1 /*
2 **
3 ** File: fmopl.c -- software implementation of FM sound generator
4 **
5 ** Copyright (C) 1999 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6 **
7 ** Version 0.36f
8 **
9 */
10 
11 /*
12 	preliminary :
13 	Problem :
14 	note:
15 */
16 
17 #include <stdio.h>
18 #include <stdlib.h>
19 #include <string.h>
20 #include <stdarg.h>
21 //#include "driver.h"		/* use M.A.M.E. */
22 #include "fmopl.h"
23 #include <math.h>
24 
25 /* MPC - hacks */
26 #include "types.h"
27 #include "log.h"
28 
29 #ifndef PI
30 #define PI 3.14159265358979323846
31 #endif
32 
33 /* -------------------- preliminary define section --------------------- */
34 /* attack/decay rate time rate */
35 #define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
36 #define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */
37 
38 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
39 
40 #define FREQ_BITS 24			/* frequency turn          */
41 
42 /* counter bits = 20 , octerve 7 */
43 #define FREQ_RATE   (1<<(FREQ_BITS-20))
44 #define TL_BITS    (FREQ_BITS+2)
45 
46 /* final output shift , limit minimum and maximum */
47 #define OPL_OUTSB   (TL_BITS+3-16)		/* OPL output final shift 16bit */
48 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
49 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
50 
51 /* -------------------- quality selection --------------------- */
52 
53 /* sinwave entries */
54 /* used static memory = SIN_ENT * 4 (byte) */
55 #define SIN_ENT 2048
56 
57 /* output level entries (envelope,sinwave) */
58 /* envelope counter lower bits */
59 #define ENV_BITS 16
60 /* envelope output entries */
61 #define EG_ENT   4096
62 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
63 /* used static  memory = EG_ENT*4 (byte)                     */
64 
65 #define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */
66 #define EG_DED   EG_OFF
67 #define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */
68 #define EG_AED   EG_DST
69 #define EG_AST   0                       /* ATTACK START */
70 
71 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */
72 
73 /* LFO table entries */
74 #define VIB_ENT 512
75 #define VIB_SHIFT (32-9)
76 #define AMS_ENT 512
77 #define AMS_SHIFT (32-9)
78 
79 #define VIB_RATE 256
80 
81 /* -------------------- local defines , macros --------------------- */
82 
83 /* register number to channel number , slot offset */
84 #define SLOT1 0
85 #define SLOT2 1
86 
87 /* envelope phase */
88 #define ENV_MOD_RR  0x00
89 #define ENV_MOD_DR  0x01
90 #define ENV_MOD_AR  0x02
91 
92 /* -------------------- tables --------------------- */
93 static const int slot_array[32]=
94 {
95 	 0, 2, 4, 1, 3, 5,-1,-1,
96 	 6, 8,10, 7, 9,11,-1,-1,
97 	12,14,16,13,15,17,-1,-1,
98 	-1,-1,-1,-1,-1,-1,-1,-1
99 };
100 
101 /* key scale level */
102 #define ML(x) ((UINT32)((x)*0.1875*2/EG_STEP))
103 static const UINT32 KSL_TABLE[8*16]=
104 {
105 	/* OCT 0 */
106 	 ML(0.000), ML(0.000), ML(0.000), ML(0.000),
107 	 ML(0.000), ML(0.000), ML(0.000), ML(0.000),
108 	 ML(0.000), ML(0.000), ML(0.000), ML(0.000),
109 	 ML(0.000), ML(0.000), ML(0.000), ML(0.000),
110 	/* OCT 1 */
111 	 ML(0.000), ML(0.000), ML(0.000), ML(0.000),
112 	 ML(0.000), ML(0.000), ML(0.000), ML(0.000),
113 	 ML(0.000), ML(0.750), ML(1.125), ML(1.500),
114 	 ML(1.875), ML(2.250), ML(2.625), ML(3.000),
115 	/* OCT 2 */
116 	 ML(0.000), ML(0.000), ML(0.000), ML(0.000),
117 	 ML(0.000), ML(1.125), ML(1.875), ML(2.625),
118 	 ML(3.000), ML(3.750), ML(4.125), ML(4.500),
119 	 ML(4.875), ML(5.250), ML(5.625), ML(6.000),
120 	/* OCT 3 */
121 	 ML(0.000), ML(0.000), ML(0.000), ML(1.875),
122 	 ML(3.000), ML(4.125), ML(4.875), ML(5.625),
123 	 ML(6.000), ML(6.750), ML(7.125), ML(7.500),
124 	 ML(7.875), ML(8.250), ML(8.625), ML(9.000),
125 	/* OCT 4 */
126 	 ML(0.000), ML(0.000), ML(3.000), ML(4.875),
127 	 ML(6.000), ML(7.125), ML(7.875), ML(8.625),
128 	 ML(9.000), ML(9.750),ML(10.125),ML(10.500),
129 	ML(10.875),ML(11.250),ML(11.625),ML(12.000),
130 	/* OCT 5 */
131 	 ML(0.000), ML(3.000), ML(6.000), ML(7.875),
132 	 ML(9.000),ML(10.125),ML(10.875),ML(11.625),
133 	ML(12.000),ML(12.750),ML(13.125),ML(13.500),
134 	ML(13.875),ML(14.250),ML(14.625),ML(15.000),
135 	/* OCT 6 */
136 	 ML(0.000), ML(6.000), ML(9.000),ML(10.875),
137 	ML(12.000),ML(13.125),ML(13.875),ML(14.625),
138 	ML(15.000),ML(15.750),ML(16.125),ML(16.500),
139 	ML(16.875),ML(17.250),ML(17.625),ML(18.000),
140 	/* OCT 7 */
141 	 ML(0.000), ML(9.000),ML(12.000),ML(13.875),
142 	ML(15.000),ML(16.125),ML(16.875),ML(17.625),
143 	ML(18.000),ML(18.750),ML(19.125),ML(19.500),
144 	ML(19.875),ML(20.250),ML(20.625),ML(21.000)
145 };
146 #undef ML
147 
148 /* sustain lebel table (3db per step) */
149 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
150 #define SC(db) ((INT32) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST)
151 static const INT32 SL_TABLE[16]={
152  SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
153  SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
154 };
155 #undef SC
156 
157 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
158 /* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
159 /* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
160 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
161 static INT32 *TL_TABLE;
162 
163 /* pointers to TL_TABLE with sinwave output offset */
164 static INT32 **SIN_TABLE;
165 
166 /* LFO table */
167 static INT32 *AMS_TABLE;
168 static INT32 *VIB_TABLE;
169 
170 /* envelope output curve table */
171 /* attack + decay + OFF */
172 static INT32 ENV_CURVE[2*EG_ENT+1];
173 
174 /* multiple table */
175 #define ML(x) ((UINT32) (2*(x)))
176 static const UINT32 MUL_TABLE[16]= {
177 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
178    ML(0.50), ML(1.00), ML(2.00), ML(3.00), ML(4.00), ML(5.00), ML(6.00), ML(7.00),
179    ML(8.00), ML(9.00),ML(10.00),ML(10.00),ML(12.00),ML(12.00),ML(15.00),ML(15.00)
180 };
181 #undef ML
182 
183 /* dummy attack / decay rate ( when rate == 0 ) */
184 static INT32 RATE_0[16]=
185 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
186 
187 /* -------------------- static state --------------------- */
188 
189 /* lock level of common table */
190 static int num_lock = 0;
191 
192 /* work table */
193 static void *cur_chip = NULL;	/* current chip point */
194 /* currenct chip state */
195 /* static FMSAMPLE  *bufL,*bufR; */
196 static OPL_CH *S_CH;
197 static OPL_CH *E_CH;
198 OPL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2;
199 
200 static INT32 outd[1];
201 static INT32 ams;
202 static INT32 vib;
203 INT32  *ams_table;
204 INT32  *vib_table;
205 static INT32 amsIncr;
206 static INT32 vibIncr;
207 static INT32 feedback2;		/* connect for SLOT 2 */
208 
209 /* log output level */
210 #define LOG_ERR  3      /* ERROR       */
211 #define LOG_WAR  2      /* WARNING     */
212 #define LOG_INF  1      /* INFORMATION */
213 
214 #define LOG_LEVEL LOG_INF
215 
216 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
217 #define LOG(n,x) if( (n)>=LOG_LEVEL ) log_printf x
218 
219 /* --------------------- subroutines  --------------------- */
220 
221 /* There's no good reason why I should have to do this, but using "pow"
222 (the POSIX fuction) causes it to not compile on my machine
223 --Matthew Strait */
224 double mypow(float base, int power)
225 {
226 	int ans = 1, k;
227 
228 	for( k = 0; k < power; k++)
229 		ans *= base;
230 
231 	return ans;
232 }
233 
234 INLINE int Limit( int val, int max, int min ) {
235 	if ( val > max )
236 		val = max;
237 	else if ( val < min )
238 		val = min;
239 
240 	return val;
241 }
242 
243 /* status set and IRQ handling */
244 INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag)
245 {
246 	/* set status flag */
247 	OPL->status |= flag;
248 	if(!(OPL->status & 0x80))
249 	{
250 		if(OPL->status & OPL->statusmask)
251 		{	/* IRQ on */
252 			OPL->status |= 0x80;
253 			/* callback user interrupt handler (IRQ is OFF to ON) */
254 			if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
255 		}
256 	}
257 }
258 
259 /* status reset and IRQ handling */
260 INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
261 {
262 	/* reset status flag */
263 	OPL->status &=~flag;
264 	if((OPL->status & 0x80))
265 	{
266 		if (!(OPL->status & OPL->statusmask) )
267 		{
268 			OPL->status &= 0x7f;
269 			/* callback user interrupt handler (IRQ is ON to OFF) */
270 			if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
271 		}
272 	}
273 }
274 
275 /* IRQ mask set */
276 INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
277 {
278 	OPL->statusmask = flag;
279 	/* IRQ handling check */
280 	OPL_STATUS_SET(OPL,0);
281 	OPL_STATUS_RESET(OPL,0);
282 }
283 
284 /* ----- key on  ----- */
285 INLINE void OPL_KEYON(OPL_SLOT *SLOT)
286 {
287 	/* sin wave restart */
288 	SLOT->Cnt = 0;
289 	/* set attack */
290 	SLOT->evm = ENV_MOD_AR;
291 	SLOT->evs = SLOT->evsa;
292 	SLOT->evc = EG_AST;
293 	SLOT->eve = EG_AED;
294 }
295 /* ----- key off ----- */
296 INLINE void OPL_KEYOFF(OPL_SLOT *SLOT)
297 {
298 	if( SLOT->evm > ENV_MOD_RR)
299 	{
300 		/* set envelope counter from envleope output */
301 		SLOT->evm = ENV_MOD_RR;
302 		if( !(SLOT->evc&EG_DST) )
303 			//SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
304 			SLOT->evc = EG_DST;
305 		SLOT->eve = EG_DED;
306 		SLOT->evs = SLOT->evsr;
307 	}
308 }
309 
310 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
311 /* return : envelope output */
312 INLINE UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
313 {
314 	/* calcrate envelope generator */
315 	if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
316 	{
317 		switch( SLOT->evm ){
318 		case ENV_MOD_AR: /* ATTACK -> DECAY1 */
319 			/* next DR */
320 			SLOT->evm = ENV_MOD_DR;
321 			SLOT->evc = EG_DST;
322 			SLOT->eve = SLOT->SL;
323 			SLOT->evs = SLOT->evsd;
324 			break;
325 		case ENV_MOD_DR: /* DECAY -> SL or RR */
326 			SLOT->evc = SLOT->SL;
327 			SLOT->eve = EG_DED;
328 			if(SLOT->eg_typ)
329 			{
330 				SLOT->evs = 0;
331 			}
332 			else
333 			{
334 				SLOT->evm = ENV_MOD_RR;
335 				SLOT->evs = SLOT->evsr;
336 			}
337 			break;
338 		case ENV_MOD_RR: /* RR -> OFF */
339 			SLOT->evc = EG_OFF;
340 			SLOT->eve = EG_OFF+1;
341 			SLOT->evs = 0;
342 			break;
343 		}
344 	}
345 	/* calcrate envelope */
346 	return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
347 }
348 
349 /* set algorythm connection */
350 static void set_algorythm( OPL_CH *CH)
351 {
352 	INT32 *carrier = &outd[0];
353 	CH->connect1 = CH->CON ? carrier : &feedback2;
354 	CH->connect2 = carrier;
355 }
356 
357 /* ---------- frequency counter for operater update ---------- */
358 INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
359 {
360 	int ksr;
361 
362 	/* frequency step counter */
363 	SLOT->Incr = CH->fc * SLOT->mul;
364 	ksr = CH->kcode >> SLOT->KSR;
365 
366 	if( SLOT->ksr != ksr )
367 	{
368 		SLOT->ksr = ksr;
369 		/* attack , decay rate recalcration */
370 		SLOT->evsa = SLOT->AR[ksr];
371 		SLOT->evsd = SLOT->DR[ksr];
372 		SLOT->evsr = SLOT->RR[ksr];
373 	}
374 	SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
375 }
376 
377 /* set multi,am,vib,EG-TYP,KSR,mul */
378 INLINE void set_mul(FM_OPL *OPL,int slot,int v)
379 {
380 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
381 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
382 
383 	SLOT->mul    = MUL_TABLE[v&0x0f];
384 	SLOT->KSR    = (v&0x10) ? 0 : 2;
385 	SLOT->eg_typ = (v&0x20)>>5;
386 	SLOT->vib    = (v&0x40);
387 	SLOT->ams    = (v&0x80);
388 	CALC_FCSLOT(CH,SLOT);
389 }
390 
391 /* set ksl & tl */
392 INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v)
393 {
394 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
395 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
396 	int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
397 
398 	SLOT->ksl = ksl ? 3-ksl : 31;
399 	SLOT->TL  = (INT32) (((v&0x3f)*(0.75/EG_STEP))); /* 0.75db step */
400 
401 	if( !(OPL->mode&0x80) )
402 	{	/* not CSM latch total level */
403 		SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
404 	}
405 }
406 
407 /* set attack rate & decay rate  */
408 INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v)
409 {
410 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
411 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
412 	int ar = v>>4;
413 	int dr = v&0x0f;
414 
415 	SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
416 	SLOT->evsa = SLOT->AR[SLOT->ksr];
417 	if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
418 
419 	SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
420 	SLOT->evsd = SLOT->DR[SLOT->ksr];
421 	if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
422 }
423 
424 /* set sustain level & release rate */
425 INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v)
426 {
427 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
428 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
429 	int sl = v>>4;
430 	int rr = v & 0x0f;
431 
432 	SLOT->SL = SL_TABLE[sl];
433 	if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
434 	SLOT->RR = &OPL->DR_TABLE[rr<<2];
435 	SLOT->evsr = SLOT->RR[SLOT->ksr];
436 	if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
437 }
438 
439 /* operator output calcrator */
440 #define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
441 /* ---------- calcrate one of channel ---------- */
442 INLINE void OPL_CALC_CH( OPL_CH *CH )
443 {
444 	UINT32 env_out;
445 	OPL_SLOT *SLOT;
446 
447 	feedback2 = 0;
448 	/* SLOT 1 */
449 	SLOT = &CH->SLOT[SLOT1];
450 	env_out=OPL_CALC_SLOT(SLOT);
451 	if( env_out < EG_ENT-1 )
452 	{
453 		/* PG */
454 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
455 		else          SLOT->Cnt += SLOT->Incr;
456 		/* connectoion */
457 		if(CH->FB)
458 		{
459 			int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
460 			CH->op1_out[1] = CH->op1_out[0];
461 			*CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
462 		}
463 		else
464 		{
465 			*CH->connect1 += OP_OUT(SLOT,env_out,0);
466 		}
467 	}else
468 	{
469 		CH->op1_out[1] = CH->op1_out[0];
470 		CH->op1_out[0] = 0;
471 	}
472 	/* SLOT 2 */
473 	SLOT = &CH->SLOT[SLOT2];
474 	env_out=OPL_CALC_SLOT(SLOT);
475 	if( env_out < EG_ENT-1 )
476 	{
477 		/* PG */
478 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
479 		else          SLOT->Cnt += SLOT->Incr;
480 		/* connectoion */
481 		outd[0] += OP_OUT(SLOT,env_out, feedback2);
482 	}
483 }
484 
485 /* ---------- calcrate rythm block ---------- */
486 #define WHITE_NOISE_db 6.0
487 INLINE void OPL_CALC_RH( OPL_CH *CH )
488 {
489 	UINT32 env_tam,env_sd,env_top,env_hh;
490 	int whitenoise = (rand()&1)*((int)(WHITE_NOISE_db/EG_STEP));
491 	INT32 tone8;
492 
493 	OPL_SLOT *SLOT;
494 	int env_out;
495 
496 	/* BD : same as FM serial mode and output level is large */
497 	feedback2 = 0;
498 	/* SLOT 1 */
499 	SLOT = &CH[6].SLOT[SLOT1];
500 	env_out=OPL_CALC_SLOT(SLOT);
501 	if( env_out < EG_ENT-1 )
502 	{
503 		/* PG */
504 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
505 		else          SLOT->Cnt += SLOT->Incr;
506 		/* connectoion */
507 		if(CH[6].FB)
508 		{
509 			int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
510 			CH[6].op1_out[1] = CH[6].op1_out[0];
511 			feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
512 		}
513 		else
514 		{
515 			feedback2 = OP_OUT(SLOT,env_out,0);
516 		}
517 	}else
518 	{
519 		feedback2 = 0;
520 		CH[6].op1_out[1] = CH[6].op1_out[0];
521 		CH[6].op1_out[0] = 0;
522 	}
523 	/* SLOT 2 */
524 	SLOT = &CH[6].SLOT[SLOT2];
525 	env_out=OPL_CALC_SLOT(SLOT);
526 	if( env_out < EG_ENT-1 )
527 	{
528 		/* PG */
529 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
530 		else          SLOT->Cnt += SLOT->Incr;
531 		/* connectoion */
532 		outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
533 	}
534 
535 	// SD  (17) = mul14[fnum7] + white noise
536 	// TAM (15) = mul15[fnum8]
537 	// TOP (18) = fnum6(mul18[fnum8]+whitenoise)
538 	// HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
539 	env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
540 	env_tam=OPL_CALC_SLOT(SLOT8_1);
541 	env_top=OPL_CALC_SLOT(SLOT8_2);
542 	env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
543 
544 	/* PG */
545 	if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
546 	else             SLOT7_1->Cnt += 2*SLOT7_1->Incr;
547 	if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
548 	else             SLOT7_2->Cnt += (CH[7].fc*8);
549 	if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
550 	else             SLOT8_1->Cnt += SLOT8_1->Incr;
551 	if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
552 	else             SLOT8_2->Cnt += (CH[8].fc*48);
553 
554 	tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
555 
556 	/* SD */
557 	if( env_sd < EG_ENT-1 )
558 		outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
559 	/* TAM */
560 	if( env_tam < EG_ENT-1 )
561 		outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
562 	/* TOP-CY */
563 	if( env_top < EG_ENT-1 )
564 		outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
565 	/* HH */
566 	if( env_hh  < EG_ENT-1 )
567 		outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
568 }
569 
570 /* ----------- initialize time tabls ----------- */
571 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
572 {
573 	int i;
574 	double rate;
575 
576 	/* make attack rate & decay rate tables */
577 	for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
578 	for (i = 4;i <= 60;i++){
579 		rate  = OPL->freqbase;						/* frequency rate */
580 		if( i < 60 ) rate *= 1.0+(i&3)*0.25;		/* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
581 		rate *= 1<<((i>>2)-1);						/* b2-5 : shift bit */
582 		rate *= (double)(EG_ENT<<ENV_BITS);
583 		OPL->AR_TABLE[i] = (INT32) (rate / ARRATE);
584 		OPL->DR_TABLE[i] = (INT32) (rate / DRRATE);
585 	}
586 	for (i = 60;i < 76;i++)
587 	{
588 		OPL->AR_TABLE[i] = EG_AED-1;
589 		OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
590 	}
591 #if 0
592 	for (i = 0;i < 64 ;i++){	/* make for overflow area */
593 		LOG(LOG_WAR,("rate %2d , ar %f ms , dr %f ms \n",i,
594 			((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
595 			((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
596 	}
597 #endif
598 }
599 
600 /* ---------- generic table initialize ---------- */
601 static int OPLOpenTable( void )
602 {
603 	int s,t;
604 	double rate;
605 	int i,j;
606 	double pom;
607 
608 	/* allocate dynamic tables */
609 	if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL)
610 		return 0;
611 	if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
612 	{
613 		free(TL_TABLE);
614 		return 0;
615 	}
616 	if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
617 	{
618 		free(TL_TABLE);
619 		free(SIN_TABLE);
620 		return 0;
621 	}
622 	if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
623 	{
624 		free(TL_TABLE);
625 		free(SIN_TABLE);
626 		free(AMS_TABLE);
627 		return 0;
628 	}
629 	/* make total level table */
630 	for (t = 0;t < EG_ENT-1 ;t++){
631 		rate = ((1<<TL_BITS)-1)/mypow(10,EG_STEP*t/20);	/* dB -> voltage */
632 		TL_TABLE[       t] =  (int)rate;
633 		TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
634 /*		LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
635 	}
636 	/* fill volume off area */
637 	for ( t = EG_ENT-1; t < TL_MAX ;t++){
638 		TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
639 	}
640 
641 	/* make sinwave table (total level offet) */
642 	/* degree 0 = degree 180                   = off */
643 	SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1];
644 	for (s = 1;s <= SIN_ENT/4;s++){
645 		pom = sin(2*PI*s/SIN_ENT); /* sin     */
646 		pom = 20*log10(1/pom);	   /* decibel */
647 		j = (int) (pom / EG_STEP);         /* TL_TABLE steps */
648 
649         /* degree 0   -  90    , degree 180 -  90 : plus section */
650 		SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
651         /* degree 180 - 270    , degree 360 - 270 : minus section */
652 		SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j];
653 /*		LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
654 	}
655 	for (s = 0;s < SIN_ENT;s++)
656 	{
657 		SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
658 		SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
659 		SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
660 	}
661 
662 	/* envelope counter -> envelope output table */
663 	for (i=0; i<EG_ENT; i++)
664 	{
665 		/* ATTACK curve */
666 		pom = mypow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
667 		/* if( pom >= EG_ENT ) pom = EG_ENT-1; */
668 		ENV_CURVE[i] = (int)pom;
669 		/* DECAY ,RELEASE curve */
670 		ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
671 	}
672 	/* off */
673 	ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
674 	/* make LFO ams table */
675 	for (i=0; i<AMS_ENT; i++)
676 	{
677 		pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
678 		AMS_TABLE[i]         = (INT32) ((1.0/EG_STEP)*pom); /* 1dB   */
679 		AMS_TABLE[AMS_ENT+i] = (INT32) ((4.8/EG_STEP)*pom); /* 4.8dB */
680 	}
681 	/* make LFO vibrate table */
682 	for (i=0; i<VIB_ENT; i++)
683 	{
684 		/* 100cent = 1seminote = 6% ?? */
685 		pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
686 		VIB_TABLE[i]         = VIB_RATE + (INT32) (pom*0.07); /* +- 7cent */
687 		VIB_TABLE[VIB_ENT+i] = VIB_RATE + (INT32) (pom*0.14); /* +-14cent */
688 		/* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
689 	}
690 	return 1;
691 }
692 
693 
694 static void OPLCloseTable( void )
695 {
696 	free(TL_TABLE);
697 	free(SIN_TABLE);
698 	free(AMS_TABLE);
699 	free(VIB_TABLE);
700 }
701 
702 /* CSM Key Controll */
703 INLINE void CSMKeyControll(OPL_CH *CH)
704 {
705 	OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
706 	OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
707 	/* all key off */
708 	OPL_KEYOFF(slot1);
709 	OPL_KEYOFF(slot2);
710 	/* total level latch */
711 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
712 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
713 	/* key on */
714 	CH->op1_out[0] = CH->op1_out[1] = 0;
715 	OPL_KEYON(slot1);
716 	OPL_KEYON(slot2);
717 }
718 
719 /* ---------- opl initialize ---------- */
720 static void OPL_initalize(FM_OPL *OPL)
721 {
722 	int fn;
723 
724 	/* frequency base */
725 	OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0;
726 	/* Timer base time */
727 	OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
728 	/* make time tables */
729 	init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
730 	/* make fnumber -> increment counter table */
731 	for( fn=0 ; fn < 1024 ; fn++ )
732 	{
733 		OPL->FN_TABLE[fn] = (UINT32) (OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2);
734 	}
735 	/* LFO freq.table */
736 	OPL->amsIncr = (INT32) (OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0);
737 	OPL->vibIncr = (INT32) (OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0);
738 }
739 
740 /* ---------- write a OPL registers ---------- */
741 static void OPLWriteReg(FM_OPL *OPL, int r, int v)
742 {
743 	OPL_CH *CH;
744 	int slot;
745 	unsigned int block_fnum;
746 
747 	switch(r&0xe0)
748 	{
749 	case 0x00: /* 00-1f:controll */
750 		switch(r&0x1f)
751 		{
752 		case 0x01:
753 			/* wave selector enable */
754 			if(OPL->type&OPL_TYPE_WAVESEL)
755 			{
756 				OPL->wavesel = v&0x20;
757 				if(!OPL->wavesel)
758 				{
759 					/* preset compatible mode */
760 					int c;
761 					for(c=0;c<OPL->max_ch;c++)
762 					{
763 						OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
764 						OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
765 					}
766 				}
767 			}
768 			return;
769 		case 0x02:	/* Timer 1 */
770 			OPL->T[0] = (256-v)*4;
771 			break;
772 		case 0x03:	/* Timer 2 */
773 			OPL->T[1] = (256-v)*16;
774 			return;
775 		case 0x04:	/* IRQ clear / mask and Timer enable */
776 			if(v&0x80)
777 			{	/* IRQ flag clear */
778 				OPL_STATUS_RESET(OPL,0x7f);
779 			}
780 			else
781 			{	/* set IRQ mask ,timer enable*/
782 				UINT8 st1 = v&1;
783 				UINT8 st2 = (v>>1)&1;
784 				/* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
785 				OPL_STATUS_RESET(OPL,v&0x78);
786 				OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
787 				/* timer 2 */
788 				if(OPL->st[1] != st2)
789 				{
790 					double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
791 					OPL->st[1] = st2;
792 					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
793 				}
794 				/* timer 1 */
795 				if(OPL->st[0] != st1)
796 				{
797 					double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
798 					OPL->st[0] = st1;
799 					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
800 				}
801 			}
802 			return;
803 #if BUILD_Y8950
804 		case 0x06:		/* Key Board OUT */
805 			if(OPL->type&OPL_TYPE_KEYBOARD)
806 			{
807 				if(OPL->keyboardhandler_w)
808 					OPL->keyboardhandler_w(OPL->keyboard_param,v);
809 				else
810 					LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n"));
811 			}
812 			return;
813 		case 0x07:	/* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
814 			if(OPL->type&OPL_TYPE_ADPCM)
815 				YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
816 			return;
817 		case 0x08:	/* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
818 			OPL->mode = v;
819 			v&=0x1f;	/* for DELTA-T unit */
820 		case 0x09:		/* START ADD */
821 		case 0x0a:
822 		case 0x0b:		/* STOP ADD  */
823 		case 0x0c:
824 		case 0x0d:		/* PRESCALE   */
825 		case 0x0e:
826 		case 0x0f:		/* ADPCM data */
827 		case 0x10: 		/* DELTA-N    */
828 		case 0x11: 		/* DELTA-N    */
829 		case 0x12: 		/* EG-CTRL    */
830 			if(OPL->type&OPL_TYPE_ADPCM)
831 				YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
832 			return;
833 #if 0
834 		case 0x15:		/* DAC data    */
835 		case 0x16:
836 		case 0x17:		/* SHIFT    */
837 			return;
838 		case 0x18:		/* I/O CTRL (Direction) */
839 			if(OPL->type&OPL_TYPE_IO)
840 				OPL->portDirection = v&0x0f;
841 			return;
842 		case 0x19:		/* I/O DATA */
843 			if(OPL->type&OPL_TYPE_IO)
844 			{
845 				OPL->portLatch = v;
846 				if(OPL->porthandler_w)
847 					OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
848 			}
849 			return;
850 		case 0x1a:		/* PCM data */
851 			return;
852 #endif
853 #endif
854 		}
855 		break;
856 	case 0x20:	/* am,vib,ksr,eg type,mul */
857 		slot = slot_array[r&0x1f];
858 		if(slot == -1) return;
859 		set_mul(OPL,slot,v);
860 		return;
861 	case 0x40:
862 		slot = slot_array[r&0x1f];
863 		if(slot == -1) return;
864 		set_ksl_tl(OPL,slot,v);
865 		return;
866 	case 0x60:
867 		slot = slot_array[r&0x1f];
868 		if(slot == -1) return;
869 		set_ar_dr(OPL,slot,v);
870 		return;
871 	case 0x80:
872 		slot = slot_array[r&0x1f];
873 		if(slot == -1) return;
874 		set_sl_rr(OPL,slot,v);
875 		return;
876 	case 0xa0:
877 		switch(r)
878 		{
879 		case 0xbd:
880 			/* amsep,vibdep,r,bd,sd,tom,tc,hh */
881 			{
882 			UINT8 rkey = OPL->rythm^v;
883 			OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
884 			OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
885 			OPL->rythm  = v&0x3f;
886 			if(OPL->rythm&0x20)
887 			{
888 #if 0
889 				usrintf_showmessage("OPL Rythm mode select");
890 #endif
891 				/* BD key on/off */
892 				if(rkey&0x10)
893 				{
894 					if(v&0x10)
895 					{
896 						OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
897 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
898 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
899 					}
900 					else
901 					{
902 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
903 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
904 					}
905 				}
906 				/* SD key on/off */
907 				if(rkey&0x08)
908 				{
909 					if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
910 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
911 				}/* TAM key on/off */
912 				if(rkey&0x04)
913 				{
914 					if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
915 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
916 				}
917 				/* TOP-CY key on/off */
918 				if(rkey&0x02)
919 				{
920 					if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
921 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
922 				}
923 				/* HH key on/off */
924 				if(rkey&0x01)
925 				{
926 					if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
927 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
928 				}
929 			}
930 			}
931 			return;
932 		}
933 		/* keyon,block,fnum */
934 		if( (r&0x0f) > 8) return;
935 		CH = &OPL->P_CH[r&0x0f];
936 		if(!(r&0x10))
937 		{	/* a0-a8 */
938 			block_fnum  = (CH->block_fnum&0x1f00) | v;
939 		}
940 		else
941 		{	/* b0-b8 */
942 			int keyon = (v>>5)&1;
943 			block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
944 			if(CH->keyon != keyon)
945 			{
946 				if( (CH->keyon=keyon) )
947 				{
948 					CH->op1_out[0] = CH->op1_out[1] = 0;
949 					OPL_KEYON(&CH->SLOT[SLOT1]);
950 					OPL_KEYON(&CH->SLOT[SLOT2]);
951 				}
952 				else
953 				{
954 					OPL_KEYOFF(&CH->SLOT[SLOT1]);
955 					OPL_KEYOFF(&CH->SLOT[SLOT2]);
956 				}
957 			}
958 		}
959 		/* update */
960 		if(CH->block_fnum != block_fnum)
961 		{
962 			int blockRv = 7-(block_fnum>>10);
963 			int fnum   = block_fnum&0x3ff;
964 			CH->block_fnum = block_fnum;
965 
966 			CH->ksl_base = KSL_TABLE[block_fnum>>6];
967 			CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
968 			CH->kcode = CH->block_fnum>>9;
969 			if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
970 			CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
971 			CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
972 		}
973 		return;
974 	case 0xc0:
975 		/* FB,C */
976 		if( (r&0x0f) > 8) return;
977 		CH = &OPL->P_CH[r&0x0f];
978 		{
979 		int feedback = (v>>1)&7;
980 		CH->FB   = feedback ? (8+1) - feedback : 0;
981 		CH->CON = v&1;
982 		set_algorythm(CH);
983 		}
984 		return;
985 	case 0xe0: /* wave type */
986 		slot = slot_array[r&0x1f];
987 		if(slot == -1) return;
988 		CH = &OPL->P_CH[slot/2];
989 		if(OPL->wavesel)
990 		{
991 			/* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
992 			CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
993 		}
994 		return;
995 	}
996 }
997 
998 /* lock/unlock for common table */
999 static int OPL_LockTable(void)
1000 {
1001 	num_lock++;
1002 	if(num_lock>1) return 0;
1003 	/* first time */
1004 	cur_chip = NULL;
1005 	/* allocate total level table (128kb space) */
1006 	if( !OPLOpenTable() )
1007 	{
1008 		num_lock--;
1009 		return -1;
1010 	}
1011 	return 0;
1012 }
1013 
1014 static void OPL_UnLockTable(void)
1015 {
1016 	if(num_lock) num_lock--;
1017 	if(num_lock) return;
1018 	/* last time */
1019 	cur_chip = NULL;
1020 	OPLCloseTable();
1021 }
1022 
1023 #if (BUILD_YM3812 || BUILD_YM3526)
1024 /*******************************************************************************/
1025 /*		YM3812 local section                                                   */
1026 /*******************************************************************************/
1027 
1028 /* ---------- update one of chip ----------- */
1029 void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1030 {
1031     int i;
1032 	int data;
1033 	FMSAMPLE *buf = buffer;
1034 	UINT32 amsCnt  = OPL->amsCnt;
1035 	UINT32 vibCnt  = OPL->vibCnt;
1036 	UINT8 rythm = OPL->rythm&0x20;
1037 	OPL_CH *CH,*R_CH;
1038 
1039 	if( (void *)OPL != cur_chip ){
1040 		cur_chip = (void *)OPL;
1041 		/* channel pointers */
1042 		S_CH = OPL->P_CH;
1043 		E_CH = &S_CH[9];
1044 		/* rythm slot */
1045 		SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1046 		SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1047 		SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1048 		SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1049 		/* LFO state */
1050 		amsIncr = OPL->amsIncr;
1051 		vibIncr = OPL->vibIncr;
1052 		ams_table = OPL->ams_table;
1053 		vib_table = OPL->vib_table;
1054 	}
1055 	R_CH = rythm ? &S_CH[6] : E_CH;
1056     for( i=0; i < length ; i++ )
1057 	{
1058 		/*            channel A         channel B         channel C      */
1059 		/* LFO */
1060 		ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1061 		vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1062 		outd[0] = 0;
1063 		/* FM part */
1064 		for(CH=S_CH ; CH < R_CH ; CH++)
1065 			OPL_CALC_CH(CH);
1066 		/* Rythn part */
1067 		if(rythm)
1068 			OPL_CALC_RH(S_CH);
1069 		/* limit check */
1070 		data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1071 		/* store to sound buffer */
1072 		buf[i] = data >> OPL_OUTSB;
1073 	}
1074 
1075 	OPL->amsCnt = amsCnt;
1076 	OPL->vibCnt = vibCnt;
1077 }
1078 #endif /* (BUILD_YM3812 || BUILD_YM3526) */
1079 
1080 #if BUILD_Y8950
1081 
1082 void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1083 {
1084     int i;
1085 	int data;
1086 	FMSAMPLE *buf = buffer;
1087 	UINT32 amsCnt  = OPL->amsCnt;
1088 	UINT32 vibCnt  = OPL->vibCnt;
1089 	UINT8 rythm = OPL->rythm&0x20;
1090 	OPL_CH *CH,*R_CH;
1091 	YM_DELTAT *DELTAT = OPL->deltat;
1092 
1093 	/* setup DELTA-T unit */
1094 	YM_DELTAT_DECODE_PRESET(DELTAT);
1095 
1096 	if( (void *)OPL != cur_chip ){
1097 		cur_chip = (void *)OPL;
1098 		/* channel pointers */
1099 		S_CH = OPL->P_CH;
1100 		E_CH = &S_CH[9];
1101 		/* rythm slot */
1102 		SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1103 		SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1104 		SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1105 		SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1106 		/* LFO state */
1107 		amsIncr = OPL->amsIncr;
1108 		vibIncr = OPL->vibIncr;
1109 		ams_table = OPL->ams_table;
1110 		vib_table = OPL->vib_table;
1111 	}
1112 	R_CH = rythm ? &S_CH[6] : E_CH;
1113     for( i=0; i < length ; i++ )
1114 	{
1115 		/*            channel A         channel B         channel C      */
1116 		/* LFO */
1117 		ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1118 		vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1119 		outd[0] = 0;
1120 		/* deltaT ADPCM */
1121 		if( DELTAT->flag )
1122 			YM_DELTAT_ADPCM_CALC(DELTAT);
1123 		/* FM part */
1124 		for(CH=S_CH ; CH < R_CH ; CH++)
1125 			OPL_CALC_CH(CH);
1126 		/* Rythn part */
1127 		if(rythm)
1128 			OPL_CALC_RH(S_CH);
1129 		/* limit check */
1130 		data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1131 		/* store to sound buffer */
1132 		buf[i] = data >> OPL_OUTSB;
1133 	}
1134 	OPL->amsCnt = amsCnt;
1135 	OPL->vibCnt = vibCnt;
1136 	/* deltaT START flag */
1137 	if( !DELTAT->flag )
1138 		OPL->status &= 0xfe;
1139 }
1140 #endif
1141 
1142 /* ---------- reset one of chip ---------- */
1143 void OPLResetChip(FM_OPL *OPL)
1144 {
1145 	int c,s;
1146 	int i;
1147 
1148 	/* reset chip */
1149 	OPL->mode   = 0;	/* normal mode */
1150 	OPL_STATUS_RESET(OPL,0x7f);
1151 	/* reset with register write */
1152 	OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1153 	OPLWriteReg(OPL,0x02,0); /* Timer1 */
1154 	OPLWriteReg(OPL,0x03,0); /* Timer2 */
1155 	OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1156 	for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1157 	/* reset OPerator paramater */
1158 	for( c = 0 ; c < OPL->max_ch ; c++ )
1159 	{
1160 		OPL_CH *CH = &OPL->P_CH[c];
1161 		/* OPL->P_CH[c].PAN = OPN_CENTER; */
1162 		for(s = 0 ; s < 2 ; s++ )
1163 		{
1164 			/* wave table */
1165 			CH->SLOT[s].wavetable = &SIN_TABLE[0];
1166 			/* CH->SLOT[s].evm = ENV_MOD_RR; */
1167 			CH->SLOT[s].evc = EG_OFF;
1168 			CH->SLOT[s].eve = EG_OFF+1;
1169 			CH->SLOT[s].evs = 0;
1170 		}
1171 	}
1172 #if BUILD_Y8950
1173 	if(OPL->type&OPL_TYPE_ADPCM)
1174 	{
1175 		YM_DELTAT *DELTAT = OPL->deltat;
1176 
1177 		DELTAT->freqbase = OPL->freqbase;
1178 		DELTAT->output_pointer = outd;
1179 		DELTAT->portshift = 5;
1180 		DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS;
1181 		YM_DELTAT_ADPCM_Reset(DELTAT,0);
1182 	}
1183 #endif
1184 }
1185 
1186 /* ----------  Create one of vietual YM3812 ----------       */
1187 /* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
1188 FM_OPL *OPLCreate(int type, int clock, int rate)
1189 {
1190 	char *ptr;
1191 	FM_OPL *OPL;
1192 	int state_size;
1193 	int max_ch = 9; /* normaly 9 channels */
1194 
1195 	if( OPL_LockTable() ==-1) return NULL;
1196 	/* allocate OPL state space */
1197 	state_size  = sizeof(FM_OPL);
1198 	state_size += sizeof(OPL_CH)*max_ch;
1199 #if BUILD_Y8950
1200 	if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
1201 #endif
1202 	/* allocate memory block */
1203 	ptr = malloc(state_size);
1204 	if(ptr==NULL) return NULL;
1205 	/* clear */
1206 	memset(ptr,0,state_size);
1207 	OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1208 	OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1209 #if BUILD_Y8950
1210 	if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT);
1211 #endif
1212 	/* set channel state pointer */
1213 	OPL->type  = type;
1214 	OPL->clock = clock;
1215 	OPL->rate  = rate;
1216 	OPL->max_ch = max_ch;
1217 	/* init grobal tables */
1218 	OPL_initalize(OPL);
1219 	/* reset chip */
1220 	OPLResetChip(OPL);
1221 	return OPL;
1222 }
1223 
1224 /* ----------  Destroy one of vietual YM3812 ----------       */
1225 void OPLDestroy(FM_OPL *OPL)
1226 {
1227 	OPL_UnLockTable();
1228 	free(OPL);
1229 }
1230 
1231 /* ----------  Option handlers ----------       */
1232 
1233 void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1234 {
1235 	OPL->TimerHandler   = TimerHandler;
1236 	OPL->TimerParam = channelOffset;
1237 }
1238 void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
1239 {
1240 	OPL->IRQHandler     = IRQHandler;
1241 	OPL->IRQParam = param;
1242 }
1243 void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
1244 {
1245 	OPL->UpdateHandler = UpdateHandler;
1246 	OPL->UpdateParam = param;
1247 }
1248 #if BUILD_Y8950
1249 void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
1250 {
1251 	OPL->porthandler_w = PortHandler_w;
1252 	OPL->porthandler_r = PortHandler_r;
1253 	OPL->port_param = param;
1254 }
1255 
1256 void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
1257 {
1258 	OPL->keyboardhandler_w = KeyboardHandler_w;
1259 	OPL->keyboardhandler_r = KeyboardHandler_r;
1260 	OPL->keyboard_param = param;
1261 }
1262 #endif
1263 /* ---------- YM3812 I/O interface ---------- */
1264 int OPLWrite(FM_OPL *OPL,int a,int v)
1265 {
1266 	if( !(a&1) )
1267 	{	/* address port */
1268 		OPL->address = v & 0xff;
1269 	}
1270 	else
1271 	{	/* data port */
1272 		if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1273 		OPLWriteReg(OPL,OPL->address,v);
1274 	}
1275 	return OPL->status>>7;
1276 }
1277 
1278 unsigned char OPLRead(FM_OPL *OPL,int a)
1279 {
1280 	if( !(a&1) )
1281 	{	/* status port */
1282 		return OPL->status & (OPL->statusmask|0x80);
1283 	}
1284 	/* data port */
1285 	switch(OPL->address)
1286 	{
1287 	case 0x05: /* KeyBoard IN */
1288 		if(OPL->type&OPL_TYPE_KEYBOARD)
1289 		{
1290 			if(OPL->keyboardhandler_r)
1291 				return OPL->keyboardhandler_r(OPL->keyboard_param);
1292 			else
1293 				LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
1294 		}
1295 		return 0;
1296 #if 0
1297 	case 0x0f: /* ADPCM-DATA  */
1298 		return 0;
1299 #endif
1300 	case 0x19: /* I/O DATA    */
1301 		if(OPL->type&OPL_TYPE_IO)
1302 		{
1303 			if(OPL->porthandler_r)
1304 				return OPL->porthandler_r(OPL->port_param);
1305 			else
1306 				LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
1307 		}
1308 		return 0;
1309 	case 0x1a: /* PCM-DATA    */
1310 		return 0;
1311 	}
1312 	return 0;
1313 }
1314 
1315 int OPLTimerOver(FM_OPL *OPL,int c)
1316 {
1317 	if( c )
1318 	{	/* Timer B */
1319 		OPL_STATUS_SET(OPL,0x20);
1320 	}
1321 	else
1322 	{	/* Timer A */
1323 		OPL_STATUS_SET(OPL,0x40);
1324 		/* CSM mode key,TL controll */
1325 		if( OPL->mode & 0x80 )
1326 		{	/* CSM mode total level latch and auto key on */
1327 			int ch;
1328 			if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1329 			for(ch=0;ch<9;ch++)
1330 				CSMKeyControll( &OPL->P_CH[ch] );
1331 		}
1332 	}
1333 	/* reload timer */
1334 	if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1335 	return OPL->status>>7;
1336 }
1337 
1338 
1339