1 /* ========================================
2  *  UnBox - UnBox.h
3  *  Copyright (c) 2016 airwindows, All rights reserved
4  * ======================================== */
5 
6 #ifndef __UnBox_H
7 #include "UnBox.h"
8 #endif
9 
10 namespace UnBox {
11 
12 
processReplacing(float ** inputs,float ** outputs,VstInt32 sampleFrames)13 void UnBox::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames)
14 {
15     float* in1  =  inputs[0];
16     float* in2  =  inputs[1];
17     float* out1 = outputs[0];
18     float* out2 = outputs[1];
19 
20 	double overallscale = 1.0;
21 	overallscale /= 44100.0;
22 	overallscale *= getSampleRate();
23 
24 	double input = A*2.0;
25 	double unbox = B+1.0;
26 	unbox *= unbox; //let's get some more gain into this
27 	double iirAmount = (unbox*0.00052)/overallscale;
28 	double output = C*2.0;
29 
30 	double treble = unbox; //averaging taps 1-4
31 	double gain = treble;
32 	if (gain > 1.0) {e[0] = 1.0; gain -= 1.0;} else {e[0] = gain; gain = 0.0;}
33 	if (gain > 1.0) {e[1] = 1.0; gain -= 1.0;} else {e[1] = gain; gain = 0.0;}
34 	if (gain > 1.0) {e[2] = 1.0; gain -= 1.0;} else {e[2] = gain; gain = 0.0;}
35 	if (gain > 1.0) {e[3] = 1.0; gain -= 1.0;} else {e[3] = gain; gain = 0.0;}
36 	if (gain > 1.0) {e[4] = 1.0; gain -= 1.0;} else {e[4] = gain; gain = 0.0;}
37 	//there, now we have a neat little moving average with remainders
38 	if (treble < 1.0) treble = 1.0;
39 	e[0] /= treble;
40 	e[1] /= treble;
41 	e[2] /= treble;
42 	e[3] /= treble;
43 	e[4] /= treble;
44 	//and now it's neatly scaled, too
45 
46 	treble = unbox*2.0; //averaging taps 1-8
47 	gain = treble;
48 	if (gain > 1.0) {f[0] = 1.0; gain -= 1.0;} else {f[0] = gain; gain = 0.0;}
49 	if (gain > 1.0) {f[1] = 1.0; gain -= 1.0;} else {f[1] = gain; gain = 0.0;}
50 	if (gain > 1.0) {f[2] = 1.0; gain -= 1.0;} else {f[2] = gain; gain = 0.0;}
51 	if (gain > 1.0) {f[3] = 1.0; gain -= 1.0;} else {f[3] = gain; gain = 0.0;}
52 	if (gain > 1.0) {f[4] = 1.0; gain -= 1.0;} else {f[4] = gain; gain = 0.0;}
53 	if (gain > 1.0) {f[5] = 1.0; gain -= 1.0;} else {f[5] = gain; gain = 0.0;}
54 	if (gain > 1.0) {f[6] = 1.0; gain -= 1.0;} else {f[6] = gain; gain = 0.0;}
55 	if (gain > 1.0) {f[7] = 1.0; gain -= 1.0;} else {f[7] = gain; gain = 0.0;}
56 	if (gain > 1.0) {f[8] = 1.0; gain -= 1.0;} else {f[8] = gain; gain = 0.0;}
57 	if (gain > 1.0) {f[9] = 1.0; gain -= 1.0;} else {f[9] = gain; gain = 0.0;}
58 	//there, now we have a neat little moving average with remainders
59 	if (treble < 1.0) treble = 1.0;
60 	f[0] /= treble;
61 	f[1] /= treble;
62 	f[2] /= treble;
63 	f[3] /= treble;
64 	f[4] /= treble;
65 	f[5] /= treble;
66 	f[6] /= treble;
67 	f[7] /= treble;
68 	f[8] /= treble;
69 	f[9] /= treble;
70 	//and now it's neatly scaled, too
71 
72     while (--sampleFrames >= 0)
73     {
74 		long double inputSampleL = *in1;
75 		long double inputSampleR = *in2;
76 
77 		if (input != 1.0) {inputSampleL *= input; inputSampleR *= input;}
78 
79 		static int noisesourceL = 0;
80 		static int noisesourceR = 850010;
81 		int residue;
82 		double applyresidue;
83 
84 		noisesourceL = noisesourceL % 1700021; noisesourceL++;
85 		residue = noisesourceL * noisesourceL;
86 		residue = residue % 170003; residue *= residue;
87 		residue = residue % 17011; residue *= residue;
88 		residue = residue % 1709; residue *= residue;
89 		residue = residue % 173; residue *= residue;
90 		residue = residue % 17;
91 		applyresidue = residue;
92 		applyresidue *= 0.00000001;
93 		applyresidue *= 0.00000001;
94 		inputSampleL += applyresidue;
95 		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
96 			inputSampleL -= applyresidue;
97 		}
98 
99 		noisesourceR = noisesourceR % 1700021; noisesourceR++;
100 		residue = noisesourceR * noisesourceR;
101 		residue = residue % 170003; residue *= residue;
102 		residue = residue % 17011; residue *= residue;
103 		residue = residue % 1709; residue *= residue;
104 		residue = residue % 173; residue *= residue;
105 		residue = residue % 17;
106 		applyresidue = residue;
107 		applyresidue *= 0.00000001;
108 		applyresidue *= 0.00000001;
109 		inputSampleR += applyresidue;
110 		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
111 			inputSampleR -= applyresidue;
112 		}
113 		//for live air, we always apply the dither noise. Then, if our result is
114 		//effectively digital black, we'll subtract it aUnBox. We want a 'air' hiss
115 		long double drySampleL = inputSampleL;
116 		long double drySampleR = inputSampleR;
117 
118 		aL[4] = aL[3]; aL[3] = aL[2]; aL[2] = aL[1];
119 		aL[1] = aL[0]; aL[0] = inputSampleL;
120 		inputSampleL *= e[0];
121 		inputSampleL += (aL[1] * e[1]);
122 		inputSampleL += (aL[2] * e[2]);
123 		inputSampleL += (aL[3] * e[3]);
124 		inputSampleL += (aL[4] * e[4]);
125 		//this is now an average of inputSampleL
126 
127 		aR[4] = aR[3]; aR[3] = aR[2]; aR[2] = aR[1];
128 		aR[1] = aR[0]; aR[0] = inputSampleR;
129 		inputSampleR *= e[0];
130 		inputSampleR += (aR[1] * e[1]);
131 		inputSampleR += (aR[2] * e[2]);
132 		inputSampleR += (aR[3] * e[3]);
133 		inputSampleR += (aR[4] * e[4]);
134 		//this is now an average of inputSampleR
135 
136 		bL[4] = bL[3]; bL[3] = bL[2]; bL[2] = bL[1];
137 		bL[1] = bL[0]; bL[0] = inputSampleL;
138 		inputSampleL *= e[0];
139 		inputSampleL += (bL[1] * e[1]);
140 		inputSampleL += (bL[2] * e[2]);
141 		inputSampleL += (bL[3] * e[3]);
142 		inputSampleL += (bL[4] * e[4]);
143 		//this is now an average of an average of inputSampleL. Two poles
144 
145 		bR[4] = bR[3]; bR[3] = bR[2]; bR[2] = bR[1];
146 		bR[1] = bR[0]; bR[0] = inputSampleR;
147 		inputSampleR *= e[0];
148 		inputSampleR += (bR[1] * e[1]);
149 		inputSampleR += (bR[2] * e[2]);
150 		inputSampleR += (bR[3] * e[3]);
151 		inputSampleR += (bR[4] * e[4]);
152 		//this is now an average of an average of inputSampleR. Two poles
153 
154 		inputSampleL *= unbox;
155 		inputSampleR *= unbox;
156 		//clip to 1.2533141373155 to reach maximum output
157 		if (inputSampleL > 1.2533141373155) inputSampleL = 1.2533141373155;
158 		if (inputSampleL < -1.2533141373155) inputSampleL = -1.2533141373155;
159 		inputSampleL = sin(inputSampleL * fabs(inputSampleL)) / ((inputSampleL == 0.0) ?1:fabs(inputSampleL));
160 
161 		if (inputSampleR > 1.2533141373155) inputSampleR = 1.2533141373155;
162 		if (inputSampleR < -1.2533141373155) inputSampleR = -1.2533141373155;
163 		inputSampleR = sin(inputSampleR * fabs(inputSampleR)) / ((inputSampleR == 0.0) ?1:fabs(inputSampleR));
164 
165 		inputSampleL /= unbox;
166 		inputSampleR /= unbox;
167 		//now we have a distorted inputSample at the correct volume relative to drySample
168 
169 		long double accumulatorSampleL = (drySampleL - inputSampleL);
170 		cL[9] = cL[8]; cL[8] = cL[7]; cL[7] = cL[6]; cL[6] = cL[5];
171 		cL[5] = cL[4]; cL[4] = cL[3]; cL[3] = cL[2]; cL[2] = cL[1];
172 		cL[1] = cL[0]; cL[0] = accumulatorSampleL;
173 		accumulatorSampleL *= f[0];
174 		accumulatorSampleL += (cL[1] * f[1]);
175 		accumulatorSampleL += (cL[2] * f[2]);
176 		accumulatorSampleL += (cL[3] * f[3]);
177 		accumulatorSampleL += (cL[4] * f[4]);
178 		accumulatorSampleL += (cL[5] * f[5]);
179 		accumulatorSampleL += (cL[6] * f[6]);
180 		accumulatorSampleL += (cL[7] * f[7]);
181 		accumulatorSampleL += (cL[8] * f[8]);
182 		accumulatorSampleL += (cL[9] * f[9]);
183 		//this is now an average of all the recent variances from dry
184 
185 		long double accumulatorSampleR = (drySampleR - inputSampleR);
186 		cR[9] = cR[8]; cR[8] = cR[7]; cR[7] = cR[6]; cR[6] = cR[5];
187 		cR[5] = cR[4]; cR[4] = cR[3]; cR[3] = cR[2]; cR[2] = cR[1];
188 		cR[1] = cR[0]; cR[0] = accumulatorSampleR;
189 		accumulatorSampleR *= f[0];
190 		accumulatorSampleR += (cR[1] * f[1]);
191 		accumulatorSampleR += (cR[2] * f[2]);
192 		accumulatorSampleR += (cR[3] * f[3]);
193 		accumulatorSampleR += (cR[4] * f[4]);
194 		accumulatorSampleR += (cR[5] * f[5]);
195 		accumulatorSampleR += (cR[6] * f[6]);
196 		accumulatorSampleR += (cR[7] * f[7]);
197 		accumulatorSampleR += (cR[8] * f[8]);
198 		accumulatorSampleR += (cR[9] * f[9]);
199 		//this is now an average of all the recent variances from dry
200 
201 		iirSampleAL = (iirSampleAL * (1 - iirAmount)) + (accumulatorSampleL * iirAmount);
202 		accumulatorSampleL -= iirSampleAL;
203 		//two poles of IIR
204 
205 		iirSampleAR = (iirSampleAR * (1 - iirAmount)) + (accumulatorSampleR * iirAmount);
206 		accumulatorSampleR -= iirSampleAR;
207 		//two poles of IIR
208 
209 		iirSampleBL = (iirSampleBL * (1 - iirAmount)) + (accumulatorSampleL * iirAmount);
210 		accumulatorSampleL -= iirSampleBL;
211 		//highpass section
212 
213 		iirSampleBR = (iirSampleBR * (1 - iirAmount)) + (accumulatorSampleR * iirAmount);
214 		accumulatorSampleR -= iirSampleBR;
215 		//highpass section
216 		//this is now a highpassed average of all the recent variances from dry
217 
218 		inputSampleL = drySampleL - accumulatorSampleL;
219 		inputSampleR = drySampleR - accumulatorSampleR;
220 		//we apply it as one operation, to get the result.
221 
222 		if (output != 1.0) {inputSampleL *= output; inputSampleR *= output;}
223 
224 		//stereo 32 bit dither, made small and tidy.
225 		int expon; frexpf((float)inputSampleL, &expon);
226 		long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
227 		inputSampleL += (dither-fpNShapeL); fpNShapeL = dither;
228 		frexpf((float)inputSampleR, &expon);
229 		dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
230 		inputSampleR += (dither-fpNShapeR); fpNShapeR = dither;
231 		//end 32 bit dither
232 
233 		*out1 = inputSampleL;
234 		*out2 = inputSampleR;
235 
236 		in1++;
237 		in2++;
238 		out1++;
239 		out2++;
240     }
241 }
242 
processDoubleReplacing(double ** inputs,double ** outputs,VstInt32 sampleFrames)243 void UnBox::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames)
244 {
245     double* in1  =  inputs[0];
246     double* in2  =  inputs[1];
247     double* out1 = outputs[0];
248     double* out2 = outputs[1];
249 
250 	double overallscale = 1.0;
251 	overallscale /= 44100.0;
252 	overallscale *= getSampleRate();
253 
254 	double input = A*2.0;
255 	double unbox = B+1.0;
256 	unbox *= unbox; //let's get some more gain into this
257 	double iirAmount = (unbox*0.00052)/overallscale;
258 	double output = C*2.0;
259 
260 	double treble = unbox; //averaging taps 1-4
261 	double gain = treble;
262 	if (gain > 1.0) {e[0] = 1.0; gain -= 1.0;} else {e[0] = gain; gain = 0.0;}
263 	if (gain > 1.0) {e[1] = 1.0; gain -= 1.0;} else {e[1] = gain; gain = 0.0;}
264 	if (gain > 1.0) {e[2] = 1.0; gain -= 1.0;} else {e[2] = gain; gain = 0.0;}
265 	if (gain > 1.0) {e[3] = 1.0; gain -= 1.0;} else {e[3] = gain; gain = 0.0;}
266 	if (gain > 1.0) {e[4] = 1.0; gain -= 1.0;} else {e[4] = gain; gain = 0.0;}
267 	//there, now we have a neat little moving average with remainders
268 	if (treble < 1.0) treble = 1.0;
269 	e[0] /= treble;
270 	e[1] /= treble;
271 	e[2] /= treble;
272 	e[3] /= treble;
273 	e[4] /= treble;
274 	//and now it's neatly scaled, too
275 
276 	treble = unbox*2.0; //averaging taps 1-8
277 	gain = treble;
278 	if (gain > 1.0) {f[0] = 1.0; gain -= 1.0;} else {f[0] = gain; gain = 0.0;}
279 	if (gain > 1.0) {f[1] = 1.0; gain -= 1.0;} else {f[1] = gain; gain = 0.0;}
280 	if (gain > 1.0) {f[2] = 1.0; gain -= 1.0;} else {f[2] = gain; gain = 0.0;}
281 	if (gain > 1.0) {f[3] = 1.0; gain -= 1.0;} else {f[3] = gain; gain = 0.0;}
282 	if (gain > 1.0) {f[4] = 1.0; gain -= 1.0;} else {f[4] = gain; gain = 0.0;}
283 	if (gain > 1.0) {f[5] = 1.0; gain -= 1.0;} else {f[5] = gain; gain = 0.0;}
284 	if (gain > 1.0) {f[6] = 1.0; gain -= 1.0;} else {f[6] = gain; gain = 0.0;}
285 	if (gain > 1.0) {f[7] = 1.0; gain -= 1.0;} else {f[7] = gain; gain = 0.0;}
286 	if (gain > 1.0) {f[8] = 1.0; gain -= 1.0;} else {f[8] = gain; gain = 0.0;}
287 	if (gain > 1.0) {f[9] = 1.0; gain -= 1.0;} else {f[9] = gain; gain = 0.0;}
288 	//there, now we have a neat little moving average with remainders
289 	if (treble < 1.0) treble = 1.0;
290 	f[0] /= treble;
291 	f[1] /= treble;
292 	f[2] /= treble;
293 	f[3] /= treble;
294 	f[4] /= treble;
295 	f[5] /= treble;
296 	f[6] /= treble;
297 	f[7] /= treble;
298 	f[8] /= treble;
299 	f[9] /= treble;
300 	//and now it's neatly scaled, too
301 
302     while (--sampleFrames >= 0)
303     {
304 		long double inputSampleL = *in1;
305 		long double inputSampleR = *in2;
306 
307 		if (input != 1.0) {inputSampleL *= input; inputSampleR *= input;}
308 
309 		static int noisesourceL = 0;
310 		static int noisesourceR = 850010;
311 		int residue;
312 		double applyresidue;
313 
314 		noisesourceL = noisesourceL % 1700021; noisesourceL++;
315 		residue = noisesourceL * noisesourceL;
316 		residue = residue % 170003; residue *= residue;
317 		residue = residue % 17011; residue *= residue;
318 		residue = residue % 1709; residue *= residue;
319 		residue = residue % 173; residue *= residue;
320 		residue = residue % 17;
321 		applyresidue = residue;
322 		applyresidue *= 0.00000001;
323 		applyresidue *= 0.00000001;
324 		inputSampleL += applyresidue;
325 		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
326 			inputSampleL -= applyresidue;
327 		}
328 
329 		noisesourceR = noisesourceR % 1700021; noisesourceR++;
330 		residue = noisesourceR * noisesourceR;
331 		residue = residue % 170003; residue *= residue;
332 		residue = residue % 17011; residue *= residue;
333 		residue = residue % 1709; residue *= residue;
334 		residue = residue % 173; residue *= residue;
335 		residue = residue % 17;
336 		applyresidue = residue;
337 		applyresidue *= 0.00000001;
338 		applyresidue *= 0.00000001;
339 		inputSampleR += applyresidue;
340 		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
341 			inputSampleR -= applyresidue;
342 		}
343 		//for live air, we always apply the dither noise. Then, if our result is
344 		//effectively digital black, we'll subtract it aUnBox. We want a 'air' hiss
345 		long double drySampleL = inputSampleL;
346 		long double drySampleR = inputSampleR;
347 
348 		aL[4] = aL[3]; aL[3] = aL[2]; aL[2] = aL[1];
349 		aL[1] = aL[0]; aL[0] = inputSampleL;
350 		inputSampleL *= e[0];
351 		inputSampleL += (aL[1] * e[1]);
352 		inputSampleL += (aL[2] * e[2]);
353 		inputSampleL += (aL[3] * e[3]);
354 		inputSampleL += (aL[4] * e[4]);
355 		//this is now an average of inputSampleL
356 
357 		aR[4] = aR[3]; aR[3] = aR[2]; aR[2] = aR[1];
358 		aR[1] = aR[0]; aR[0] = inputSampleR;
359 		inputSampleR *= e[0];
360 		inputSampleR += (aR[1] * e[1]);
361 		inputSampleR += (aR[2] * e[2]);
362 		inputSampleR += (aR[3] * e[3]);
363 		inputSampleR += (aR[4] * e[4]);
364 		//this is now an average of inputSampleR
365 
366 		bL[4] = bL[3]; bL[3] = bL[2]; bL[2] = bL[1];
367 		bL[1] = bL[0]; bL[0] = inputSampleL;
368 		inputSampleL *= e[0];
369 		inputSampleL += (bL[1] * e[1]);
370 		inputSampleL += (bL[2] * e[2]);
371 		inputSampleL += (bL[3] * e[3]);
372 		inputSampleL += (bL[4] * e[4]);
373 		//this is now an average of an average of inputSampleL. Two poles
374 
375 		bR[4] = bR[3]; bR[3] = bR[2]; bR[2] = bR[1];
376 		bR[1] = bR[0]; bR[0] = inputSampleR;
377 		inputSampleR *= e[0];
378 		inputSampleR += (bR[1] * e[1]);
379 		inputSampleR += (bR[2] * e[2]);
380 		inputSampleR += (bR[3] * e[3]);
381 		inputSampleR += (bR[4] * e[4]);
382 		//this is now an average of an average of inputSampleR. Two poles
383 
384 		inputSampleL *= unbox;
385 		inputSampleR *= unbox;
386 		//clip to 1.2533141373155 to reach maximum output
387 		if (inputSampleL > 1.2533141373155) inputSampleL = 1.2533141373155;
388 		if (inputSampleL < -1.2533141373155) inputSampleL = -1.2533141373155;
389 		inputSampleL = sin(inputSampleL * fabs(inputSampleL)) / ((inputSampleL == 0.0) ?1:fabs(inputSampleL));
390 
391 		if (inputSampleR > 1.2533141373155) inputSampleR = 1.2533141373155;
392 		if (inputSampleR < -1.2533141373155) inputSampleR = -1.2533141373155;
393 		inputSampleR = sin(inputSampleR * fabs(inputSampleR)) / ((inputSampleR == 0.0) ?1:fabs(inputSampleR));
394 
395 		inputSampleL /= unbox;
396 		inputSampleR /= unbox;
397 		//now we have a distorted inputSample at the correct volume relative to drySample
398 
399 		long double accumulatorSampleL = (drySampleL - inputSampleL);
400 		cL[9] = cL[8]; cL[8] = cL[7]; cL[7] = cL[6]; cL[6] = cL[5];
401 		cL[5] = cL[4]; cL[4] = cL[3]; cL[3] = cL[2]; cL[2] = cL[1];
402 		cL[1] = cL[0]; cL[0] = accumulatorSampleL;
403 		accumulatorSampleL *= f[0];
404 		accumulatorSampleL += (cL[1] * f[1]);
405 		accumulatorSampleL += (cL[2] * f[2]);
406 		accumulatorSampleL += (cL[3] * f[3]);
407 		accumulatorSampleL += (cL[4] * f[4]);
408 		accumulatorSampleL += (cL[5] * f[5]);
409 		accumulatorSampleL += (cL[6] * f[6]);
410 		accumulatorSampleL += (cL[7] * f[7]);
411 		accumulatorSampleL += (cL[8] * f[8]);
412 		accumulatorSampleL += (cL[9] * f[9]);
413 		//this is now an average of all the recent variances from dry
414 
415 		long double accumulatorSampleR = (drySampleR - inputSampleR);
416 		cR[9] = cR[8]; cR[8] = cR[7]; cR[7] = cR[6]; cR[6] = cR[5];
417 		cR[5] = cR[4]; cR[4] = cR[3]; cR[3] = cR[2]; cR[2] = cR[1];
418 		cR[1] = cR[0]; cR[0] = accumulatorSampleR;
419 		accumulatorSampleR *= f[0];
420 		accumulatorSampleR += (cR[1] * f[1]);
421 		accumulatorSampleR += (cR[2] * f[2]);
422 		accumulatorSampleR += (cR[3] * f[3]);
423 		accumulatorSampleR += (cR[4] * f[4]);
424 		accumulatorSampleR += (cR[5] * f[5]);
425 		accumulatorSampleR += (cR[6] * f[6]);
426 		accumulatorSampleR += (cR[7] * f[7]);
427 		accumulatorSampleR += (cR[8] * f[8]);
428 		accumulatorSampleR += (cR[9] * f[9]);
429 		//this is now an average of all the recent variances from dry
430 
431 		iirSampleAL = (iirSampleAL * (1 - iirAmount)) + (accumulatorSampleL * iirAmount);
432 		accumulatorSampleL -= iirSampleAL;
433 		//two poles of IIR
434 
435 		iirSampleAR = (iirSampleAR * (1 - iirAmount)) + (accumulatorSampleR * iirAmount);
436 		accumulatorSampleR -= iirSampleAR;
437 		//two poles of IIR
438 
439 		iirSampleBL = (iirSampleBL * (1 - iirAmount)) + (accumulatorSampleL * iirAmount);
440 		accumulatorSampleL -= iirSampleBL;
441 		//highpass section
442 
443 		iirSampleBR = (iirSampleBR * (1 - iirAmount)) + (accumulatorSampleR * iirAmount);
444 		accumulatorSampleR -= iirSampleBR;
445 		//highpass section
446 		//this is now a highpassed average of all the recent variances from dry
447 
448 		inputSampleL = drySampleL - accumulatorSampleL;
449 		inputSampleR = drySampleR - accumulatorSampleR;
450 		//we apply it as one operation, to get the result.
451 
452 		if (output != 1.0) {inputSampleL *= output; inputSampleR *= output;}
453 
454 		//stereo 64 bit dither, made small and tidy.
455 		int expon; frexp((double)inputSampleL, &expon);
456 		long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
457 		dither /= 536870912.0; //needs this to scale to 64 bit zone
458 		inputSampleL += (dither-fpNShapeL); fpNShapeL = dither;
459 		frexp((double)inputSampleR, &expon);
460 		dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
461 		dither /= 536870912.0; //needs this to scale to 64 bit zone
462 		inputSampleR += (dither-fpNShapeR); fpNShapeR = dither;
463 		//end 64 bit dither
464 
465 		*out1 = inputSampleL;
466 		*out2 = inputSampleR;
467 
468 		in1++;
469 		in2++;
470 		out1++;
471 		out2++;
472     }
473 }
474 
475 
476 } // end namespace UnBox
477 
478