1 /*
2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #ifndef WEBRTC_MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_
12 #define WEBRTC_MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_
13 
14 // MSVC++ requires this to be set before any other includes to get M_PI.
15 #define _USE_MATH_DEFINES
16 
17 #include <math.h>
18 #include <stddef.h>  // size_t
19 #include <stdio.h>  // FILE
20 #include <vector>
21 
22 #include "webrtc/base/arraysize.h"
23 #include "webrtc/base/platform_file.h"
24 #include "webrtc/common.h"
25 #include "webrtc/modules/audio_processing/beamformer/array_util.h"
26 #include "webrtc/typedefs.h"
27 
28 struct AecCore;
29 
30 namespace webrtc {
31 
32 class AudioFrame;
33 
34 template<typename T>
35 class Beamformer;
36 
37 class StreamConfig;
38 class ProcessingConfig;
39 
40 class EchoCancellation;
41 class EchoControlMobile;
42 class GainControl;
43 class HighPassFilter;
44 class LevelEstimator;
45 class NoiseSuppression;
46 class VoiceDetection;
47 
48 // Use to enable the extended filter mode in the AEC, along with robustness
49 // measures around the reported system delays. It comes with a significant
50 // increase in AEC complexity, but is much more robust to unreliable reported
51 // delays.
52 //
53 // Detailed changes to the algorithm:
54 // - The filter length is changed from 48 to 128 ms. This comes with tuning of
55 //   several parameters: i) filter adaptation stepsize and error threshold;
56 //   ii) non-linear processing smoothing and overdrive.
57 // - Option to ignore the reported delays on platforms which we deem
58 //   sufficiently unreliable. See WEBRTC_UNTRUSTED_DELAY in echo_cancellation.c.
59 // - Faster startup times by removing the excessive "startup phase" processing
60 //   of reported delays.
61 // - Much more conservative adjustments to the far-end read pointer. We smooth
62 //   the delay difference more heavily, and back off from the difference more.
63 //   Adjustments force a readaptation of the filter, so they should be avoided
64 //   except when really necessary.
65 struct ExtendedFilter {
ExtendedFilterExtendedFilter66   ExtendedFilter() : enabled(false) {}
ExtendedFilterExtendedFilter67   explicit ExtendedFilter(bool enabled) : enabled(enabled) {}
68   bool enabled;
69 };
70 
71 // Enables delay-agnostic echo cancellation. This feature relies on internally
72 // estimated delays between the process and reverse streams, thus not relying
73 // on reported system delays. This configuration only applies to
74 // EchoCancellation and not EchoControlMobile. It can be set in the constructor
75 // or using AudioProcessing::SetExtraOptions().
76 struct DelayAgnostic {
DelayAgnosticDelayAgnostic77   DelayAgnostic() : enabled(false) {}
DelayAgnosticDelayAgnostic78   explicit DelayAgnostic(bool enabled) : enabled(enabled) {}
79   bool enabled;
80 };
81 
82 // Use to enable experimental gain control (AGC). At startup the experimental
83 // AGC moves the microphone volume up to |startup_min_volume| if the current
84 // microphone volume is set too low. The value is clamped to its operating range
85 // [12, 255]. Here, 255 maps to 100%.
86 //
87 // Must be provided through AudioProcessing::Create(Confg&).
88 #if defined(WEBRTC_CHROMIUM_BUILD)
89 static const int kAgcStartupMinVolume = 85;
90 #else
91 static const int kAgcStartupMinVolume = 0;
92 #endif  // defined(WEBRTC_CHROMIUM_BUILD)
93 struct ExperimentalAgc {
ExperimentalAgcExperimentalAgc94   ExperimentalAgc() : enabled(true), startup_min_volume(kAgcStartupMinVolume) {}
ExperimentalAgcExperimentalAgc95   explicit ExperimentalAgc(bool enabled)
96       : enabled(enabled), startup_min_volume(kAgcStartupMinVolume) {}
ExperimentalAgcExperimentalAgc97   ExperimentalAgc(bool enabled, int startup_min_volume)
98       : enabled(enabled), startup_min_volume(startup_min_volume) {}
99   bool enabled;
100   int startup_min_volume;
101 };
102 
103 // Use to enable experimental noise suppression. It can be set in the
104 // constructor or using AudioProcessing::SetExtraOptions().
105 struct ExperimentalNs {
ExperimentalNsExperimentalNs106   ExperimentalNs() : enabled(false) {}
ExperimentalNsExperimentalNs107   explicit ExperimentalNs(bool enabled) : enabled(enabled) {}
108   bool enabled;
109 };
110 
111 // Use to enable beamforming. Must be provided through the constructor. It will
112 // have no impact if used with AudioProcessing::SetExtraOptions().
113 struct Beamforming {
BeamformingBeamforming114   Beamforming()
115       : enabled(false),
116         array_geometry(),
117         target_direction(
118             SphericalPointf(static_cast<float>(M_PI) / 2.f, 0.f, 1.f)) {}
BeamformingBeamforming119   Beamforming(bool enabled, const std::vector<Point>& array_geometry)
120       : Beamforming(enabled,
121                     array_geometry,
122                     SphericalPointf(static_cast<float>(M_PI) / 2.f, 0.f, 1.f)) {
123   }
BeamformingBeamforming124   Beamforming(bool enabled,
125               const std::vector<Point>& array_geometry,
126               SphericalPointf target_direction)
127       : enabled(enabled),
128         array_geometry(array_geometry),
129         target_direction(target_direction) {}
130   const bool enabled;
131   const std::vector<Point> array_geometry;
132   const SphericalPointf target_direction;
133 };
134 
135 // Use to enable intelligibility enhancer in audio processing. Must be provided
136 // though the constructor. It will have no impact if used with
137 // AudioProcessing::SetExtraOptions().
138 //
139 // Note: If enabled and the reverse stream has more than one output channel,
140 // the reverse stream will become an upmixed mono signal.
141 struct Intelligibility {
IntelligibilityIntelligibility142   Intelligibility() : enabled(false) {}
IntelligibilityIntelligibility143   explicit Intelligibility(bool enabled) : enabled(enabled) {}
144   bool enabled;
145 };
146 
147 // The Audio Processing Module (APM) provides a collection of voice processing
148 // components designed for real-time communications software.
149 //
150 // APM operates on two audio streams on a frame-by-frame basis. Frames of the
151 // primary stream, on which all processing is applied, are passed to
152 // |ProcessStream()|. Frames of the reverse direction stream, which are used for
153 // analysis by some components, are passed to |AnalyzeReverseStream()|. On the
154 // client-side, this will typically be the near-end (capture) and far-end
155 // (render) streams, respectively. APM should be placed in the signal chain as
156 // close to the audio hardware abstraction layer (HAL) as possible.
157 //
158 // On the server-side, the reverse stream will normally not be used, with
159 // processing occurring on each incoming stream.
160 //
161 // Component interfaces follow a similar pattern and are accessed through
162 // corresponding getters in APM. All components are disabled at create-time,
163 // with default settings that are recommended for most situations. New settings
164 // can be applied without enabling a component. Enabling a component triggers
165 // memory allocation and initialization to allow it to start processing the
166 // streams.
167 //
168 // Thread safety is provided with the following assumptions to reduce locking
169 // overhead:
170 //   1. The stream getters and setters are called from the same thread as
171 //      ProcessStream(). More precisely, stream functions are never called
172 //      concurrently with ProcessStream().
173 //   2. Parameter getters are never called concurrently with the corresponding
174 //      setter.
175 //
176 // APM accepts only linear PCM audio data in chunks of 10 ms. The int16
177 // interfaces use interleaved data, while the float interfaces use deinterleaved
178 // data.
179 //
180 // Usage example, omitting error checking:
181 // AudioProcessing* apm = AudioProcessing::Create(0);
182 //
183 // apm->high_pass_filter()->Enable(true);
184 //
185 // apm->echo_cancellation()->enable_drift_compensation(false);
186 // apm->echo_cancellation()->Enable(true);
187 //
188 // apm->noise_reduction()->set_level(kHighSuppression);
189 // apm->noise_reduction()->Enable(true);
190 //
191 // apm->gain_control()->set_analog_level_limits(0, 255);
192 // apm->gain_control()->set_mode(kAdaptiveAnalog);
193 // apm->gain_control()->Enable(true);
194 //
195 // apm->voice_detection()->Enable(true);
196 //
197 // // Start a voice call...
198 //
199 // // ... Render frame arrives bound for the audio HAL ...
200 // apm->AnalyzeReverseStream(render_frame);
201 //
202 // // ... Capture frame arrives from the audio HAL ...
203 // // Call required set_stream_ functions.
204 // apm->set_stream_delay_ms(delay_ms);
205 // apm->gain_control()->set_stream_analog_level(analog_level);
206 //
207 // apm->ProcessStream(capture_frame);
208 //
209 // // Call required stream_ functions.
210 // analog_level = apm->gain_control()->stream_analog_level();
211 // has_voice = apm->stream_has_voice();
212 //
213 // // Repeate render and capture processing for the duration of the call...
214 // // Start a new call...
215 // apm->Initialize();
216 //
217 // // Close the application...
218 // delete apm;
219 //
220 class AudioProcessing {
221  public:
222   // TODO(mgraczyk): Remove once all methods that use ChannelLayout are gone.
223   enum ChannelLayout {
224     kMono,
225     // Left, right.
226     kStereo,
227     // Mono, keyboard mic.
228     kMonoAndKeyboard,
229     // Left, right, keyboard mic.
230     kStereoAndKeyboard
231   };
232 
233   // Creates an APM instance. Use one instance for every primary audio stream
234   // requiring processing. On the client-side, this would typically be one
235   // instance for the near-end stream, and additional instances for each far-end
236   // stream which requires processing. On the server-side, this would typically
237   // be one instance for every incoming stream.
238   static AudioProcessing* Create();
239   // Allows passing in an optional configuration at create-time.
240   static AudioProcessing* Create(const Config& config);
241   // Only for testing.
242   static AudioProcessing* Create(const Config& config,
243                                  Beamformer<float>* beamformer);
~AudioProcessing()244   virtual ~AudioProcessing() {}
245 
246   // Initializes internal states, while retaining all user settings. This
247   // should be called before beginning to process a new audio stream. However,
248   // it is not necessary to call before processing the first stream after
249   // creation.
250   //
251   // It is also not necessary to call if the audio parameters (sample
252   // rate and number of channels) have changed. Passing updated parameters
253   // directly to |ProcessStream()| and |AnalyzeReverseStream()| is permissible.
254   // If the parameters are known at init-time though, they may be provided.
255   virtual int Initialize() = 0;
256 
257   // The int16 interfaces require:
258   //   - only |NativeRate|s be used
259   //   - that the input, output and reverse rates must match
260   //   - that |processing_config.output_stream()| matches
261   //     |processing_config.input_stream()|.
262   //
263   // The float interfaces accept arbitrary rates and support differing input and
264   // output layouts, but the output must have either one channel or the same
265   // number of channels as the input.
266   virtual int Initialize(const ProcessingConfig& processing_config) = 0;
267 
268   // Initialize with unpacked parameters. See Initialize() above for details.
269   //
270   // TODO(mgraczyk): Remove once clients are updated to use the new interface.
271   virtual int Initialize(int input_sample_rate_hz,
272                          int output_sample_rate_hz,
273                          int reverse_sample_rate_hz,
274                          ChannelLayout input_layout,
275                          ChannelLayout output_layout,
276                          ChannelLayout reverse_layout) = 0;
277 
278   // Pass down additional options which don't have explicit setters. This
279   // ensures the options are applied immediately.
280   virtual void SetExtraOptions(const Config& config) = 0;
281 
282   // TODO(ajm): Only intended for internal use. Make private and friend the
283   // necessary classes?
284   virtual int proc_sample_rate_hz() const = 0;
285   virtual int proc_split_sample_rate_hz() const = 0;
286   virtual int num_input_channels() const = 0;
287   virtual int num_output_channels() const = 0;
288   virtual int num_reverse_channels() const = 0;
289 
290   // Set to true when the output of AudioProcessing will be muted or in some
291   // other way not used. Ideally, the captured audio would still be processed,
292   // but some components may change behavior based on this information.
293   // Default false.
294   virtual void set_output_will_be_muted(bool muted) = 0;
295 
296   // Processes a 10 ms |frame| of the primary audio stream. On the client-side,
297   // this is the near-end (or captured) audio.
298   //
299   // If needed for enabled functionality, any function with the set_stream_ tag
300   // must be called prior to processing the current frame. Any getter function
301   // with the stream_ tag which is needed should be called after processing.
302   //
303   // The |sample_rate_hz_|, |num_channels_|, and |samples_per_channel_|
304   // members of |frame| must be valid. If changed from the previous call to this
305   // method, it will trigger an initialization.
306   virtual int ProcessStream(AudioFrame* frame) = 0;
307 
308   // Accepts deinterleaved float audio with the range [-1, 1]. Each element
309   // of |src| points to a channel buffer, arranged according to
310   // |input_layout|. At output, the channels will be arranged according to
311   // |output_layout| at |output_sample_rate_hz| in |dest|.
312   //
313   // The output layout must have one channel or as many channels as the input.
314   // |src| and |dest| may use the same memory, if desired.
315   //
316   // TODO(mgraczyk): Remove once clients are updated to use the new interface.
317   virtual int ProcessStream(const float* const* src,
318                             size_t samples_per_channel,
319                             int input_sample_rate_hz,
320                             ChannelLayout input_layout,
321                             int output_sample_rate_hz,
322                             ChannelLayout output_layout,
323                             float* const* dest) = 0;
324 
325   // Accepts deinterleaved float audio with the range [-1, 1]. Each element of
326   // |src| points to a channel buffer, arranged according to |input_stream|. At
327   // output, the channels will be arranged according to |output_stream| in
328   // |dest|.
329   //
330   // The output must have one channel or as many channels as the input. |src|
331   // and |dest| may use the same memory, if desired.
332   virtual int ProcessStream(const float* const* src,
333                             const StreamConfig& input_config,
334                             const StreamConfig& output_config,
335                             float* const* dest) = 0;
336 
337   // Analyzes a 10 ms |frame| of the reverse direction audio stream. The frame
338   // will not be modified. On the client-side, this is the far-end (or to be
339   // rendered) audio.
340   //
341   // It is only necessary to provide this if echo processing is enabled, as the
342   // reverse stream forms the echo reference signal. It is recommended, but not
343   // necessary, to provide if gain control is enabled. On the server-side this
344   // typically will not be used. If you're not sure what to pass in here,
345   // chances are you don't need to use it.
346   //
347   // The |sample_rate_hz_|, |num_channels_|, and |samples_per_channel_|
348   // members of |frame| must be valid. |sample_rate_hz_| must correspond to
349   // |input_sample_rate_hz()|
350   //
351   // TODO(ajm): add const to input; requires an implementation fix.
352   // DEPRECATED: Use |ProcessReverseStream| instead.
353   // TODO(ekm): Remove once all users have updated to |ProcessReverseStream|.
354   virtual int AnalyzeReverseStream(AudioFrame* frame) = 0;
355 
356   // Same as |AnalyzeReverseStream|, but may modify |frame| if intelligibility
357   // is enabled.
358   virtual int ProcessReverseStream(AudioFrame* frame) = 0;
359 
360   // Accepts deinterleaved float audio with the range [-1, 1]. Each element
361   // of |data| points to a channel buffer, arranged according to |layout|.
362   // TODO(mgraczyk): Remove once clients are updated to use the new interface.
363   virtual int AnalyzeReverseStream(const float* const* data,
364                                    size_t samples_per_channel,
365                                    int rev_sample_rate_hz,
366                                    ChannelLayout layout) = 0;
367 
368   // Accepts deinterleaved float audio with the range [-1, 1]. Each element of
369   // |data| points to a channel buffer, arranged according to |reverse_config|.
370   virtual int ProcessReverseStream(const float* const* src,
371                                    const StreamConfig& reverse_input_config,
372                                    const StreamConfig& reverse_output_config,
373                                    float* const* dest) = 0;
374 
375   // This must be called if and only if echo processing is enabled.
376   //
377   // Sets the |delay| in ms between AnalyzeReverseStream() receiving a far-end
378   // frame and ProcessStream() receiving a near-end frame containing the
379   // corresponding echo. On the client-side this can be expressed as
380   //   delay = (t_render - t_analyze) + (t_process - t_capture)
381   // where,
382   //   - t_analyze is the time a frame is passed to AnalyzeReverseStream() and
383   //     t_render is the time the first sample of the same frame is rendered by
384   //     the audio hardware.
385   //   - t_capture is the time the first sample of a frame is captured by the
386   //     audio hardware and t_pull is the time the same frame is passed to
387   //     ProcessStream().
388   virtual int set_stream_delay_ms(int delay) = 0;
389   virtual int stream_delay_ms() const = 0;
390   virtual bool was_stream_delay_set() const = 0;
391 
392   // Call to signal that a key press occurred (true) or did not occur (false)
393   // with this chunk of audio.
394   virtual void set_stream_key_pressed(bool key_pressed) = 0;
395 
396   // Sets a delay |offset| in ms to add to the values passed in through
397   // set_stream_delay_ms(). May be positive or negative.
398   //
399   // Note that this could cause an otherwise valid value passed to
400   // set_stream_delay_ms() to return an error.
401   virtual void set_delay_offset_ms(int offset) = 0;
402   virtual int delay_offset_ms() const = 0;
403 
404   // Starts recording debugging information to a file specified by |filename|,
405   // a NULL-terminated string. If there is an ongoing recording, the old file
406   // will be closed, and recording will continue in the newly specified file.
407   // An already existing file will be overwritten without warning.
408   static const size_t kMaxFilenameSize = 1024;
409   virtual int StartDebugRecording(const char filename[kMaxFilenameSize]) = 0;
410 
411   // Same as above but uses an existing file handle. Takes ownership
412   // of |handle| and closes it at StopDebugRecording().
413   virtual int StartDebugRecording(FILE* handle) = 0;
414 
415   // Same as above but uses an existing PlatformFile handle. Takes ownership
416   // of |handle| and closes it at StopDebugRecording().
417   // TODO(xians): Make this interface pure virtual.
StartDebugRecordingForPlatformFile(rtc::PlatformFile handle)418   virtual int StartDebugRecordingForPlatformFile(rtc::PlatformFile handle) {
419       return -1;
420   }
421 
422   // Stops recording debugging information, and closes the file. Recording
423   // cannot be resumed in the same file (without overwriting it).
424   virtual int StopDebugRecording() = 0;
425 
426   // Use to send UMA histograms at end of a call. Note that all histogram
427   // specific member variables are reset.
428   virtual void UpdateHistogramsOnCallEnd() = 0;
429 
430   // These provide access to the component interfaces and should never return
431   // NULL. The pointers will be valid for the lifetime of the APM instance.
432   // The memory for these objects is entirely managed internally.
433   virtual EchoCancellation* echo_cancellation() const = 0;
434   virtual EchoControlMobile* echo_control_mobile() const = 0;
435   virtual GainControl* gain_control() const = 0;
436   virtual HighPassFilter* high_pass_filter() const = 0;
437   virtual LevelEstimator* level_estimator() const = 0;
438   virtual NoiseSuppression* noise_suppression() const = 0;
439   virtual VoiceDetection* voice_detection() const = 0;
440 
441   struct Statistic {
442     int instant;  // Instantaneous value.
443     int average;  // Long-term average.
444     int maximum;  // Long-term maximum.
445     int minimum;  // Long-term minimum.
446   };
447 
448   enum Error {
449     // Fatal errors.
450     kNoError = 0,
451     kUnspecifiedError = -1,
452     kCreationFailedError = -2,
453     kUnsupportedComponentError = -3,
454     kUnsupportedFunctionError = -4,
455     kNullPointerError = -5,
456     kBadParameterError = -6,
457     kBadSampleRateError = -7,
458     kBadDataLengthError = -8,
459     kBadNumberChannelsError = -9,
460     kFileError = -10,
461     kStreamParameterNotSetError = -11,
462     kNotEnabledError = -12,
463 
464     // Warnings are non-fatal.
465     // This results when a set_stream_ parameter is out of range. Processing
466     // will continue, but the parameter may have been truncated.
467     kBadStreamParameterWarning = -13
468   };
469 
470   enum NativeRate {
471     kSampleRate8kHz = 8000,
472     kSampleRate16kHz = 16000,
473     kSampleRate32kHz = 32000,
474     kSampleRate48kHz = 48000
475   };
476 
477   static const int kNativeSampleRatesHz[];
478   static const size_t kNumNativeSampleRates;
479   static const int kMaxNativeSampleRateHz;
480   static const int kMaxAECMSampleRateHz;
481 
482   static const int kChunkSizeMs = 10;
483 };
484 
485 class StreamConfig {
486  public:
487   // sample_rate_hz: The sampling rate of the stream.
488   //
489   // num_channels: The number of audio channels in the stream, excluding the
490   //               keyboard channel if it is present. When passing a
491   //               StreamConfig with an array of arrays T*[N],
492   //
493   //                N == {num_channels + 1  if  has_keyboard
494   //                     {num_channels      if  !has_keyboard
495   //
496   // has_keyboard: True if the stream has a keyboard channel. When has_keyboard
497   //               is true, the last channel in any corresponding list of
498   //               channels is the keyboard channel.
499   StreamConfig(int sample_rate_hz = 0,
500                int num_channels = 0,
501                bool has_keyboard = false)
sample_rate_hz_(sample_rate_hz)502       : sample_rate_hz_(sample_rate_hz),
503         num_channels_(num_channels),
504         has_keyboard_(has_keyboard),
505         num_frames_(calculate_frames(sample_rate_hz)) {}
506 
set_sample_rate_hz(int value)507   void set_sample_rate_hz(int value) {
508     sample_rate_hz_ = value;
509     num_frames_ = calculate_frames(value);
510   }
set_num_channels(int value)511   void set_num_channels(int value) { num_channels_ = value; }
set_has_keyboard(bool value)512   void set_has_keyboard(bool value) { has_keyboard_ = value; }
513 
sample_rate_hz()514   int sample_rate_hz() const { return sample_rate_hz_; }
515 
516   // The number of channels in the stream, not including the keyboard channel if
517   // present.
num_channels()518   int num_channels() const { return num_channels_; }
519 
has_keyboard()520   bool has_keyboard() const { return has_keyboard_; }
num_frames()521   size_t num_frames() const { return num_frames_; }
num_samples()522   size_t num_samples() const { return num_channels_ * num_frames_; }
523 
524   bool operator==(const StreamConfig& other) const {
525     return sample_rate_hz_ == other.sample_rate_hz_ &&
526            num_channels_ == other.num_channels_ &&
527            has_keyboard_ == other.has_keyboard_;
528   }
529 
530   bool operator!=(const StreamConfig& other) const { return !(*this == other); }
531 
532  private:
calculate_frames(int sample_rate_hz)533   static size_t calculate_frames(int sample_rate_hz) {
534     return static_cast<size_t>(
535         AudioProcessing::kChunkSizeMs * sample_rate_hz / 1000);
536   }
537 
538   int sample_rate_hz_;
539   int num_channels_;
540   bool has_keyboard_;
541   size_t num_frames_;
542 };
543 
544 class ProcessingConfig {
545  public:
546   enum StreamName {
547     kInputStream,
548     kOutputStream,
549     kReverseInputStream,
550     kReverseOutputStream,
551     kNumStreamNames,
552   };
553 
input_stream()554   const StreamConfig& input_stream() const {
555     return streams[StreamName::kInputStream];
556   }
output_stream()557   const StreamConfig& output_stream() const {
558     return streams[StreamName::kOutputStream];
559   }
reverse_input_stream()560   const StreamConfig& reverse_input_stream() const {
561     return streams[StreamName::kReverseInputStream];
562   }
reverse_output_stream()563   const StreamConfig& reverse_output_stream() const {
564     return streams[StreamName::kReverseOutputStream];
565   }
566 
input_stream()567   StreamConfig& input_stream() { return streams[StreamName::kInputStream]; }
output_stream()568   StreamConfig& output_stream() { return streams[StreamName::kOutputStream]; }
reverse_input_stream()569   StreamConfig& reverse_input_stream() {
570     return streams[StreamName::kReverseInputStream];
571   }
reverse_output_stream()572   StreamConfig& reverse_output_stream() {
573     return streams[StreamName::kReverseOutputStream];
574   }
575 
576   bool operator==(const ProcessingConfig& other) const {
577     for (int i = 0; i < StreamName::kNumStreamNames; ++i) {
578       if (this->streams[i] != other.streams[i]) {
579         return false;
580       }
581     }
582     return true;
583   }
584 
585   bool operator!=(const ProcessingConfig& other) const {
586     return !(*this == other);
587   }
588 
589   StreamConfig streams[StreamName::kNumStreamNames];
590 };
591 
592 // The acoustic echo cancellation (AEC) component provides better performance
593 // than AECM but also requires more processing power and is dependent on delay
594 // stability and reporting accuracy. As such it is well-suited and recommended
595 // for PC and IP phone applications.
596 //
597 // Not recommended to be enabled on the server-side.
598 class EchoCancellation {
599  public:
600   // EchoCancellation and EchoControlMobile may not be enabled simultaneously.
601   // Enabling one will disable the other.
602   virtual int Enable(bool enable) = 0;
603   virtual bool is_enabled() const = 0;
604 
605   // Differences in clock speed on the primary and reverse streams can impact
606   // the AEC performance. On the client-side, this could be seen when different
607   // render and capture devices are used, particularly with webcams.
608   //
609   // This enables a compensation mechanism, and requires that
610   // set_stream_drift_samples() be called.
611   virtual int enable_drift_compensation(bool enable) = 0;
612   virtual bool is_drift_compensation_enabled() const = 0;
613 
614   // Sets the difference between the number of samples rendered and captured by
615   // the audio devices since the last call to |ProcessStream()|. Must be called
616   // if drift compensation is enabled, prior to |ProcessStream()|.
617   virtual void set_stream_drift_samples(int drift) = 0;
618   virtual int stream_drift_samples() const = 0;
619 
620   enum SuppressionLevel {
621     kLowSuppression,
622     kModerateSuppression,
623     kHighSuppression
624   };
625 
626   // Sets the aggressiveness of the suppressor. A higher level trades off
627   // double-talk performance for increased echo suppression.
628   virtual int set_suppression_level(SuppressionLevel level) = 0;
629   virtual SuppressionLevel suppression_level() const = 0;
630 
631   // Returns false if the current frame almost certainly contains no echo
632   // and true if it _might_ contain echo.
633   virtual bool stream_has_echo() const = 0;
634 
635   // Enables the computation of various echo metrics. These are obtained
636   // through |GetMetrics()|.
637   virtual int enable_metrics(bool enable) = 0;
638   virtual bool are_metrics_enabled() const = 0;
639 
640   // Each statistic is reported in dB.
641   // P_far:  Far-end (render) signal power.
642   // P_echo: Near-end (capture) echo signal power.
643   // P_out:  Signal power at the output of the AEC.
644   // P_a:    Internal signal power at the point before the AEC's non-linear
645   //         processor.
646   struct Metrics {
647     // RERL = ERL + ERLE
648     AudioProcessing::Statistic residual_echo_return_loss;
649 
650     // ERL = 10log_10(P_far / P_echo)
651     AudioProcessing::Statistic echo_return_loss;
652 
653     // ERLE = 10log_10(P_echo / P_out)
654     AudioProcessing::Statistic echo_return_loss_enhancement;
655 
656     // (Pre non-linear processing suppression) A_NLP = 10log_10(P_echo / P_a)
657     AudioProcessing::Statistic a_nlp;
658   };
659 
660   // TODO(ajm): discuss the metrics update period.
661   virtual int GetMetrics(Metrics* metrics) = 0;
662 
663   // Enables computation and logging of delay values. Statistics are obtained
664   // through |GetDelayMetrics()|.
665   virtual int enable_delay_logging(bool enable) = 0;
666   virtual bool is_delay_logging_enabled() const = 0;
667 
668   // The delay metrics consists of the delay |median| and the delay standard
669   // deviation |std|. It also consists of the fraction of delay estimates
670   // |fraction_poor_delays| that can make the echo cancellation perform poorly.
671   // The values are aggregated until the first call to |GetDelayMetrics()| and
672   // afterwards aggregated and updated every second.
673   // Note that if there are several clients pulling metrics from
674   // |GetDelayMetrics()| during a session the first call from any of them will
675   // change to one second aggregation window for all.
676   // TODO(bjornv): Deprecated, remove.
677   virtual int GetDelayMetrics(int* median, int* std) = 0;
678   virtual int GetDelayMetrics(int* median, int* std,
679                               float* fraction_poor_delays) = 0;
680 
681   // Returns a pointer to the low level AEC component.  In case of multiple
682   // channels, the pointer to the first one is returned.  A NULL pointer is
683   // returned when the AEC component is disabled or has not been initialized
684   // successfully.
685   virtual struct AecCore* aec_core() const = 0;
686 
687  protected:
~EchoCancellation()688   virtual ~EchoCancellation() {}
689 };
690 
691 // The acoustic echo control for mobile (AECM) component is a low complexity
692 // robust option intended for use on mobile devices.
693 //
694 // Not recommended to be enabled on the server-side.
695 class EchoControlMobile {
696  public:
697   // EchoCancellation and EchoControlMobile may not be enabled simultaneously.
698   // Enabling one will disable the other.
699   virtual int Enable(bool enable) = 0;
700   virtual bool is_enabled() const = 0;
701 
702   // Recommended settings for particular audio routes. In general, the louder
703   // the echo is expected to be, the higher this value should be set. The
704   // preferred setting may vary from device to device.
705   enum RoutingMode {
706     kQuietEarpieceOrHeadset,
707     kEarpiece,
708     kLoudEarpiece,
709     kSpeakerphone,
710     kLoudSpeakerphone
711   };
712 
713   // Sets echo control appropriate for the audio routing |mode| on the device.
714   // It can and should be updated during a call if the audio routing changes.
715   virtual int set_routing_mode(RoutingMode mode) = 0;
716   virtual RoutingMode routing_mode() const = 0;
717 
718   // Comfort noise replaces suppressed background noise to maintain a
719   // consistent signal level.
720   virtual int enable_comfort_noise(bool enable) = 0;
721   virtual bool is_comfort_noise_enabled() const = 0;
722 
723   // A typical use case is to initialize the component with an echo path from a
724   // previous call. The echo path is retrieved using |GetEchoPath()|, typically
725   // at the end of a call. The data can then be stored for later use as an
726   // initializer before the next call, using |SetEchoPath()|.
727   //
728   // Controlling the echo path this way requires the data |size_bytes| to match
729   // the internal echo path size. This size can be acquired using
730   // |echo_path_size_bytes()|. |SetEchoPath()| causes an entire reset, worth
731   // noting if it is to be called during an ongoing call.
732   //
733   // It is possible that version incompatibilities may result in a stored echo
734   // path of the incorrect size. In this case, the stored path should be
735   // discarded.
736   virtual int SetEchoPath(const void* echo_path, size_t size_bytes) = 0;
737   virtual int GetEchoPath(void* echo_path, size_t size_bytes) const = 0;
738 
739   // The returned path size is guaranteed not to change for the lifetime of
740   // the application.
741   static size_t echo_path_size_bytes();
742 
743  protected:
~EchoControlMobile()744   virtual ~EchoControlMobile() {}
745 };
746 
747 // The automatic gain control (AGC) component brings the signal to an
748 // appropriate range. This is done by applying a digital gain directly and, in
749 // the analog mode, prescribing an analog gain to be applied at the audio HAL.
750 //
751 // Recommended to be enabled on the client-side.
752 class GainControl {
753  public:
754   virtual int Enable(bool enable) = 0;
755   virtual bool is_enabled() const = 0;
756 
757   // When an analog mode is set, this must be called prior to |ProcessStream()|
758   // to pass the current analog level from the audio HAL. Must be within the
759   // range provided to |set_analog_level_limits()|.
760   virtual int set_stream_analog_level(int level) = 0;
761 
762   // When an analog mode is set, this should be called after |ProcessStream()|
763   // to obtain the recommended new analog level for the audio HAL. It is the
764   // users responsibility to apply this level.
765   virtual int stream_analog_level() = 0;
766 
767   enum Mode {
768     // Adaptive mode intended for use if an analog volume control is available
769     // on the capture device. It will require the user to provide coupling
770     // between the OS mixer controls and AGC through the |stream_analog_level()|
771     // functions.
772     //
773     // It consists of an analog gain prescription for the audio device and a
774     // digital compression stage.
775     kAdaptiveAnalog,
776 
777     // Adaptive mode intended for situations in which an analog volume control
778     // is unavailable. It operates in a similar fashion to the adaptive analog
779     // mode, but with scaling instead applied in the digital domain. As with
780     // the analog mode, it additionally uses a digital compression stage.
781     kAdaptiveDigital,
782 
783     // Fixed mode which enables only the digital compression stage also used by
784     // the two adaptive modes.
785     //
786     // It is distinguished from the adaptive modes by considering only a
787     // short time-window of the input signal. It applies a fixed gain through
788     // most of the input level range, and compresses (gradually reduces gain
789     // with increasing level) the input signal at higher levels. This mode is
790     // preferred on embedded devices where the capture signal level is
791     // predictable, so that a known gain can be applied.
792     kFixedDigital
793   };
794 
795   virtual int set_mode(Mode mode) = 0;
796   virtual Mode mode() const = 0;
797 
798   // Sets the target peak |level| (or envelope) of the AGC in dBFs (decibels
799   // from digital full-scale). The convention is to use positive values. For
800   // instance, passing in a value of 3 corresponds to -3 dBFs, or a target
801   // level 3 dB below full-scale. Limited to [0, 31].
802   //
803   // TODO(ajm): use a negative value here instead, if/when VoE will similarly
804   //            update its interface.
805   virtual int set_target_level_dbfs(int level) = 0;
806   virtual int target_level_dbfs() const = 0;
807 
808   // Sets the maximum |gain| the digital compression stage may apply, in dB. A
809   // higher number corresponds to greater compression, while a value of 0 will
810   // leave the signal uncompressed. Limited to [0, 90].
811   virtual int set_compression_gain_db(int gain) = 0;
812   virtual int compression_gain_db() const = 0;
813 
814   // When enabled, the compression stage will hard limit the signal to the
815   // target level. Otherwise, the signal will be compressed but not limited
816   // above the target level.
817   virtual int enable_limiter(bool enable) = 0;
818   virtual bool is_limiter_enabled() const = 0;
819 
820   // Sets the |minimum| and |maximum| analog levels of the audio capture device.
821   // Must be set if and only if an analog mode is used. Limited to [0, 65535].
822   virtual int set_analog_level_limits(int minimum,
823                                       int maximum) = 0;
824   virtual int analog_level_minimum() const = 0;
825   virtual int analog_level_maximum() const = 0;
826 
827   // Returns true if the AGC has detected a saturation event (period where the
828   // signal reaches digital full-scale) in the current frame and the analog
829   // level cannot be reduced.
830   //
831   // This could be used as an indicator to reduce or disable analog mic gain at
832   // the audio HAL.
833   virtual bool stream_is_saturated() const = 0;
834 
835  protected:
~GainControl()836   virtual ~GainControl() {}
837 };
838 
839 // A filtering component which removes DC offset and low-frequency noise.
840 // Recommended to be enabled on the client-side.
841 class HighPassFilter {
842  public:
843   virtual int Enable(bool enable) = 0;
844   virtual bool is_enabled() const = 0;
845 
846  protected:
~HighPassFilter()847   virtual ~HighPassFilter() {}
848 };
849 
850 // An estimation component used to retrieve level metrics.
851 class LevelEstimator {
852  public:
853   virtual int Enable(bool enable) = 0;
854   virtual bool is_enabled() const = 0;
855 
856   // Returns the root mean square (RMS) level in dBFs (decibels from digital
857   // full-scale), or alternately dBov. It is computed over all primary stream
858   // frames since the last call to RMS(). The returned value is positive but
859   // should be interpreted as negative. It is constrained to [0, 127].
860   //
861   // The computation follows: https://tools.ietf.org/html/rfc6465
862   // with the intent that it can provide the RTP audio level indication.
863   //
864   // Frames passed to ProcessStream() with an |_energy| of zero are considered
865   // to have been muted. The RMS of the frame will be interpreted as -127.
866   virtual int RMS() = 0;
867 
868  protected:
~LevelEstimator()869   virtual ~LevelEstimator() {}
870 };
871 
872 // The noise suppression (NS) component attempts to remove noise while
873 // retaining speech. Recommended to be enabled on the client-side.
874 //
875 // Recommended to be enabled on the client-side.
876 class NoiseSuppression {
877  public:
878   virtual int Enable(bool enable) = 0;
879   virtual bool is_enabled() const = 0;
880 
881   // Determines the aggressiveness of the suppression. Increasing the level
882   // will reduce the noise level at the expense of a higher speech distortion.
883   enum Level {
884     kLow,
885     kModerate,
886     kHigh,
887     kVeryHigh
888   };
889 
890   virtual int set_level(Level level) = 0;
891   virtual Level level() const = 0;
892 
893   // Returns the internally computed prior speech probability of current frame
894   // averaged over output channels. This is not supported in fixed point, for
895   // which |kUnsupportedFunctionError| is returned.
896   virtual float speech_probability() const = 0;
897 
898  protected:
~NoiseSuppression()899   virtual ~NoiseSuppression() {}
900 };
901 
902 // The voice activity detection (VAD) component analyzes the stream to
903 // determine if voice is present. A facility is also provided to pass in an
904 // external VAD decision.
905 //
906 // In addition to |stream_has_voice()| the VAD decision is provided through the
907 // |AudioFrame| passed to |ProcessStream()|. The |vad_activity_| member will be
908 // modified to reflect the current decision.
909 class VoiceDetection {
910  public:
911   virtual int Enable(bool enable) = 0;
912   virtual bool is_enabled() const = 0;
913 
914   // Returns true if voice is detected in the current frame. Should be called
915   // after |ProcessStream()|.
916   virtual bool stream_has_voice() const = 0;
917 
918   // Some of the APM functionality requires a VAD decision. In the case that
919   // a decision is externally available for the current frame, it can be passed
920   // in here, before |ProcessStream()| is called.
921   //
922   // VoiceDetection does _not_ need to be enabled to use this. If it happens to
923   // be enabled, detection will be skipped for any frame in which an external
924   // VAD decision is provided.
925   virtual int set_stream_has_voice(bool has_voice) = 0;
926 
927   // Specifies the likelihood that a frame will be declared to contain voice.
928   // A higher value makes it more likely that speech will not be clipped, at
929   // the expense of more noise being detected as voice.
930   enum Likelihood {
931     kVeryLowLikelihood,
932     kLowLikelihood,
933     kModerateLikelihood,
934     kHighLikelihood
935   };
936 
937   virtual int set_likelihood(Likelihood likelihood) = 0;
938   virtual Likelihood likelihood() const = 0;
939 
940   // Sets the |size| of the frames in ms on which the VAD will operate. Larger
941   // frames will improve detection accuracy, but reduce the frequency of
942   // updates.
943   //
944   // This does not impact the size of frames passed to |ProcessStream()|.
945   virtual int set_frame_size_ms(int size) = 0;
946   virtual int frame_size_ms() const = 0;
947 
948  protected:
~VoiceDetection()949   virtual ~VoiceDetection() {}
950 };
951 }  // namespace webrtc
952 
953 #endif  // WEBRTC_MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_
954