1 /*
2 * OpenAL Multi-Zone Reverb Example
3 *
4 * Copyright (c) 2018 by Chris Robinson <chris.kcat@gmail.com>
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* This file contains an example for controlling multiple reverb zones to
26 * smoothly transition between reverb environments. The general concept is to
27 * extend single-reverb by also tracking the closest adjacent environment, and
28 * utilize EAX Reverb's panning vectors to position them relative to the
29 * listener.
30 */
31
32
33 #include <assert.h>
34 #include <inttypes.h>
35 #include <limits.h>
36 #include <math.h>
37 #include <stdio.h>
38 #include <stdlib.h>
39 #include <string.h>
40
41 #include "sndfile.h"
42
43 #include "AL/al.h"
44 #include "AL/alc.h"
45 #include "AL/efx.h"
46 #include "AL/efx-presets.h"
47
48 #include "common/alhelpers.h"
49
50
51 #ifndef M_PI
52 #define M_PI 3.14159265358979323846
53 #endif
54
55
56 /* Filter object functions */
57 static LPALGENFILTERS alGenFilters;
58 static LPALDELETEFILTERS alDeleteFilters;
59 static LPALISFILTER alIsFilter;
60 static LPALFILTERI alFilteri;
61 static LPALFILTERIV alFilteriv;
62 static LPALFILTERF alFilterf;
63 static LPALFILTERFV alFilterfv;
64 static LPALGETFILTERI alGetFilteri;
65 static LPALGETFILTERIV alGetFilteriv;
66 static LPALGETFILTERF alGetFilterf;
67 static LPALGETFILTERFV alGetFilterfv;
68
69 /* Effect object functions */
70 static LPALGENEFFECTS alGenEffects;
71 static LPALDELETEEFFECTS alDeleteEffects;
72 static LPALISEFFECT alIsEffect;
73 static LPALEFFECTI alEffecti;
74 static LPALEFFECTIV alEffectiv;
75 static LPALEFFECTF alEffectf;
76 static LPALEFFECTFV alEffectfv;
77 static LPALGETEFFECTI alGetEffecti;
78 static LPALGETEFFECTIV alGetEffectiv;
79 static LPALGETEFFECTF alGetEffectf;
80 static LPALGETEFFECTFV alGetEffectfv;
81
82 /* Auxiliary Effect Slot object functions */
83 static LPALGENAUXILIARYEFFECTSLOTS alGenAuxiliaryEffectSlots;
84 static LPALDELETEAUXILIARYEFFECTSLOTS alDeleteAuxiliaryEffectSlots;
85 static LPALISAUXILIARYEFFECTSLOT alIsAuxiliaryEffectSlot;
86 static LPALAUXILIARYEFFECTSLOTI alAuxiliaryEffectSloti;
87 static LPALAUXILIARYEFFECTSLOTIV alAuxiliaryEffectSlotiv;
88 static LPALAUXILIARYEFFECTSLOTF alAuxiliaryEffectSlotf;
89 static LPALAUXILIARYEFFECTSLOTFV alAuxiliaryEffectSlotfv;
90 static LPALGETAUXILIARYEFFECTSLOTI alGetAuxiliaryEffectSloti;
91 static LPALGETAUXILIARYEFFECTSLOTIV alGetAuxiliaryEffectSlotiv;
92 static LPALGETAUXILIARYEFFECTSLOTF alGetAuxiliaryEffectSlotf;
93 static LPALGETAUXILIARYEFFECTSLOTFV alGetAuxiliaryEffectSlotfv;
94
95
96 /* LoadEffect loads the given initial reverb properties into the given OpenAL
97 * effect object, and returns non-zero on success.
98 */
LoadEffect(ALuint effect,const EFXEAXREVERBPROPERTIES * reverb)99 static int LoadEffect(ALuint effect, const EFXEAXREVERBPROPERTIES *reverb)
100 {
101 ALenum err;
102
103 alGetError();
104
105 /* Prepare the effect for EAX Reverb (standard reverb doesn't contain
106 * the needed panning vectors).
107 */
108 alEffecti(effect, AL_EFFECT_TYPE, AL_EFFECT_EAXREVERB);
109 if((err=alGetError()) != AL_NO_ERROR)
110 {
111 fprintf(stderr, "Failed to set EAX Reverb: %s (0x%04x)\n", alGetString(err), err);
112 return 0;
113 }
114
115 /* Load the reverb properties. */
116 alEffectf(effect, AL_EAXREVERB_DENSITY, reverb->flDensity);
117 alEffectf(effect, AL_EAXREVERB_DIFFUSION, reverb->flDiffusion);
118 alEffectf(effect, AL_EAXREVERB_GAIN, reverb->flGain);
119 alEffectf(effect, AL_EAXREVERB_GAINHF, reverb->flGainHF);
120 alEffectf(effect, AL_EAXREVERB_GAINLF, reverb->flGainLF);
121 alEffectf(effect, AL_EAXREVERB_DECAY_TIME, reverb->flDecayTime);
122 alEffectf(effect, AL_EAXREVERB_DECAY_HFRATIO, reverb->flDecayHFRatio);
123 alEffectf(effect, AL_EAXREVERB_DECAY_LFRATIO, reverb->flDecayLFRatio);
124 alEffectf(effect, AL_EAXREVERB_REFLECTIONS_GAIN, reverb->flReflectionsGain);
125 alEffectf(effect, AL_EAXREVERB_REFLECTIONS_DELAY, reverb->flReflectionsDelay);
126 alEffectfv(effect, AL_EAXREVERB_REFLECTIONS_PAN, reverb->flReflectionsPan);
127 alEffectf(effect, AL_EAXREVERB_LATE_REVERB_GAIN, reverb->flLateReverbGain);
128 alEffectf(effect, AL_EAXREVERB_LATE_REVERB_DELAY, reverb->flLateReverbDelay);
129 alEffectfv(effect, AL_EAXREVERB_LATE_REVERB_PAN, reverb->flLateReverbPan);
130 alEffectf(effect, AL_EAXREVERB_ECHO_TIME, reverb->flEchoTime);
131 alEffectf(effect, AL_EAXREVERB_ECHO_DEPTH, reverb->flEchoDepth);
132 alEffectf(effect, AL_EAXREVERB_MODULATION_TIME, reverb->flModulationTime);
133 alEffectf(effect, AL_EAXREVERB_MODULATION_DEPTH, reverb->flModulationDepth);
134 alEffectf(effect, AL_EAXREVERB_AIR_ABSORPTION_GAINHF, reverb->flAirAbsorptionGainHF);
135 alEffectf(effect, AL_EAXREVERB_HFREFERENCE, reverb->flHFReference);
136 alEffectf(effect, AL_EAXREVERB_LFREFERENCE, reverb->flLFReference);
137 alEffectf(effect, AL_EAXREVERB_ROOM_ROLLOFF_FACTOR, reverb->flRoomRolloffFactor);
138 alEffecti(effect, AL_EAXREVERB_DECAY_HFLIMIT, reverb->iDecayHFLimit);
139
140 /* Check if an error occured, and return failure if so. */
141 if((err=alGetError()) != AL_NO_ERROR)
142 {
143 fprintf(stderr, "Error setting up reverb: %s\n", alGetString(err));
144 return 0;
145 }
146
147 return 1;
148 }
149
150
151 /* LoadBuffer loads the named audio file into an OpenAL buffer object, and
152 * returns the new buffer ID.
153 */
LoadSound(const char * filename)154 static ALuint LoadSound(const char *filename)
155 {
156 ALenum err, format;
157 ALuint buffer;
158 SNDFILE *sndfile;
159 SF_INFO sfinfo;
160 short *membuf;
161 sf_count_t num_frames;
162 ALsizei num_bytes;
163
164 /* Open the audio file and check that it's usable. */
165 sndfile = sf_open(filename, SFM_READ, &sfinfo);
166 if(!sndfile)
167 {
168 fprintf(stderr, "Could not open audio in %s: %s\n", filename, sf_strerror(sndfile));
169 return 0;
170 }
171 if(sfinfo.frames < 1 || sfinfo.frames > (sf_count_t)(INT_MAX/sizeof(short))/sfinfo.channels)
172 {
173 fprintf(stderr, "Bad sample count in %s (%" PRId64 ")\n", filename, sfinfo.frames);
174 sf_close(sndfile);
175 return 0;
176 }
177
178 /* Get the sound format, and figure out the OpenAL format */
179 if(sfinfo.channels == 1)
180 format = AL_FORMAT_MONO16;
181 else if(sfinfo.channels == 2)
182 format = AL_FORMAT_STEREO16;
183 else
184 {
185 fprintf(stderr, "Unsupported channel count: %d\n", sfinfo.channels);
186 sf_close(sndfile);
187 return 0;
188 }
189
190 /* Decode the whole audio file to a buffer. */
191 membuf = malloc((size_t)(sfinfo.frames * sfinfo.channels) * sizeof(short));
192
193 num_frames = sf_readf_short(sndfile, membuf, sfinfo.frames);
194 if(num_frames < 1)
195 {
196 free(membuf);
197 sf_close(sndfile);
198 fprintf(stderr, "Failed to read samples in %s (%" PRId64 ")\n", filename, num_frames);
199 return 0;
200 }
201 num_bytes = (ALsizei)(num_frames * sfinfo.channels) * (ALsizei)sizeof(short);
202
203 /* Buffer the audio data into a new buffer object, then free the data and
204 * close the file.
205 */
206 buffer = 0;
207 alGenBuffers(1, &buffer);
208 alBufferData(buffer, format, membuf, num_bytes, sfinfo.samplerate);
209
210 free(membuf);
211 sf_close(sndfile);
212
213 /* Check if an error occured, and clean up if so. */
214 err = alGetError();
215 if(err != AL_NO_ERROR)
216 {
217 fprintf(stderr, "OpenAL Error: %s\n", alGetString(err));
218 if(buffer && alIsBuffer(buffer))
219 alDeleteBuffers(1, &buffer);
220 return 0;
221 }
222
223 return buffer;
224 }
225
226
227 /* Helper to calculate the dot-product of the two given vectors. */
dot_product(const ALfloat vec0[3],const ALfloat vec1[3])228 static ALfloat dot_product(const ALfloat vec0[3], const ALfloat vec1[3])
229 {
230 return vec0[0]*vec1[0] + vec0[1]*vec1[1] + vec0[2]*vec1[2];
231 }
232
233 /* Helper to normalize a given vector. */
normalize(ALfloat vec[3])234 static void normalize(ALfloat vec[3])
235 {
236 ALfloat mag = sqrtf(dot_product(vec, vec));
237 if(mag > 0.00001f)
238 {
239 vec[0] /= mag;
240 vec[1] /= mag;
241 vec[2] /= mag;
242 }
243 else
244 {
245 vec[0] = 0.0f;
246 vec[1] = 0.0f;
247 vec[2] = 0.0f;
248 }
249 }
250
251
252 /* The main update function to update the listener and environment effects. */
UpdateListenerAndEffects(float timediff,const ALuint slots[2],const ALuint effects[2],const EFXEAXREVERBPROPERTIES reverbs[2])253 static void UpdateListenerAndEffects(float timediff, const ALuint slots[2], const ALuint effects[2], const EFXEAXREVERBPROPERTIES reverbs[2])
254 {
255 static const ALfloat listener_move_scale = 10.0f;
256 /* Individual reverb zones are connected via "portals". Each portal has a
257 * position (center point of the connecting area), a normal (facing
258 * direction), and a radius (approximate size of the connecting area).
259 */
260 const ALfloat portal_pos[3] = { 0.0f, 0.0f, 0.0f };
261 const ALfloat portal_norm[3] = { sqrtf(0.5f), 0.0f, -sqrtf(0.5f) };
262 const ALfloat portal_radius = 2.5f;
263 ALfloat other_dir[3], this_dir[3];
264 ALfloat listener_pos[3];
265 ALfloat local_norm[3];
266 ALfloat local_dir[3];
267 ALfloat near_edge[3];
268 ALfloat far_edge[3];
269 ALfloat dist, edist;
270
271 /* Update the listener position for the amount of time passed. This uses a
272 * simple triangular LFO to offset the position (moves along the X axis
273 * between -listener_move_scale and +listener_move_scale for each
274 * transition).
275 */
276 listener_pos[0] = (fabsf(2.0f - timediff/2.0f) - 1.0f) * listener_move_scale;
277 listener_pos[1] = 0.0f;
278 listener_pos[2] = 0.0f;
279 alListenerfv(AL_POSITION, listener_pos);
280
281 /* Calculate local_dir, which represents the listener-relative point to the
282 * adjacent zone (should also include orientation). Because EAX Reverb uses
283 * left-handed coordinates instead of right-handed like the rest of OpenAL,
284 * negate Z for the local values.
285 */
286 local_dir[0] = portal_pos[0] - listener_pos[0];
287 local_dir[1] = portal_pos[1] - listener_pos[1];
288 local_dir[2] = -(portal_pos[2] - listener_pos[2]);
289 /* A normal application would also rotate the portal's normal given the
290 * listener orientation, to get the listener-relative normal.
291 */
292 local_norm[0] = portal_norm[0];
293 local_norm[1] = portal_norm[1];
294 local_norm[2] = -portal_norm[2];
295
296 /* Calculate the distance from the listener to the portal, and ensure it's
297 * far enough away to not suffer severe floating-point precision issues.
298 */
299 dist = sqrtf(dot_product(local_dir, local_dir));
300 if(dist > 0.00001f)
301 {
302 const EFXEAXREVERBPROPERTIES *other_reverb, *this_reverb;
303 ALuint other_effect, this_effect;
304 ALfloat magnitude, dir_dot_norm;
305
306 /* Normalize the direction to the portal. */
307 local_dir[0] /= dist;
308 local_dir[1] /= dist;
309 local_dir[2] /= dist;
310
311 /* Calculate the dot product of the portal's local direction and local
312 * normal, which is used for angular and side checks later on.
313 */
314 dir_dot_norm = dot_product(local_dir, local_norm);
315
316 /* Figure out which zone we're in. */
317 if(dir_dot_norm <= 0.0f)
318 {
319 /* We're in front of the portal, so we're in Zone 0. */
320 this_effect = effects[0];
321 other_effect = effects[1];
322 this_reverb = &reverbs[0];
323 other_reverb = &reverbs[1];
324 }
325 else
326 {
327 /* We're behind the portal, so we're in Zone 1. */
328 this_effect = effects[1];
329 other_effect = effects[0];
330 this_reverb = &reverbs[1];
331 other_reverb = &reverbs[0];
332 }
333
334 /* Calculate the listener-relative extents of the portal. */
335 /* First, project the listener-to-portal vector onto the portal's plane
336 * to get the portal-relative direction along the plane that goes away
337 * from the listener (toward the farthest edge of the portal).
338 */
339 far_edge[0] = local_dir[0] - local_norm[0]*dir_dot_norm;
340 far_edge[1] = local_dir[1] - local_norm[1]*dir_dot_norm;
341 far_edge[2] = local_dir[2] - local_norm[2]*dir_dot_norm;
342
343 edist = sqrtf(dot_product(far_edge, far_edge));
344 if(edist > 0.0001f)
345 {
346 /* Rescale the portal-relative vector to be at the radius edge. */
347 ALfloat mag = portal_radius / edist;
348 far_edge[0] *= mag;
349 far_edge[1] *= mag;
350 far_edge[2] *= mag;
351
352 /* Calculate the closest edge of the portal by negating the
353 * farthest, and add an offset to make them both relative to the
354 * listener.
355 */
356 near_edge[0] = local_dir[0]*dist - far_edge[0];
357 near_edge[1] = local_dir[1]*dist - far_edge[1];
358 near_edge[2] = local_dir[2]*dist - far_edge[2];
359 far_edge[0] += local_dir[0]*dist;
360 far_edge[1] += local_dir[1]*dist;
361 far_edge[2] += local_dir[2]*dist;
362
363 /* Normalize the listener-relative extents of the portal, then
364 * calculate the panning magnitude for the other zone given the
365 * apparent size of the opening. The panning magnitude affects the
366 * envelopment of the environment, with 1 being a point, 0.5 being
367 * half coverage around the listener, and 0 being full coverage.
368 */
369 normalize(far_edge);
370 normalize(near_edge);
371 magnitude = 1.0f - acosf(dot_product(far_edge, near_edge))/(float)(M_PI*2.0);
372
373 /* Recalculate the panning direction, to be directly between the
374 * direction of the two extents.
375 */
376 local_dir[0] = far_edge[0] + near_edge[0];
377 local_dir[1] = far_edge[1] + near_edge[1];
378 local_dir[2] = far_edge[2] + near_edge[2];
379 normalize(local_dir);
380 }
381 else
382 {
383 /* If we get here, the listener is directly in front of or behind
384 * the center of the portal, making all aperture edges effectively
385 * equidistant. Calculating the panning magnitude is simplified,
386 * using the arctangent of the radius and distance.
387 */
388 magnitude = 1.0f - (atan2f(portal_radius, dist) / (float)M_PI);
389 }
390
391 /* Scale the other zone's panning vector. */
392 other_dir[0] = local_dir[0] * magnitude;
393 other_dir[1] = local_dir[1] * magnitude;
394 other_dir[2] = local_dir[2] * magnitude;
395 /* Pan the current zone to the opposite direction of the portal, and
396 * take the remaining percentage of the portal's magnitude.
397 */
398 this_dir[0] = local_dir[0] * (magnitude-1.0f);
399 this_dir[1] = local_dir[1] * (magnitude-1.0f);
400 this_dir[2] = local_dir[2] * (magnitude-1.0f);
401
402 /* Now set the effects' panning vectors and gain. Energy is shared
403 * between environments, so attenuate according to each zone's
404 * contribution (note: gain^2 = energy).
405 */
406 alEffectf(this_effect, AL_EAXREVERB_REFLECTIONS_GAIN, this_reverb->flReflectionsGain * sqrtf(magnitude));
407 alEffectf(this_effect, AL_EAXREVERB_LATE_REVERB_GAIN, this_reverb->flLateReverbGain * sqrtf(magnitude));
408 alEffectfv(this_effect, AL_EAXREVERB_REFLECTIONS_PAN, this_dir);
409 alEffectfv(this_effect, AL_EAXREVERB_LATE_REVERB_PAN, this_dir);
410
411 alEffectf(other_effect, AL_EAXREVERB_REFLECTIONS_GAIN, other_reverb->flReflectionsGain * sqrtf(1.0f-magnitude));
412 alEffectf(other_effect, AL_EAXREVERB_LATE_REVERB_GAIN, other_reverb->flLateReverbGain * sqrtf(1.0f-magnitude));
413 alEffectfv(other_effect, AL_EAXREVERB_REFLECTIONS_PAN, other_dir);
414 alEffectfv(other_effect, AL_EAXREVERB_LATE_REVERB_PAN, other_dir);
415 }
416 else
417 {
418 /* We're practically in the center of the portal. Give the panning
419 * vectors a 50/50 split, with Zone 0 covering the half in front of
420 * the normal, and Zone 1 covering the half behind.
421 */
422 this_dir[0] = local_norm[0] / 2.0f;
423 this_dir[1] = local_norm[1] / 2.0f;
424 this_dir[2] = local_norm[2] / 2.0f;
425
426 other_dir[0] = local_norm[0] / -2.0f;
427 other_dir[1] = local_norm[1] / -2.0f;
428 other_dir[2] = local_norm[2] / -2.0f;
429
430 alEffectf(effects[0], AL_EAXREVERB_REFLECTIONS_GAIN, reverbs[0].flReflectionsGain * sqrtf(0.5f));
431 alEffectf(effects[0], AL_EAXREVERB_LATE_REVERB_GAIN, reverbs[0].flLateReverbGain * sqrtf(0.5f));
432 alEffectfv(effects[0], AL_EAXREVERB_REFLECTIONS_PAN, this_dir);
433 alEffectfv(effects[0], AL_EAXREVERB_LATE_REVERB_PAN, this_dir);
434
435 alEffectf(effects[1], AL_EAXREVERB_REFLECTIONS_GAIN, reverbs[1].flReflectionsGain * sqrtf(0.5f));
436 alEffectf(effects[1], AL_EAXREVERB_LATE_REVERB_GAIN, reverbs[1].flLateReverbGain * sqrtf(0.5f));
437 alEffectfv(effects[1], AL_EAXREVERB_REFLECTIONS_PAN, other_dir);
438 alEffectfv(effects[1], AL_EAXREVERB_LATE_REVERB_PAN, other_dir);
439 }
440
441 /* Finally, update the effect slots with the updated effect parameters. */
442 alAuxiliaryEffectSloti(slots[0], AL_EFFECTSLOT_EFFECT, (ALint)effects[0]);
443 alAuxiliaryEffectSloti(slots[1], AL_EFFECTSLOT_EFFECT, (ALint)effects[1]);
444 }
445
446
main(int argc,char ** argv)447 int main(int argc, char **argv)
448 {
449 static const int MaxTransitions = 8;
450 EFXEAXREVERBPROPERTIES reverbs[2] = {
451 EFX_REVERB_PRESET_CARPETEDHALLWAY,
452 EFX_REVERB_PRESET_BATHROOM
453 };
454 ALCdevice *device = NULL;
455 ALCcontext *context = NULL;
456 ALuint effects[2] = { 0, 0 };
457 ALuint slots[2] = { 0, 0 };
458 ALuint direct_filter = 0;
459 ALuint buffer = 0;
460 ALuint source = 0;
461 ALCint num_sends = 0;
462 ALenum state = AL_INITIAL;
463 ALfloat direct_gain = 1.0f;
464 int basetime = 0;
465 int loops = 0;
466
467 /* Print out usage if no arguments were specified */
468 if(argc < 2)
469 {
470 fprintf(stderr, "Usage: %s [-device <name>] [options] <filename>\n\n"
471 "Options:\n"
472 "\t-nodirect\tSilence direct path output (easier to hear reverb)\n\n",
473 argv[0]);
474 return 1;
475 }
476
477 /* Initialize OpenAL, and check for EFX support with at least 2 auxiliary
478 * sends (if multiple sends are supported, 2 are provided by default; if
479 * you want more, you have to request it through alcCreateContext).
480 */
481 argv++; argc--;
482 if(InitAL(&argv, &argc) != 0)
483 return 1;
484
485 while(argc > 0)
486 {
487 if(strcmp(argv[0], "-nodirect") == 0)
488 direct_gain = 0.0f;
489 else
490 break;
491 argv++;
492 argc--;
493 }
494 if(argc < 1)
495 {
496 fprintf(stderr, "No filename spacified.\n");
497 CloseAL();
498 return 1;
499 }
500
501 context = alcGetCurrentContext();
502 device = alcGetContextsDevice(context);
503
504 if(!alcIsExtensionPresent(device, "ALC_EXT_EFX"))
505 {
506 fprintf(stderr, "Error: EFX not supported\n");
507 CloseAL();
508 return 1;
509 }
510
511 num_sends = 0;
512 alcGetIntegerv(device, ALC_MAX_AUXILIARY_SENDS, 1, &num_sends);
513 if(alcGetError(device) != ALC_NO_ERROR || num_sends < 2)
514 {
515 fprintf(stderr, "Error: Device does not support multiple sends (got %d, need 2)\n",
516 num_sends);
517 CloseAL();
518 return 1;
519 }
520
521 /* Define a macro to help load the function pointers. */
522 #define LOAD_PROC(T, x) ((x) = (T)alGetProcAddress(#x))
523 LOAD_PROC(LPALGENFILTERS, alGenFilters);
524 LOAD_PROC(LPALDELETEFILTERS, alDeleteFilters);
525 LOAD_PROC(LPALISFILTER, alIsFilter);
526 LOAD_PROC(LPALFILTERI, alFilteri);
527 LOAD_PROC(LPALFILTERIV, alFilteriv);
528 LOAD_PROC(LPALFILTERF, alFilterf);
529 LOAD_PROC(LPALFILTERFV, alFilterfv);
530 LOAD_PROC(LPALGETFILTERI, alGetFilteri);
531 LOAD_PROC(LPALGETFILTERIV, alGetFilteriv);
532 LOAD_PROC(LPALGETFILTERF, alGetFilterf);
533 LOAD_PROC(LPALGETFILTERFV, alGetFilterfv);
534
535 LOAD_PROC(LPALGENEFFECTS, alGenEffects);
536 LOAD_PROC(LPALDELETEEFFECTS, alDeleteEffects);
537 LOAD_PROC(LPALISEFFECT, alIsEffect);
538 LOAD_PROC(LPALEFFECTI, alEffecti);
539 LOAD_PROC(LPALEFFECTIV, alEffectiv);
540 LOAD_PROC(LPALEFFECTF, alEffectf);
541 LOAD_PROC(LPALEFFECTFV, alEffectfv);
542 LOAD_PROC(LPALGETEFFECTI, alGetEffecti);
543 LOAD_PROC(LPALGETEFFECTIV, alGetEffectiv);
544 LOAD_PROC(LPALGETEFFECTF, alGetEffectf);
545 LOAD_PROC(LPALGETEFFECTFV, alGetEffectfv);
546
547 LOAD_PROC(LPALGENAUXILIARYEFFECTSLOTS, alGenAuxiliaryEffectSlots);
548 LOAD_PROC(LPALDELETEAUXILIARYEFFECTSLOTS, alDeleteAuxiliaryEffectSlots);
549 LOAD_PROC(LPALISAUXILIARYEFFECTSLOT, alIsAuxiliaryEffectSlot);
550 LOAD_PROC(LPALAUXILIARYEFFECTSLOTI, alAuxiliaryEffectSloti);
551 LOAD_PROC(LPALAUXILIARYEFFECTSLOTIV, alAuxiliaryEffectSlotiv);
552 LOAD_PROC(LPALAUXILIARYEFFECTSLOTF, alAuxiliaryEffectSlotf);
553 LOAD_PROC(LPALAUXILIARYEFFECTSLOTFV, alAuxiliaryEffectSlotfv);
554 LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTI, alGetAuxiliaryEffectSloti);
555 LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTIV, alGetAuxiliaryEffectSlotiv);
556 LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTF, alGetAuxiliaryEffectSlotf);
557 LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTFV, alGetAuxiliaryEffectSlotfv);
558 #undef LOAD_PROC
559
560 /* Load the sound into a buffer. */
561 buffer = LoadSound(argv[0]);
562 if(!buffer)
563 {
564 CloseAL();
565 return 1;
566 }
567
568 /* Generate two effects for two "zones", and load a reverb into each one.
569 * Note that unlike single-zone reverb, where you can store one effect per
570 * preset, for multi-zone reverb you should have one effect per environment
571 * instance, or one per audible zone. This is because we'll be changing the
572 * effects' properties in real-time based on the environment instance
573 * relative to the listener.
574 */
575 alGenEffects(2, effects);
576 if(!LoadEffect(effects[0], &reverbs[0]) || !LoadEffect(effects[1], &reverbs[1]))
577 {
578 alDeleteEffects(2, effects);
579 alDeleteBuffers(1, &buffer);
580 CloseAL();
581 return 1;
582 }
583
584 /* Create the effect slot objects, one for each "active" effect. */
585 alGenAuxiliaryEffectSlots(2, slots);
586
587 /* Tell the effect slots to use the loaded effect objects, with slot 0 for
588 * Zone 0 and slot 1 for Zone 1. Note that this effectively copies the
589 * effect properties. Modifying or deleting the effect object afterward
590 * won't directly affect the effect slot until they're reapplied like this.
591 */
592 alAuxiliaryEffectSloti(slots[0], AL_EFFECTSLOT_EFFECT, (ALint)effects[0]);
593 alAuxiliaryEffectSloti(slots[1], AL_EFFECTSLOT_EFFECT, (ALint)effects[1]);
594 assert(alGetError()==AL_NO_ERROR && "Failed to set effect slot");
595
596 /* For the purposes of this example, prepare a filter that optionally
597 * silences the direct path which allows us to hear just the reverberation.
598 * A filter like this is normally used for obstruction, where the path
599 * directly between the listener and source is blocked (the exact
600 * properties depending on the type and thickness of the obstructing
601 * material).
602 */
603 alGenFilters(1, &direct_filter);
604 alFilteri(direct_filter, AL_FILTER_TYPE, AL_FILTER_LOWPASS);
605 alFilterf(direct_filter, AL_LOWPASS_GAIN, direct_gain);
606 assert(alGetError()==AL_NO_ERROR && "Failed to set direct filter");
607
608 /* Create the source to play the sound with, place it in front of the
609 * listener's path in the left zone.
610 */
611 source = 0;
612 alGenSources(1, &source);
613 alSourcei(source, AL_LOOPING, AL_TRUE);
614 alSource3f(source, AL_POSITION, -5.0f, 0.0f, -2.0f);
615 alSourcei(source, AL_DIRECT_FILTER, (ALint)direct_filter);
616 alSourcei(source, AL_BUFFER, (ALint)buffer);
617
618 /* Connect the source to the effect slots. Here, we connect source send 0
619 * to Zone 0's slot, and send 1 to Zone 1's slot. Filters can be specified
620 * to occlude the source from each zone by varying amounts; for example, a
621 * source within a particular zone would be unfiltered, while a source that
622 * can only see a zone through a window or thin wall may be attenuated for
623 * that zone.
624 */
625 alSource3i(source, AL_AUXILIARY_SEND_FILTER, (ALint)slots[0], 0, AL_FILTER_NULL);
626 alSource3i(source, AL_AUXILIARY_SEND_FILTER, (ALint)slots[1], 1, AL_FILTER_NULL);
627 assert(alGetError()==AL_NO_ERROR && "Failed to setup sound source");
628
629 /* Get the current time as the base for timing in the main loop. */
630 basetime = altime_get();
631 loops = 0;
632 printf("Transition %d of %d...\n", loops+1, MaxTransitions);
633
634 /* Play the sound for a while. */
635 alSourcePlay(source);
636 do {
637 int curtime;
638 ALfloat timediff;
639
640 /* Start a batch update, to ensure all changes apply simultaneously. */
641 alcSuspendContext(context);
642
643 /* Get the current time to track the amount of time that passed.
644 * Convert the difference to seconds.
645 */
646 curtime = altime_get();
647 timediff = (float)(curtime - basetime) / 1000.0f;
648
649 /* Avoid negative time deltas, in case of non-monotonic clocks. */
650 if(timediff < 0.0f)
651 timediff = 0.0f;
652 else while(timediff >= 4.0f*(float)((loops&1)+1))
653 {
654 /* For this example, each transition occurs over 4 seconds, and
655 * there's 2 transitions per cycle.
656 */
657 if(++loops < MaxTransitions)
658 printf("Transition %d of %d...\n", loops+1, MaxTransitions);
659 if(!(loops&1))
660 {
661 /* Cycle completed. Decrease the delta and increase the base
662 * time to start a new cycle.
663 */
664 timediff -= 8.0f;
665 basetime += 8000;
666 }
667 }
668
669 /* Update the listener and effects, and finish the batch. */
670 UpdateListenerAndEffects(timediff, slots, effects, reverbs);
671 alcProcessContext(context);
672
673 al_nssleep(10000000);
674
675 alGetSourcei(source, AL_SOURCE_STATE, &state);
676 } while(alGetError() == AL_NO_ERROR && state == AL_PLAYING && loops < MaxTransitions);
677
678 /* All done. Delete resources, and close down OpenAL. */
679 alDeleteSources(1, &source);
680 alDeleteAuxiliaryEffectSlots(2, slots);
681 alDeleteEffects(2, effects);
682 alDeleteFilters(1, &direct_filter);
683 alDeleteBuffers(1, &buffer);
684
685 CloseAL();
686
687 return 0;
688 }
689