1 /* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 /* double log1p(double x)
13  * Return the natural logarithm of 1+x.
14  *
15  * Method :
16  *   1. Argument Reduction: find k and f such that
17  *                      1+x = 2^k * (1+f),
18  *         where  sqrt(2)/2 < 1+f < sqrt(2) .
19  *
20  *      Note. If k=0, then f=x is exact. However, if k!=0, then f
21  *      may not be representable exactly. In that case, a correction
22  *      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
23  *      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
24  *      and add back the correction term c/u.
25  *      (Note: when x > 2**53, one can simply return log(x))
26  *
27  *   2. Approximation of log(1+f): See log.c
28  *
29  *   3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
30  *
31  * Special cases:
32  *      log1p(x) is NaN with signal if x < -1 (including -INF) ;
33  *      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
34  *      log1p(NaN) is that NaN with no signal.
35  *
36  * Accuracy:
37  *      according to an error analysis, the error is always less than
38  *      1 ulp (unit in the last place).
39  *
40  * Constants:
41  * The hexadecimal values are the intended ones for the following
42  * constants. The decimal values may be used, provided that the
43  * compiler will convert from decimal to binary accurately enough
44  * to produce the hexadecimal values shown.
45  *
46  * Note: Assuming log() return accurate answer, the following
47  *       algorithm can be used to compute log1p(x) to within a few ULP:
48  *
49  *              u = 1+x;
50  *              if(u==1.0) return x ; else
51  *                         return log(u)*(x/(u-1.0));
52  *
53  *       See HP-15C Advanced Functions Handbook, p.193.
54  */
55 
56 use core::f64;
57 
58 const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
59 const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
60 const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
61 const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
62 const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
63 const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
64 const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
65 const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
66 const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
67 
68 #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
log1p(x: f64) -> f6469 pub fn log1p(x: f64) -> f64 {
70     let mut ui: u64 = x.to_bits();
71     let hfsq: f64;
72     let mut f: f64 = 0.;
73     let mut c: f64 = 0.;
74     let s: f64;
75     let z: f64;
76     let r: f64;
77     let w: f64;
78     let t1: f64;
79     let t2: f64;
80     let dk: f64;
81     let hx: u32;
82     let mut hu: u32;
83     let mut k: i32;
84 
85     hx = (ui >> 32) as u32;
86     k = 1;
87     if hx < 0x3fda827a || (hx >> 31) > 0 {
88         /* 1+x < sqrt(2)+ */
89         if hx >= 0xbff00000 {
90             /* x <= -1.0 */
91             if x == -1. {
92                 return x / 0.0; /* log1p(-1) = -inf */
93             }
94             return (x - x) / 0.0; /* log1p(x<-1) = NaN */
95         }
96         if hx << 1 < 0x3ca00000 << 1 {
97             /* |x| < 2**-53 */
98             /* underflow if subnormal */
99             if (hx & 0x7ff00000) == 0 {
100                 force_eval!(x as f32);
101             }
102             return x;
103         }
104         if hx <= 0xbfd2bec4 {
105             /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
106             k = 0;
107             c = 0.;
108             f = x;
109         }
110     } else if hx >= 0x7ff00000 {
111         return x;
112     }
113     if k > 0 {
114         ui = (1. + x).to_bits();
115         hu = (ui >> 32) as u32;
116         hu += 0x3ff00000 - 0x3fe6a09e;
117         k = (hu >> 20) as i32 - 0x3ff;
118         /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
119         if k < 54 {
120             c = if k >= 2 {
121                 1. - (f64::from_bits(ui) - x)
122             } else {
123                 x - (f64::from_bits(ui) - 1.)
124             };
125             c /= f64::from_bits(ui);
126         } else {
127             c = 0.;
128         }
129         /* reduce u into [sqrt(2)/2, sqrt(2)] */
130         hu = (hu & 0x000fffff) + 0x3fe6a09e;
131         ui = (hu as u64) << 32 | (ui & 0xffffffff);
132         f = f64::from_bits(ui) - 1.;
133     }
134     hfsq = 0.5 * f * f;
135     s = f / (2.0 + f);
136     z = s * s;
137     w = z * z;
138     t1 = w * (LG2 + w * (LG4 + w * LG6));
139     t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
140     r = t2 + t1;
141     dk = k as f64;
142     s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI
143 }
144