1 /*
2  * Copyright 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef OBOE_STREAM_H_
18 #define OBOE_STREAM_H_
19 
20 #include <atomic>
21 #include <cstdint>
22 #include <ctime>
23 #include <mutex>
24 #include "oboe/Definitions.h"
25 #include "oboe/ResultWithValue.h"
26 #include "oboe/AudioStreamBuilder.h"
27 #include "oboe/AudioStreamBase.h"
28 
29 /** WARNING - UNDER CONSTRUCTION - THIS API WILL CHANGE. */
30 
31 namespace oboe {
32 
33 /**
34  * The default number of nanoseconds to wait for when performing state change operations on the
35  * stream, such as `start` and `stop`.
36  *
37  * @see oboe::AudioStream::start
38  */
39 constexpr int64_t kDefaultTimeoutNanos = (2000 * kNanosPerMillisecond);
40 
41 /**
42  * Base class for Oboe C++ audio stream.
43  */
44 class AudioStream : public AudioStreamBase {
45     friend class AudioStreamBuilder; // allow access to setWeakThis() and lockWeakThis()
46 public:
47 
AudioStream()48     AudioStream() {}
49 
50     /**
51      * Construct an `AudioStream` using the given `AudioStreamBuilder`
52      *
53      * @param builder containing all the stream's attributes
54      */
55     explicit AudioStream(const AudioStreamBuilder &builder);
56 
57     virtual ~AudioStream() = default;
58 
59     /**
60      * Open a stream based on the current settings.
61      *
62      * Note that we do not recommend re-opening a stream that has been closed.
63      * TODO Should we prevent re-opening?
64      *
65      * @return
66      */
open()67     virtual Result open() {
68         return Result::OK; // Called by subclasses. Might do more in the future.
69     }
70 
71     /**
72      * Close the stream and deallocate any resources from the open() call.
73      */
74     virtual Result close();
75 
76     /**
77      * Start the stream. This will block until the stream has been started, an error occurs
78      * or `timeoutNanoseconds` has been reached.
79      */
80     virtual Result start(int64_t timeoutNanoseconds = kDefaultTimeoutNanos);
81 
82     /**
83      * Pause the stream. This will block until the stream has been paused, an error occurs
84      * or `timeoutNanoseconds` has been reached.
85      */
86     virtual Result pause(int64_t timeoutNanoseconds = kDefaultTimeoutNanos);
87 
88     /**
89      * Flush the stream. This will block until the stream has been flushed, an error occurs
90      * or `timeoutNanoseconds` has been reached.
91      */
92     virtual Result flush(int64_t timeoutNanoseconds = kDefaultTimeoutNanos);
93 
94     /**
95      * Stop the stream. This will block until the stream has been stopped, an error occurs
96      * or `timeoutNanoseconds` has been reached.
97      */
98     virtual Result stop(int64_t timeoutNanoseconds = kDefaultTimeoutNanos);
99 
100     /* Asynchronous requests.
101      * Use waitForStateChange() if you need to wait for completion.
102      */
103 
104     /**
105      * Start the stream asynchronously. Returns immediately (does not block). Equivalent to calling
106      * `start(0)`.
107      */
108     virtual Result requestStart() = 0;
109 
110     /**
111      * Pause the stream asynchronously. Returns immediately (does not block). Equivalent to calling
112      * `pause(0)`.
113      */
114     virtual Result requestPause() = 0;
115 
116     /**
117      * Flush the stream asynchronously. Returns immediately (does not block). Equivalent to calling
118      * `flush(0)`.
119      */
120     virtual Result requestFlush() = 0;
121 
122     /**
123      * Stop the stream asynchronously. Returns immediately (does not block). Equivalent to calling
124      * `stop(0)`.
125      */
126     virtual Result requestStop() = 0;
127 
128     /**
129      * Query the current state, eg. StreamState::Pausing
130      *
131      * @return state or a negative error.
132      */
133     virtual StreamState getState() = 0;
134 
135     /**
136      * Wait until the stream's current state no longer matches the input state.
137      * The input state is passed to avoid race conditions caused by the state
138      * changing between calls.
139      *
140      * Note that generally applications do not need to call this. It is considered
141      * an advanced technique and is mostly used for testing.
142      *
143      * <pre><code>
144      * int64_t timeoutNanos = 500 * kNanosPerMillisecond; // arbitrary 1/2 second
145      * StreamState currentState = stream->getState();
146      * StreamState nextState = StreamState::Unknown;
147      * while (result == Result::OK && currentState != StreamState::Paused) {
148      *     result = stream->waitForStateChange(
149      *                                   currentState, &nextState, timeoutNanos);
150      *     currentState = nextState;
151      * }
152      * </code></pre>
153      *
154      * If the state does not change within the timeout period then it will
155      * return ErrorTimeout. This is true even if timeoutNanoseconds is zero.
156      *
157      * @param inputState The state we want to change away from.
158      * @param nextState Pointer to a variable that will be set to the new state.
159      * @param timeoutNanoseconds The maximum time to wait in nanoseconds.
160      * @return Result::OK or a Result::Error.
161      */
162     virtual Result waitForStateChange(StreamState inputState,
163                                           StreamState *nextState,
164                                           int64_t timeoutNanoseconds) = 0;
165 
166     /**
167     * This can be used to adjust the latency of the buffer by changing
168     * the threshold where blocking will occur.
169     * By combining this with getXRunCount(), the latency can be tuned
170     * at run-time for each device.
171     *
172     * This cannot be set higher than getBufferCapacity().
173     *
174     * @param requestedFrames requested number of frames that can be filled without blocking
175     * @return the resulting buffer size in frames (obtained using value()) or an error (obtained
176     * using error())
177     */
setBufferSizeInFrames(int32_t)178     virtual ResultWithValue<int32_t> setBufferSizeInFrames(int32_t /* requestedFrames  */) {
179         return Result::ErrorUnimplemented;
180     }
181 
182     /**
183      * An XRun is an Underrun or an Overrun.
184      * During playing, an underrun will occur if the stream is not written in time
185      * and the system runs out of valid data.
186      * During recording, an overrun will occur if the stream is not read in time
187      * and there is no place to put the incoming data so it is discarded.
188      *
189      * An underrun or overrun can cause an audible "pop" or "glitch".
190      *
191      * @return a result which is either Result::OK with the xRun count as the value, or a
192      * Result::Error* code
193      */
getXRunCount()194     virtual ResultWithValue<int32_t> getXRunCount() {
195         return ResultWithValue<int32_t>(Result::ErrorUnimplemented);
196     }
197 
198     /**
199      * @return true if XRun counts are supported on the stream
200      */
201     virtual bool isXRunCountSupported() const = 0;
202 
203     /**
204      * Query the number of frames that are read or written by the endpoint at one time.
205      *
206      * @return burst size
207      */
getFramesPerBurst()208     int32_t getFramesPerBurst() const {
209         return mFramesPerBurst;
210     }
211 
212     /**
213      * Get the number of bytes in each audio frame. This is calculated using the channel count
214      * and the sample format. For example, a 2 channel floating point stream will have
215      * 2 * 4 = 8 bytes per frame.
216      *
217      * @return number of bytes in each audio frame.
218      */
getBytesPerFrame()219     int32_t getBytesPerFrame() const { return mChannelCount * getBytesPerSample(); }
220 
221     /**
222      * Get the number of bytes per sample. This is calculated using the sample format. For example,
223      * a stream using 16-bit integer samples will have 2 bytes per sample.
224      *
225      * @return the number of bytes per sample.
226      */
227     int32_t getBytesPerSample() const;
228 
229     /**
230      * The number of audio frames written into the stream.
231      * This monotonic counter will never get reset.
232      *
233      * @return the number of frames written so far
234      */
235     virtual int64_t getFramesWritten();
236 
237     /**
238      * The number of audio frames read from the stream.
239      * This monotonic counter will never get reset.
240      *
241      * @return the number of frames read so far
242      */
243     virtual int64_t getFramesRead();
244 
245     /**
246      * Calculate the latency of a stream based on getTimestamp().
247      *
248      * Output latency is the time it takes for a given frame to travel from the
249      * app to some type of digital-to-analog converter. If the DAC is external, for example
250      * in a USB interface or a TV connected by HDMI, then there may be additional latency
251      * that the Android device is unaware of.
252      *
253      * Input latency is the time it takes to a given frame to travel from an analog-to-digital
254      * converter (ADC) to the app.
255      *
256      * Note that the latency of an OUTPUT stream will increase abruptly when you write data to it
257      * and then decrease slowly over time as the data is consumed.
258      *
259      * The latency of an INPUT stream will decrease abruptly when you read data from it
260      * and then increase slowly over time as more data arrives.
261      *
262      * The latency of an OUTPUT stream is generally higher than the INPUT latency
263      * because an app generally tries to keep the OUTPUT buffer full and the INPUT buffer empty.
264      *
265      * @return a ResultWithValue which has a result of Result::OK and a value containing the latency
266      * in milliseconds, or a result of Result::Error*.
267      */
calculateLatencyMillis()268     virtual ResultWithValue<double> calculateLatencyMillis() {
269         return ResultWithValue<double>(Result::ErrorUnimplemented);
270     }
271 
272     /**
273      * Get the estimated time that the frame at `framePosition` entered or left the audio processing
274      * pipeline.
275      *
276      * This can be used to coordinate events and interactions with the external environment, and to
277      * estimate the latency of an audio stream. An example of usage can be found in the hello-oboe
278      * sample (search for "calculateCurrentOutputLatencyMillis").
279      *
280      * The time is based on the implementation's best effort, using whatever knowledge is available
281      * to the system, but cannot account for any delay unknown to the implementation.
282      *
283      * @deprecated since 1.0, use AudioStream::getTimestamp(clockid_t clockId) instead, which
284      * returns ResultWithValue
285      * @param clockId the type of clock to use e.g. CLOCK_MONOTONIC
286      * @param framePosition the frame number to query
287      * @param timeNanoseconds an output parameter which will contain the presentation timestamp
288      */
getTimestamp(clockid_t,int64_t *,int64_t *)289     virtual Result getTimestamp(clockid_t /* clockId  */,
290                                 int64_t* /* framePosition */,
291                                 int64_t* /* timeNanoseconds */) {
292         return Result::ErrorUnimplemented;
293     }
294 
295     /**
296      * Get the estimated time that the frame at `framePosition` entered or left the audio processing
297      * pipeline.
298      *
299      * This can be used to coordinate events and interactions with the external environment, and to
300      * estimate the latency of an audio stream. An example of usage can be found in the hello-oboe
301      * sample (search for "calculateCurrentOutputLatencyMillis").
302      *
303      * The time is based on the implementation's best effort, using whatever knowledge is available
304      * to the system, but cannot account for any delay unknown to the implementation.
305      *
306      * @param clockId the type of clock to use e.g. CLOCK_MONOTONIC
307      * @return a FrameTimestamp containing the position and time at which a particular audio frame
308      * entered or left the audio processing pipeline, or an error if the operation failed.
309      */
310     virtual ResultWithValue<FrameTimestamp> getTimestamp(clockid_t /* clockId */);
311 
312     // ============== I/O ===========================
313     /**
314      * Write data from the supplied buffer into the stream. This method will block until the write
315      * is complete or it runs out of time.
316      *
317      * If `timeoutNanoseconds` is zero then this call will not wait.
318      *
319      * @param buffer The address of the first sample.
320      * @param numFrames Number of frames to write. Only complete frames will be written.
321      * @param timeoutNanoseconds Maximum number of nanoseconds to wait for completion.
322      * @return a ResultWithValue which has a result of Result::OK and a value containing the number
323      * of frames actually written, or result of Result::Error*.
324      */
write(const void *,int32_t,int64_t)325     virtual ResultWithValue<int32_t> write(const void* /* buffer */,
326                              int32_t /* numFrames */,
327                              int64_t /* timeoutNanoseconds */ ) {
328         return ResultWithValue<int32_t>(Result::ErrorUnimplemented);
329     }
330 
331     /**
332      * Read data into the supplied buffer from the stream. This method will block until the read
333      * is complete or it runs out of time.
334      *
335      * If `timeoutNanoseconds` is zero then this call will not wait.
336      *
337      * @param buffer The address of the first sample.
338      * @param numFrames Number of frames to read. Only complete frames will be read.
339      * @param timeoutNanoseconds Maximum number of nanoseconds to wait for completion.
340      * @return a ResultWithValue which has a result of Result::OK and a value containing the number
341      * of frames actually read, or result of Result::Error*.
342      */
read(void *,int32_t,int64_t)343     virtual ResultWithValue<int32_t> read(void* /* buffer */,
344                             int32_t /* numFrames */,
345                             int64_t /* timeoutNanoseconds */) {
346         return ResultWithValue<int32_t>(Result::ErrorUnimplemented);
347     }
348 
349     /**
350      * Get the underlying audio API which the stream uses.
351      *
352      * @return the API that this stream uses.
353      */
354     virtual AudioApi getAudioApi() const = 0;
355 
356     /**
357      * Returns true if the underlying audio API is AAudio.
358      *
359      * @return true if this stream is implemented using the AAudio API.
360      */
usesAAudio()361     bool usesAAudio() const {
362         return getAudioApi() == AudioApi::AAudio;
363     }
364 
365     /**
366      * Only for debugging. Do not use in production.
367      * If you need to call this method something is wrong.
368      * If you think you need it for production then please let us know
369      * so we can modify Oboe so that you don't need this.
370      *
371      * @return nullptr or a pointer to a stream from the system API
372      */
getUnderlyingStream()373     virtual void *getUnderlyingStream() const {
374         return nullptr;
375     }
376 
377     /**
378      * Update mFramesWritten.
379      * For internal use only.
380      */
381     virtual void updateFramesWritten() = 0;
382 
383     /**
384      * Update mFramesRead.
385      * For internal use only.
386      */
387     virtual void updateFramesRead() = 0;
388 
389     /*
390      * Swap old callback for new callback.
391      * This not atomic.
392      * This should only be used internally.
393      * @param dataCallback
394      * @return previous dataCallback
395      */
swapDataCallback(AudioStreamDataCallback * dataCallback)396     AudioStreamDataCallback *swapDataCallback(AudioStreamDataCallback *dataCallback) {
397         AudioStreamDataCallback *previousCallback = mDataCallback;
398         mDataCallback = dataCallback;
399         return previousCallback;
400     }
401 
402     /*
403      * Swap old callback for new callback.
404      * This not atomic.
405      * This should only be used internally.
406      * @param errorCallback
407      * @return previous errorCallback
408      */
swapErrorCallback(AudioStreamErrorCallback * errorCallback)409     AudioStreamErrorCallback *swapErrorCallback(AudioStreamErrorCallback *errorCallback) {
410         AudioStreamErrorCallback *previousCallback = mErrorCallback;
411         mErrorCallback = errorCallback;
412         return previousCallback;
413     }
414 
415     /**
416      * @return number of frames of data currently in the buffer
417      */
418     ResultWithValue<int32_t> getAvailableFrames();
419 
420     /**
421      * Wait until the stream has a minimum amount of data available in its buffer.
422      * This can be used with an EXCLUSIVE MMAP input stream to avoid reading data too close to
423      * the DSP write position, which may cause glitches.
424      *
425      * @param numFrames minimum frames available
426      * @param timeoutNanoseconds
427      * @return number of frames available, ErrorTimeout
428      */
429     ResultWithValue<int32_t> waitForAvailableFrames(int32_t numFrames,
430                                                     int64_t timeoutNanoseconds);
431 
432     /**
433      * @return last result passed from an error callback
434      */
getLastErrorCallbackResult()435     virtual oboe::Result getLastErrorCallbackResult() const {
436         return mErrorCallbackResult;
437     }
438 
439 protected:
440 
441     /**
442      * This is used to detect more than one error callback from a stream.
443      * These were bugs in some versions of Android that caused multiple error callbacks.
444      * Internal bug b/63087953
445      *
446      * Calling this sets an atomic<bool> true and returns the previous value.
447      *
448      * @return false on first call, true on subsequent calls
449      */
wasErrorCallbackCalled()450     bool wasErrorCallbackCalled() {
451         return mErrorCallbackCalled.exchange(true);
452     }
453 
454     /**
455      * Wait for a transition from one state to another.
456      * @return OK if the endingState was observed, or ErrorUnexpectedState
457      *   if any state that was not the startingState or endingState was observed
458      *   or ErrorTimeout.
459      */
460     virtual Result waitForStateTransition(StreamState startingState,
461                                           StreamState endingState,
462                                           int64_t timeoutNanoseconds);
463 
464     /**
465      * Override this to provide a default for when the application did not specify a callback.
466      *
467      * @param audioData
468      * @param numFrames
469      * @return result
470      */
onDefaultCallback(void *,int)471     virtual DataCallbackResult onDefaultCallback(void* /* audioData  */, int /* numFrames */) {
472         return DataCallbackResult::Stop;
473     }
474 
475     /**
476      * Override this to provide your own behaviour for the audio callback
477      *
478      * @param audioData container array which audio frames will be written into or read from
479      * @param numFrames number of frames which were read/written
480      * @return the result of the callback: stop or continue
481      *
482      */
483     DataCallbackResult fireDataCallback(void *audioData, int numFrames);
484 
485     /**
486      * @return true if callbacks may be called
487      */
isDataCallbackEnabled()488     bool isDataCallbackEnabled() {
489         return mDataCallbackEnabled;
490     }
491 
492     /**
493      * This can be set false internally to prevent callbacks
494      * after DataCallbackResult::Stop has been returned.
495      */
setDataCallbackEnabled(bool enabled)496     void setDataCallbackEnabled(bool enabled) {
497         mDataCallbackEnabled = enabled;
498     }
499 
500     /*
501      * Set a weak_ptr to this stream from the shared_ptr so that we can
502      * later use a shared_ptr in the error callback.
503      */
setWeakThis(std::shared_ptr<oboe::AudioStream> & sharedStream)504     void setWeakThis(std::shared_ptr<oboe::AudioStream> &sharedStream) {
505         mWeakThis = sharedStream;
506     }
507 
508     /*
509      * Make a shared_ptr that will prevent this stream from being deleted.
510      */
lockWeakThis()511     std::shared_ptr<oboe::AudioStream> lockWeakThis() {
512         return mWeakThis.lock();
513     }
514 
515     std::weak_ptr<AudioStream> mWeakThis; // weak pointer to this object
516 
517     /**
518      * Number of frames which have been written into the stream
519      *
520      * This is signed integer to match the counters in AAudio.
521      * At audio rates, the counter will overflow in about six million years.
522      */
523     std::atomic<int64_t> mFramesWritten{};
524 
525     /**
526      * Number of frames which have been read from the stream.
527      *
528      * This is signed integer to match the counters in AAudio.
529      * At audio rates, the counter will overflow in about six million years.
530      */
531     std::atomic<int64_t> mFramesRead{};
532 
533     std::mutex           mLock; // for synchronizing start/stop/close
534 
535     oboe::Result         mErrorCallbackResult = oboe::Result::OK;
536 
537     /**
538      * Number of frames which will be copied to/from the audio device in a single read/write
539      * operation
540      */
541     int32_t              mFramesPerBurst = kUnspecified;
542 
543 private:
544 
545     // Log the scheduler if it changes.
546     void                 checkScheduler();
547     int                  mPreviousScheduler = -1;
548 
549     std::atomic<bool>    mDataCallbackEnabled{false};
550     std::atomic<bool>    mErrorCallbackCalled{false};
551 };
552 
553 /**
554  * This struct is a stateless functor which closes an AudioStream prior to its deletion.
555  * This means it can be used to safely delete a smart pointer referring to an open stream.
556  */
557     struct StreamDeleterFunctor {
operatorStreamDeleterFunctor558         void operator()(AudioStream  *audioStream) {
559             if (audioStream) {
560                 audioStream->close();
561             }
562             delete audioStream;
563         }
564     };
565 } // namespace oboe
566 
567 #endif /* OBOE_STREAM_H_ */
568