mult1 = mult;
923                 /* very low freqs : noise */
924                 for(i = 0;i < s->coefs_start; i++) {
925                     *coefs++ = s->noise_table[s->noise_index] * (*exponents++) * mult1;
926                     s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
927                 }
928 
929                 n1 = s->exponent_high_sizes[bsize];
930 
931                 /* compute power of high bands */
932                 exp_ptr = exponents +
933                     s->high_band_start[bsize] -
934                     s->coefs_start;
935                 last_high_band = 0; /* avoid warning */
936                 for(j=0;j<n1;j++) {
937                     n = s->exponent_high_bands[s->frame_len_bits -
938                                               s->block_len_bits][j];
939                     if (s->high_band_coded[ch][j]) {
940                         float e2, v;
941                         e2 = 0;
942                         for(i = 0;i < n; i++) {
943                             v = exp_ptr[i];
944                             e2 += v * v;
945                         }
946                         exp_power[j] = e2 / n;
947                         last_high_band = j;
948                         tprintf("%d: power=%f (%d)\n", j, exp_power[j], n);
949                     }
950                     exp_ptr += n;
951                 }
952 
953                 /* main freqs and high freqs */
954                 for(j=-1;j<n1;j++) {
955                     if (j < 0) {
956                         n = s->high_band_start[bsize] -
957                             s->coefs_start;
958                     } else {
959                         n = s->exponent_high_bands[s->frame_len_bits -
960                                                   s->block_len_bits][j];
961                     }
962                     if (j >= 0 && s->high_band_coded[ch][j]) {
963                         /* use noise with specified power */
964                         mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
965                         /* XXX: use a table */
966                         mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
967                         mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
968                         mult1 *= mdct_norm;
969                         for(i = 0;i < n; i++) {
970                             noise = s->noise_table[s->noise_index];
971                             s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
972                             *coefs++ = (*exponents++) * noise * mult1;
973                         }
974                     } else {
975                         /* coded values + small noise */
976                         for(i = 0;i < n; i++) {
977                             noise = s->noise_table[s->noise_index];
978                             s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
979                             *coefs++ = ((*coefs1++) + noise) * (*exponents++) * mult;
980                         }
981                     }
982                 }
983 
984                 /* very high freqs : noise */
985                 n = s->block_len - s->coefs_end[bsize];
986                 mult1 = mult * exponents[-1];
987                 for(i = 0; i < n; i++) {
988                     *coefs++ = s->noise_table[s->noise_index] * mult1;
989                     s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
990                 }
991             } else {
992                 /* XXX: optimize more */
993                 for(i = 0;i < s->coefs_start; i++)
994                     *coefs++ = 0.0;
995                 n = nb_coefs[ch];
996                 for(i = 0;i < n; i++) {
997                     *coefs++ = coefs1[i] * exponents[i] * mult;
998                 }
999                 n = s->block_len - s->coefs_end[bsize];
1000                 for(i = 0;i < n; i++)
1001                     *coefs++ = 0.0;
1002             }
1003         }
1004     }
1005 
1006 #ifdef TRACE
1007     for(ch = 0; ch < s->nb_channels; ch++) {
1008         if (s->channel_coded[ch]) {
1009             dump_floats("exponents", 3, s->exponents[ch], s->block_len);
1010             dump_floats("coefs", 1, s->coefs[ch], s->block_len);
1011         }
1012     }
1013 #endif
1014 
1015     if (s->ms_stereo && s->channel_coded[1]) {
1016         float a, b;
1017         int i;
1018 
1019         /* nominal case for ms stereo: we do it before mdct */
1020         /* no need to optimize this case because it should almost
1021            never happen */
1022         if (!s->channel_coded[0]) {
1023             tprintf("rare ms-stereo case happened\n");
1024             memset(s->coefs[0], 0, sizeof(float) * s->block_len);
1025             s->channel_coded[0] = 1;
1026         }
1027 
1028         for(i = 0; i < s->block_len; i++) {
1029             a = s->coefs[0][i];
1030             b = s->coefs[1][i];
1031             s->coefs[0][i] = a + b;
1032             s->coefs[1][i] = a - b;
1033         }
1034     }
1035 
1036     /* build the window : we ensure that when the windows overlap
1037        their squared sum is always 1 (MDCT reconstruction rule) */
1038     /* XXX: merge with output */
1039     {
1040         int i, next_block_len, block_len, prev_block_len, n;
1041         float *wptr;
1042 
1043         block_len = s->block_len;
1044         prev_block_len = 1 << s->prev_block_len_bits;
1045         next_block_len = 1 << s->next_block_len_bits;
1046 
1047         /* right part */
1048         wptr = window + block_len;
1049         if (block_len <= next_block_len) {
1050             for(i=0;i<block_len;i++)
1051                 *wptr++ = s->windows[bsize][i];
1052         } else {
1053             /* overlap */
1054             n = (block_len / 2) - (next_block_len / 2);
1055             for(i=0;i<n;i++)
1056                 *wptr++ = 1.0;
1057             for(i=0;i<next_block_len;i++)
1058                 *wptr++ = s->windows[s->frame_len_bits - s->next_block_len_bits][i];
1059             for(i=0;i<n;i++)
1060                 *wptr++ = 0.0;
1061         }
1062 
1063         /* left part */
1064         wptr = window + block_len;
1065         if (block_len <= prev_block_len) {
1066             for(i=0;i<block_len;i++)
1067                 *--wptr = s->windows[bsize][i];
1068         } else {
1069             /* overlap */
1070             n = (block_len / 2) - (prev_block_len / 2);
1071             for(i=0;i<n;i++)
1072                 *--wptr = 1.0;
1073             for(i=0;i<prev_block_len;i++)
1074                 *--wptr = s->windows[s->frame_len_bits - s->prev_block_len_bits][i];
1075             for(i=0;i<n;i++)
1076                 *--wptr = 0.0;
1077         }
1078     }
1079 
1080 
1081     for(ch = 0; ch < s->nb_channels; ch++) {
1082         if (s->channel_coded[ch]) {
1083             FFTSample output[BLOCK_MAX_SIZE * 2] __attribute__((aligned(16)));
1084             float *ptr;
1085             int i, n4, index, n;
1086 
1087             n = s->block_len;
1088             n4 = s->block_len / 2;
1089             ff_imdct_calc(&s->mdct_ctx[bsize],
1090                           output, s->coefs[ch], s->mdct_tmp);
1091 
1092             /* XXX: optimize all that by build the window and
1093                multipying/adding at the same time */
1094             /* multiply by the window */
1095             for(i=0;i<n * 2;i++) {
1096                 output[i] *= window[i];
1097             }
1098 
1099             /* add in the frame */
1100             index = (s->frame_len / 2) + s->block_pos - n4;
1101             ptr = &s->frame_out[ch][index];
1102             for(i=0;i<n * 2;i++) {
1103                 *ptr += output[i];
1104                 ptr++;
1105             }
1106 
1107             /* specific fast case for ms-stereo : add to second
1108                channel if it is not coded */
1109             if (s->ms_stereo && !s->channel_coded[1]) {
1110                 ptr = &s->frame_out[1][index];
1111                 for(i=0;i<n * 2;i++) {
1112                     *ptr += output[i];
1113                     ptr++;
1114                 }
1115             }
1116         }
1117     }
1118  next:
1119     /* update block number */
1120     s->block_num++;
1121     s->block_pos += s->block_len;
1122     if (s->block_pos >= s->frame_len)
1123         return 1;
1124     else
1125         return 0;
1126 }
1127 
1128 /* decode a frame of frame_len samples */
wma_decode_frame(WMADecodeContext * s,int16_t * samples)1129 static int wma_decode_frame(WMADecodeContext *s, int16_t *samples)
1130 {
1131     int ret, i, n, a, ch, incr;
1132     int16_t *ptr;
1133     float *iptr;
1134 
1135 #ifdef TRACE
1136     tprintf("***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
1137 #endif
1138 
1139     /* read each block */
1140     s->block_num = 0;
1141     s->block_pos = 0;
1142     for(;;) {
1143         ret = wma_decode_block(s);
1144         if (ret < 0)
1145             return -1;
1146         if (ret)
1147             break;
1148     }
1149 
1150     /* convert frame to integer */
1151     n = s->frame_len;
1152     incr = s->nb_channels;
1153     for(ch = 0; ch < s->nb_channels; ch++) {
1154         ptr = samples + ch;
1155         iptr = s->frame_out[ch];
1156 
1157         for(i=0;i<n;i++) {
1158             a = rintf(*iptr++);
1159             if (a > 32767)
1160                 a = 32767;
1161             else if (a < -32768)
1162                 a = -32768;
1163             *ptr = a;
1164             ptr += incr;
1165         }
1166         /* prepare for next block */
1167         memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
1168                 s->frame_len * sizeof(float));
1169         /* XXX: suppress this */
1170         memset(&s->frame_out[ch][s->frame_len], 0,
1171                s->frame_len * sizeof(float));
1172     }
1173 
1174 #ifdef TRACE
1175     dump_shorts("samples", samples, n * s->nb_channels);
1176 #endif
1177     return 0;
1178 }
1179 
wma_decode_superframe(AVCodecContext * avctx,void * data,int * data_size,uint8_t * buf,int buf_size)1180 static int wma_decode_superframe(AVCodecContext *avctx,
1181                                  void *data, int *data_size,
1182                                  uint8_t *buf, int buf_size)
1183 {
1184     WMADecodeContext *s = avctx->priv_data;
1185     int nb_frames, bit_offset, i, pos, len;
1186     uint8_t *q;
1187     int16_t *samples;
1188 
1189     tprintf("***decode_superframe:\n");
1190 
1191     if(buf_size==0){
1192         s->last_superframe_len = 0;
1193         return 0;
1194     }
1195 
1196     samples = data;
1197 
1198     init_get_bits(&s->gb, buf, buf_size*8);
1199 
1200     if (s->use_bit_reservoir) {
1201         /* read super frame header */
1202         get_bits(&s->gb, 4); /* super frame index */
1203         nb_frames = get_bits(&s->gb, 4) - 1;
1204 
1205         bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
1206 
1207         if (s->last_superframe_len > 0) {
1208             //        printf("skip=%d\n", s->last_bitoffset);
1209             /* add bit_offset bits to last frame */
1210             if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
1211                 MAX_CODED_SUPERFRAME_SIZE)
1212                 goto fail;
1213             q = s->last_superframe + s->last_superframe_len;
1214             len = bit_offset;
1215             while (len > 0) {
1216                 *q++ = (get_bits)(&s->gb, 8);
1217                 len -= 8;
1218             }
1219             if (len > 0) {
1220                 *q++ = (get_bits)(&s->gb, len) << (8 - len);
1221             }
1222 
1223             /* XXX: bit_offset bits into last frame */
1224             init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
1225             /* skip unused bits */
1226             if (s->last_bitoffset > 0)
1227                 skip_bits(&s->gb, s->last_bitoffset);
1228             /* this frame is stored in the last superframe and in the
1229                current one */
1230             if (wma_decode_frame(s, samples) < 0)
1231                 goto fail;
1232             samples += s->nb_channels * s->frame_len;
1233         }
1234 
1235         /* read each frame starting from bit_offset */
1236         pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
1237         init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
1238         len = pos & 7;
1239         if (len > 0)
1240             skip_bits(&s->gb, len);
1241 
1242         s->reset_block_lengths = 1;
1243         for(i=0;i<nb_frames;i++) {
1244             if (wma_decode_frame(s, samples) < 0)
1245                 goto fail;
1246             samples += s->nb_channels * s->frame_len;
1247         }
1248 
1249         /* we copy the end of the frame in the last frame buffer */
1250         pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
1251         s->last_bitoffset = pos & 7;
1252         pos >>= 3;
1253         len = buf_size - pos;
1254         if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
1255             goto fail;
1256         }
1257         s->last_superframe_len = len;
1258         memcpy(s->last_superframe, buf + pos, len);
1259     } else {
1260         /* single frame decode */
1261         if (wma_decode_frame(s, samples) < 0)
1262             goto fail;
1263         samples += s->nb_channels * s->frame_len;
1264     }
1265     *data_size = (int8_t *)samples - (int8_t *)data;
1266     return s->block_align;
1267  fail:
1268     /* when error, we reset the bit reservoir */
1269     s->last_superframe_len = 0;
1270     return -1;
1271 }
1272 
wma_decode_end(AVCodecContext * avctx)1273 static int wma_decode_end(AVCodecContext *avctx)
1274 {
1275     WMADecodeContext *s = avctx->priv_data;
1276     int i;
1277 
1278     for(i = 0; i < s->nb_block_sizes; i++)
1279         ff_mdct_end(&s->mdct_ctx[i]);
1280     for(i = 0; i < s->nb_block_sizes; i++)
1281         av_free(s->windows[i]);
1282 
1283     if (s->use_exp_vlc) {
1284         free_vlc(&s->exp_vlc);
1285     }
1286     if (s->use_noise_coding) {
1287         free_vlc(&s->hgain_vlc);
1288     }
1289     for(i = 0;i < 2; i++) {
1290         free_vlc(&s->coef_vlc[i]);
1291         av_free(s->run_table[i]);
1292         av_free(s->level_table[i]);
1293     }
1294 
1295     return 0;
1296 }
1297 
1298 AVCodec wmav1_decoder =
1299 {
1300     "wmav1",
1301     CODEC_TYPE_AUDIO,
1302     CODEC_ID_WMAV1,
1303     sizeof(WMADecodeContext),
1304     wma_decode_init,
1305     NULL,
1306     wma_decode_end,
1307     wma_decode_superframe,
1308 };
1309 
1310 AVCodec wmav2_decoder =
1311 {
1312     "wmav2",
1313     CODEC_TYPE_AUDIO,
1314     CODEC_ID_WMAV2,
1315     sizeof(WMADecodeContext),
1316     wma_decode_init,
1317     NULL,
1318     wma_decode_end,
1319     wma_decode_superframe,
1320 };
1321