1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22  *
23  */
24 #include <unistd.h>
25 #include <string.h>
26 #include <signal.h>
27 #include <assert.h>
28 #include <inttypes.h>
29 #include <sys/stat.h>
30 #include <sys/wait.h>
31 #include <math.h>
32 #include <pthread.h>
33 
34 #include "fio.h"
35 #include "smalloc.h"
36 #include "verify.h"
37 #include "diskutil.h"
38 #include "cgroup.h"
39 #include "profile.h"
40 #include "lib/rand.h"
41 #include "lib/memalign.h"
42 #include "server.h"
43 #include "lib/getrusage.h"
44 #include "idletime.h"
45 #include "err.h"
46 #include "workqueue.h"
47 #include "lib/mountcheck.h"
48 #include "rate-submit.h"
49 #include "helper_thread.h"
50 #include "pshared.h"
51 #include "zone-dist.h"
52 
53 static struct fio_sem *startup_sem;
54 static struct flist_head *cgroup_list;
55 static struct cgroup_mnt *cgroup_mnt;
56 static int exit_value;
57 static volatile bool fio_abort;
58 static unsigned int nr_process = 0;
59 static unsigned int nr_thread = 0;
60 
61 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
62 
63 int groupid = 0;
64 unsigned int thread_number = 0;
65 unsigned int nr_segments = 0;
66 unsigned int cur_segment = 0;
67 unsigned int stat_number = 0;
68 int temp_stall_ts;
69 unsigned long done_secs = 0;
70 #ifdef PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
71 pthread_mutex_t overlap_check = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
72 #else
73 pthread_mutex_t overlap_check = PTHREAD_MUTEX_INITIALIZER;
74 #endif
75 
76 #define JOB_START_TIMEOUT	(5 * 1000)
77 
78 static void sig_int(int sig)
79 {
80 	if (nr_segments) {
81 		if (is_backend)
82 			fio_server_got_signal(sig);
83 		else {
84 			log_info("\nfio: terminating on signal %d\n", sig);
85 			log_info_flush();
86 			exit_value = 128;
87 		}
88 
89 		fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
90 	}
91 }
92 
93 void sig_show_status(int sig)
94 {
95 	show_running_run_stats();
96 }
97 
98 static void set_sig_handlers(void)
99 {
100 	struct sigaction act;
101 
102 	memset(&act, 0, sizeof(act));
103 	act.sa_handler = sig_int;
104 	act.sa_flags = SA_RESTART;
105 	sigaction(SIGINT, &act, NULL);
106 
107 	memset(&act, 0, sizeof(act));
108 	act.sa_handler = sig_int;
109 	act.sa_flags = SA_RESTART;
110 	sigaction(SIGTERM, &act, NULL);
111 
112 /* Windows uses SIGBREAK as a quit signal from other applications */
113 #ifdef WIN32
114 	memset(&act, 0, sizeof(act));
115 	act.sa_handler = sig_int;
116 	act.sa_flags = SA_RESTART;
117 	sigaction(SIGBREAK, &act, NULL);
118 #endif
119 
120 	memset(&act, 0, sizeof(act));
121 	act.sa_handler = sig_show_status;
122 	act.sa_flags = SA_RESTART;
123 	sigaction(SIGUSR1, &act, NULL);
124 
125 	if (is_backend) {
126 		memset(&act, 0, sizeof(act));
127 		act.sa_handler = sig_int;
128 		act.sa_flags = SA_RESTART;
129 		sigaction(SIGPIPE, &act, NULL);
130 	}
131 }
132 
133 /*
134  * Check if we are above the minimum rate given.
135  */
136 static bool __check_min_rate(struct thread_data *td, struct timespec *now,
137 			     enum fio_ddir ddir)
138 {
139 	unsigned long long bytes = 0;
140 	unsigned long iops = 0;
141 	unsigned long spent;
142 	unsigned long long rate;
143 	unsigned long long ratemin = 0;
144 	unsigned int rate_iops = 0;
145 	unsigned int rate_iops_min = 0;
146 
147 	assert(ddir_rw(ddir));
148 
149 	if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
150 		return false;
151 
152 	/*
153 	 * allow a 2 second settle period in the beginning
154 	 */
155 	if (mtime_since(&td->start, now) < 2000)
156 		return false;
157 
158 	iops += td->this_io_blocks[ddir];
159 	bytes += td->this_io_bytes[ddir];
160 	ratemin += td->o.ratemin[ddir];
161 	rate_iops += td->o.rate_iops[ddir];
162 	rate_iops_min += td->o.rate_iops_min[ddir];
163 
164 	/*
165 	 * if rate blocks is set, sample is running
166 	 */
167 	if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
168 		spent = mtime_since(&td->lastrate[ddir], now);
169 		if (spent < td->o.ratecycle)
170 			return false;
171 
172 		if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
173 			/*
174 			 * check bandwidth specified rate
175 			 */
176 			if (bytes < td->rate_bytes[ddir]) {
177 				log_err("%s: rate_min=%lluB/s not met, only transferred %lluB\n",
178 					td->o.name, ratemin, bytes);
179 				return true;
180 			} else {
181 				if (spent)
182 					rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
183 				else
184 					rate = 0;
185 
186 				if (rate < ratemin ||
187 				    bytes < td->rate_bytes[ddir]) {
188 					log_err("%s: rate_min=%lluB/s not met, got %lluB/s\n",
189 						td->o.name, ratemin, rate);
190 					return true;
191 				}
192 			}
193 		} else {
194 			/*
195 			 * checks iops specified rate
196 			 */
197 			if (iops < rate_iops) {
198 				log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
199 						td->o.name, rate_iops, iops);
200 				return true;
201 			} else {
202 				if (spent)
203 					rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
204 				else
205 					rate = 0;
206 
207 				if (rate < rate_iops_min ||
208 				    iops < td->rate_blocks[ddir]) {
209 					log_err("%s: rate_iops_min=%u not met, got %llu IOPS\n",
210 						td->o.name, rate_iops_min, rate);
211 					return true;
212 				}
213 			}
214 		}
215 	}
216 
217 	td->rate_bytes[ddir] = bytes;
218 	td->rate_blocks[ddir] = iops;
219 	memcpy(&td->lastrate[ddir], now, sizeof(*now));
220 	return false;
221 }
222 
223 static bool check_min_rate(struct thread_data *td, struct timespec *now)
224 {
225 	bool ret = false;
226 
227 	for_each_rw_ddir(ddir) {
228 		if (td->bytes_done[ddir])
229 			ret |= __check_min_rate(td, now, ddir);
230 	}
231 
232 	return ret;
233 }
234 
235 /*
236  * When job exits, we can cancel the in-flight IO if we are using async
237  * io. Attempt to do so.
238  */
239 static void cleanup_pending_aio(struct thread_data *td)
240 {
241 	int r;
242 
243 	/*
244 	 * get immediately available events, if any
245 	 */
246 	r = io_u_queued_complete(td, 0);
247 
248 	/*
249 	 * now cancel remaining active events
250 	 */
251 	if (td->io_ops->cancel) {
252 		struct io_u *io_u;
253 		int i;
254 
255 		io_u_qiter(&td->io_u_all, io_u, i) {
256 			if (io_u->flags & IO_U_F_FLIGHT) {
257 				r = td->io_ops->cancel(td, io_u);
258 				if (!r)
259 					put_io_u(td, io_u);
260 			}
261 		}
262 	}
263 
264 	if (td->cur_depth)
265 		r = io_u_queued_complete(td, td->cur_depth);
266 }
267 
268 /*
269  * Helper to handle the final sync of a file. Works just like the normal
270  * io path, just does everything sync.
271  */
272 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
273 {
274 	struct io_u *io_u = __get_io_u(td);
275 	enum fio_q_status ret;
276 
277 	if (!io_u)
278 		return true;
279 
280 	io_u->ddir = DDIR_SYNC;
281 	io_u->file = f;
282 	io_u_set(td, io_u, IO_U_F_NO_FILE_PUT);
283 
284 	if (td_io_prep(td, io_u)) {
285 		put_io_u(td, io_u);
286 		return true;
287 	}
288 
289 requeue:
290 	ret = td_io_queue(td, io_u);
291 	switch (ret) {
292 	case FIO_Q_QUEUED:
293 		td_io_commit(td);
294 		if (io_u_queued_complete(td, 1) < 0)
295 			return true;
296 		break;
297 	case FIO_Q_COMPLETED:
298 		if (io_u->error) {
299 			td_verror(td, io_u->error, "td_io_queue");
300 			return true;
301 		}
302 
303 		if (io_u_sync_complete(td, io_u) < 0)
304 			return true;
305 		break;
306 	case FIO_Q_BUSY:
307 		td_io_commit(td);
308 		goto requeue;
309 	}
310 
311 	return false;
312 }
313 
314 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
315 {
316 	int ret, ret2;
317 
318 	if (fio_file_open(f))
319 		return fio_io_sync(td, f);
320 
321 	if (td_io_open_file(td, f))
322 		return 1;
323 
324 	ret = fio_io_sync(td, f);
325 	ret2 = 0;
326 	if (fio_file_open(f))
327 		ret2 = td_io_close_file(td, f);
328 	return (ret || ret2);
329 }
330 
331 static inline void __update_ts_cache(struct thread_data *td)
332 {
333 	fio_gettime(&td->ts_cache, NULL);
334 }
335 
336 static inline void update_ts_cache(struct thread_data *td)
337 {
338 	if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
339 		__update_ts_cache(td);
340 }
341 
342 static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
343 {
344 	if (in_ramp_time(td))
345 		return false;
346 	if (!td->o.timeout)
347 		return false;
348 	if (utime_since(&td->epoch, t) >= td->o.timeout)
349 		return true;
350 
351 	return false;
352 }
353 
354 /*
355  * We need to update the runtime consistently in ms, but keep a running
356  * tally of the current elapsed time in microseconds for sub millisecond
357  * updates.
358  */
359 static inline void update_runtime(struct thread_data *td,
360 				  unsigned long long *elapsed_us,
361 				  const enum fio_ddir ddir)
362 {
363 	if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
364 		return;
365 
366 	td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
367 	elapsed_us[ddir] += utime_since_now(&td->start);
368 	td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
369 }
370 
371 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
372 				int *retptr)
373 {
374 	int ret = *retptr;
375 
376 	if (ret < 0 || td->error) {
377 		int err = td->error;
378 		enum error_type_bit eb;
379 
380 		if (ret < 0)
381 			err = -ret;
382 
383 		eb = td_error_type(ddir, err);
384 		if (!(td->o.continue_on_error & (1 << eb)))
385 			return true;
386 
387 		if (td_non_fatal_error(td, eb, err)) {
388 		        /*
389 		         * Continue with the I/Os in case of
390 			 * a non fatal error.
391 			 */
392 			update_error_count(td, err);
393 			td_clear_error(td);
394 			*retptr = 0;
395 			return false;
396 		} else if (td->o.fill_device && (err == ENOSPC || err == EDQUOT)) {
397 			/*
398 			 * We expect to hit this error if
399 			 * fill_device option is set.
400 			 */
401 			td_clear_error(td);
402 			fio_mark_td_terminate(td);
403 			return true;
404 		} else {
405 			/*
406 			 * Stop the I/O in case of a fatal
407 			 * error.
408 			 */
409 			update_error_count(td, err);
410 			return true;
411 		}
412 	}
413 
414 	return false;
415 }
416 
417 static void check_update_rusage(struct thread_data *td)
418 {
419 	if (td->update_rusage) {
420 		td->update_rusage = 0;
421 		update_rusage_stat(td);
422 		fio_sem_up(td->rusage_sem);
423 	}
424 }
425 
426 static int wait_for_completions(struct thread_data *td, struct timespec *time)
427 {
428 	const int full = queue_full(td);
429 	int min_evts = 0;
430 	int ret;
431 
432 	if (td->flags & TD_F_REGROW_LOGS)
433 		return io_u_quiesce(td);
434 
435 	/*
436 	 * if the queue is full, we MUST reap at least 1 event
437 	 */
438 	min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
439 	if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
440 		min_evts = 1;
441 
442 	if (time && should_check_rate(td))
443 		fio_gettime(time, NULL);
444 
445 	do {
446 		ret = io_u_queued_complete(td, min_evts);
447 		if (ret < 0)
448 			break;
449 	} while (full && (td->cur_depth > td->o.iodepth_low));
450 
451 	return ret;
452 }
453 
454 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
455 		   enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
456 		   struct timespec *comp_time)
457 {
458 	switch (*ret) {
459 	case FIO_Q_COMPLETED:
460 		if (io_u->error) {
461 			*ret = -io_u->error;
462 			clear_io_u(td, io_u);
463 		} else if (io_u->resid) {
464 			long long bytes = io_u->xfer_buflen - io_u->resid;
465 			struct fio_file *f = io_u->file;
466 
467 			if (bytes_issued)
468 				*bytes_issued += bytes;
469 
470 			if (!from_verify)
471 				trim_io_piece(io_u);
472 
473 			/*
474 			 * zero read, fail
475 			 */
476 			if (!bytes) {
477 				if (!from_verify)
478 					unlog_io_piece(td, io_u);
479 				td_verror(td, EIO, "full resid");
480 				put_io_u(td, io_u);
481 				break;
482 			}
483 
484 			io_u->xfer_buflen = io_u->resid;
485 			io_u->xfer_buf += bytes;
486 			io_u->offset += bytes;
487 
488 			if (ddir_rw(io_u->ddir))
489 				td->ts.short_io_u[io_u->ddir]++;
490 
491 			if (io_u->offset == f->real_file_size)
492 				goto sync_done;
493 
494 			requeue_io_u(td, &io_u);
495 		} else {
496 sync_done:
497 			if (comp_time && should_check_rate(td))
498 				fio_gettime(comp_time, NULL);
499 
500 			*ret = io_u_sync_complete(td, io_u);
501 			if (*ret < 0)
502 				break;
503 		}
504 
505 		if (td->flags & TD_F_REGROW_LOGS)
506 			regrow_logs(td);
507 
508 		/*
509 		 * when doing I/O (not when verifying),
510 		 * check for any errors that are to be ignored
511 		 */
512 		if (!from_verify)
513 			break;
514 
515 		return 0;
516 	case FIO_Q_QUEUED:
517 		/*
518 		 * if the engine doesn't have a commit hook,
519 		 * the io_u is really queued. if it does have such
520 		 * a hook, it has to call io_u_queued() itself.
521 		 */
522 		if (td->io_ops->commit == NULL)
523 			io_u_queued(td, io_u);
524 		if (bytes_issued)
525 			*bytes_issued += io_u->xfer_buflen;
526 		break;
527 	case FIO_Q_BUSY:
528 		if (!from_verify)
529 			unlog_io_piece(td, io_u);
530 		requeue_io_u(td, &io_u);
531 		td_io_commit(td);
532 		break;
533 	default:
534 		assert(*ret < 0);
535 		td_verror(td, -(*ret), "td_io_queue");
536 		break;
537 	}
538 
539 	if (break_on_this_error(td, ddir, ret))
540 		return 1;
541 
542 	return 0;
543 }
544 
545 static inline bool io_in_polling(struct thread_data *td)
546 {
547 	return !td->o.iodepth_batch_complete_min &&
548 		   !td->o.iodepth_batch_complete_max;
549 }
550 /*
551  * Unlinks files from thread data fio_file structure
552  */
553 static int unlink_all_files(struct thread_data *td)
554 {
555 	struct fio_file *f;
556 	unsigned int i;
557 	int ret = 0;
558 
559 	for_each_file(td, f, i) {
560 		if (f->filetype != FIO_TYPE_FILE)
561 			continue;
562 		ret = td_io_unlink_file(td, f);
563 		if (ret)
564 			break;
565 	}
566 
567 	if (ret)
568 		td_verror(td, ret, "unlink_all_files");
569 
570 	return ret;
571 }
572 
573 /*
574  * Check if io_u will overlap an in-flight IO in the queue
575  */
576 bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
577 {
578 	bool overlap;
579 	struct io_u *check_io_u;
580 	unsigned long long x1, x2, y1, y2;
581 	int i;
582 
583 	x1 = io_u->offset;
584 	x2 = io_u->offset + io_u->buflen;
585 	overlap = false;
586 	io_u_qiter(q, check_io_u, i) {
587 		if (check_io_u->flags & IO_U_F_FLIGHT) {
588 			y1 = check_io_u->offset;
589 			y2 = check_io_u->offset + check_io_u->buflen;
590 
591 			if (x1 < y2 && y1 < x2) {
592 				overlap = true;
593 				dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
594 						x1, io_u->buflen,
595 						y1, check_io_u->buflen);
596 				break;
597 			}
598 		}
599 	}
600 
601 	return overlap;
602 }
603 
604 static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
605 {
606 	/*
607 	 * Check for overlap if the user asked us to, and we have
608 	 * at least one IO in flight besides this one.
609 	 */
610 	if (td->o.serialize_overlap && td->cur_depth > 1 &&
611 	    in_flight_overlap(&td->io_u_all, io_u))
612 		return FIO_Q_BUSY;
613 
614 	return td_io_queue(td, io_u);
615 }
616 
617 /*
618  * The main verify engine. Runs over the writes we previously submitted,
619  * reads the blocks back in, and checks the crc/md5 of the data.
620  */
621 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
622 {
623 	struct fio_file *f;
624 	struct io_u *io_u;
625 	int ret, min_events;
626 	unsigned int i;
627 
628 	dprint(FD_VERIFY, "starting loop\n");
629 
630 	/*
631 	 * sync io first and invalidate cache, to make sure we really
632 	 * read from disk.
633 	 */
634 	for_each_file(td, f, i) {
635 		if (!fio_file_open(f))
636 			continue;
637 		if (fio_io_sync(td, f))
638 			break;
639 		if (file_invalidate_cache(td, f))
640 			break;
641 	}
642 
643 	check_update_rusage(td);
644 
645 	if (td->error)
646 		return;
647 
648 	/*
649 	 * verify_state needs to be reset before verification
650 	 * proceeds so that expected random seeds match actual
651 	 * random seeds in headers. The main loop will reset
652 	 * all random number generators if randrepeat is set.
653 	 */
654 	if (!td->o.rand_repeatable)
655 		td_fill_verify_state_seed(td);
656 
657 	td_set_runstate(td, TD_VERIFYING);
658 
659 	io_u = NULL;
660 	while (!td->terminate) {
661 		enum fio_ddir ddir;
662 		int full;
663 
664 		update_ts_cache(td);
665 		check_update_rusage(td);
666 
667 		if (runtime_exceeded(td, &td->ts_cache)) {
668 			__update_ts_cache(td);
669 			if (runtime_exceeded(td, &td->ts_cache)) {
670 				fio_mark_td_terminate(td);
671 				break;
672 			}
673 		}
674 
675 		if (flow_threshold_exceeded(td))
676 			continue;
677 
678 		if (!td->o.experimental_verify) {
679 			io_u = __get_io_u(td);
680 			if (!io_u)
681 				break;
682 
683 			if (get_next_verify(td, io_u)) {
684 				put_io_u(td, io_u);
685 				break;
686 			}
687 
688 			if (td_io_prep(td, io_u)) {
689 				put_io_u(td, io_u);
690 				break;
691 			}
692 		} else {
693 			if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
694 				break;
695 
696 			while ((io_u = get_io_u(td)) != NULL) {
697 				if (IS_ERR_OR_NULL(io_u)) {
698 					io_u = NULL;
699 					ret = FIO_Q_BUSY;
700 					goto reap;
701 				}
702 
703 				/*
704 				 * We are only interested in the places where
705 				 * we wrote or trimmed IOs. Turn those into
706 				 * reads for verification purposes.
707 				 */
708 				if (io_u->ddir == DDIR_READ) {
709 					/*
710 					 * Pretend we issued it for rwmix
711 					 * accounting
712 					 */
713 					td->io_issues[DDIR_READ]++;
714 					put_io_u(td, io_u);
715 					continue;
716 				} else if (io_u->ddir == DDIR_TRIM) {
717 					io_u->ddir = DDIR_READ;
718 					io_u_set(td, io_u, IO_U_F_TRIMMED);
719 					break;
720 				} else if (io_u->ddir == DDIR_WRITE) {
721 					io_u->ddir = DDIR_READ;
722 					populate_verify_io_u(td, io_u);
723 					break;
724 				} else {
725 					put_io_u(td, io_u);
726 					continue;
727 				}
728 			}
729 
730 			if (!io_u)
731 				break;
732 		}
733 
734 		if (verify_state_should_stop(td, io_u)) {
735 			put_io_u(td, io_u);
736 			break;
737 		}
738 
739 		if (td->o.verify_async)
740 			io_u->end_io = verify_io_u_async;
741 		else
742 			io_u->end_io = verify_io_u;
743 
744 		ddir = io_u->ddir;
745 		if (!td->o.disable_slat)
746 			fio_gettime(&io_u->start_time, NULL);
747 
748 		ret = io_u_submit(td, io_u);
749 
750 		if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
751 			break;
752 
753 		/*
754 		 * if we can queue more, do so. but check if there are
755 		 * completed io_u's first. Note that we can get BUSY even
756 		 * without IO queued, if the system is resource starved.
757 		 */
758 reap:
759 		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
760 		if (full || io_in_polling(td))
761 			ret = wait_for_completions(td, NULL);
762 
763 		if (ret < 0)
764 			break;
765 	}
766 
767 	check_update_rusage(td);
768 
769 	if (!td->error) {
770 		min_events = td->cur_depth;
771 
772 		if (min_events)
773 			ret = io_u_queued_complete(td, min_events);
774 	} else
775 		cleanup_pending_aio(td);
776 
777 	td_set_runstate(td, TD_RUNNING);
778 
779 	dprint(FD_VERIFY, "exiting loop\n");
780 }
781 
782 static bool exceeds_number_ios(struct thread_data *td)
783 {
784 	unsigned long long number_ios;
785 
786 	if (!td->o.number_ios)
787 		return false;
788 
789 	number_ios = ddir_rw_sum(td->io_blocks);
790 	number_ios += td->io_u_queued + td->io_u_in_flight;
791 
792 	return number_ios >= (td->o.number_ios * td->loops);
793 }
794 
795 static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
796 {
797 	unsigned long long bytes, limit;
798 
799 	if (td_rw(td))
800 		bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
801 	else if (td_write(td))
802 		bytes = this_bytes[DDIR_WRITE];
803 	else if (td_read(td))
804 		bytes = this_bytes[DDIR_READ];
805 	else
806 		bytes = this_bytes[DDIR_TRIM];
807 
808 	if (td->o.io_size)
809 		limit = td->o.io_size;
810 	else
811 		limit = td->o.size;
812 
813 	limit *= td->loops;
814 	return bytes >= limit || exceeds_number_ios(td);
815 }
816 
817 static bool io_issue_bytes_exceeded(struct thread_data *td)
818 {
819 	return io_bytes_exceeded(td, td->io_issue_bytes);
820 }
821 
822 static bool io_complete_bytes_exceeded(struct thread_data *td)
823 {
824 	return io_bytes_exceeded(td, td->this_io_bytes);
825 }
826 
827 /*
828  * used to calculate the next io time for rate control
829  *
830  */
831 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
832 {
833 	uint64_t bps = td->rate_bps[ddir];
834 
835 	assert(!(td->flags & TD_F_CHILD));
836 
837 	if (td->o.rate_process == RATE_PROCESS_POISSON) {
838 		uint64_t val, iops;
839 
840 		iops = bps / td->o.min_bs[ddir];
841 		val = (int64_t) (1000000 / iops) *
842 				-logf(__rand_0_1(&td->poisson_state[ddir]));
843 		if (val) {
844 			dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
845 					(unsigned long long) 1000000 / val,
846 					ddir);
847 		}
848 		td->last_usec[ddir] += val;
849 		return td->last_usec[ddir];
850 	} else if (bps) {
851 		uint64_t bytes = td->rate_io_issue_bytes[ddir];
852 		uint64_t secs = bytes / bps;
853 		uint64_t remainder = bytes % bps;
854 
855 		return remainder * 1000000 / bps + secs * 1000000;
856 	}
857 
858 	return 0;
859 }
860 
861 static void init_thinktime(struct thread_data *td)
862 {
863 	if (td->o.thinktime_blocks_type == THINKTIME_BLOCKS_TYPE_COMPLETE)
864 		td->thinktime_blocks_counter = td->io_blocks;
865 	else
866 		td->thinktime_blocks_counter = td->io_issues;
867 	td->last_thinktime = td->epoch;
868 	td->last_thinktime_blocks = 0;
869 }
870 
871 static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir,
872 			     struct timespec *time)
873 {
874 	unsigned long long b;
875 	uint64_t total;
876 	int left;
877 	struct timespec now;
878 	bool stall = false;
879 
880 	if (td->o.thinktime_iotime) {
881 		fio_gettime(&now, NULL);
882 		if (utime_since(&td->last_thinktime, &now)
883 		    >= td->o.thinktime_iotime + td->o.thinktime) {
884 			stall = true;
885 		} else if (!fio_option_is_set(&td->o, thinktime_blocks)) {
886 			/*
887 			 * When thinktime_iotime is set and thinktime_blocks is
888 			 * not set, skip the thinktime_blocks check, since
889 			 * thinktime_blocks default value 1 does not work
890 			 * together with thinktime_iotime.
891 			 */
892 			return;
893 		}
894 
895 	}
896 
897 	b = ddir_rw_sum(td->thinktime_blocks_counter);
898 	if (b >= td->last_thinktime_blocks + td->o.thinktime_blocks)
899 		stall = true;
900 
901 	if (!stall)
902 		return;
903 
904 	io_u_quiesce(td);
905 
906 	total = 0;
907 	if (td->o.thinktime_spin)
908 		total = usec_spin(td->o.thinktime_spin);
909 
910 	left = td->o.thinktime - total;
911 	if (left)
912 		total += usec_sleep(td, left);
913 
914 	/*
915 	 * If we're ignoring thinktime for the rate, add the number of bytes
916 	 * we would have done while sleeping, minus one block to ensure we
917 	 * start issuing immediately after the sleep.
918 	 */
919 	if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
920 		uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
921 		uint64_t bs = td->o.min_bs[ddir];
922 		uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
923 		uint64_t over;
924 
925 		if (usperop <= total)
926 			over = bs;
927 		else
928 			over = (usperop - total) / usperop * -bs;
929 
930 		td->rate_io_issue_bytes[ddir] += (missed - over);
931 		/* adjust for rate_process=poisson */
932 		td->last_usec[ddir] += total;
933 	}
934 
935 	if (time && should_check_rate(td))
936 		fio_gettime(time, NULL);
937 
938 	td->last_thinktime_blocks = b;
939 	if (td->o.thinktime_iotime)
940 		td->last_thinktime = now;
941 }
942 
943 /*
944  * Main IO worker function. It retrieves io_u's to process and queues
945  * and reaps them, checking for rate and errors along the way.
946  *
947  * Returns number of bytes written and trimmed.
948  */
949 static void do_io(struct thread_data *td, uint64_t *bytes_done)
950 {
951 	unsigned int i;
952 	int ret = 0;
953 	uint64_t total_bytes, bytes_issued = 0;
954 
955 	for (i = 0; i < DDIR_RWDIR_CNT; i++)
956 		bytes_done[i] = td->bytes_done[i];
957 
958 	if (in_ramp_time(td))
959 		td_set_runstate(td, TD_RAMP);
960 	else
961 		td_set_runstate(td, TD_RUNNING);
962 
963 	lat_target_init(td);
964 
965 	total_bytes = td->o.size;
966 	/*
967 	* Allow random overwrite workloads to write up to io_size
968 	* before starting verification phase as 'size' doesn't apply.
969 	*/
970 	if (td_write(td) && td_random(td) && td->o.norandommap)
971 		total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
972 	/*
973 	 * If verify_backlog is enabled, we'll run the verify in this
974 	 * handler as well. For that case, we may need up to twice the
975 	 * amount of bytes.
976 	 */
977 	if (td->o.verify != VERIFY_NONE &&
978 	   (td_write(td) && td->o.verify_backlog))
979 		total_bytes += td->o.size;
980 
981 	/* In trimwrite mode, each byte is trimmed and then written, so
982 	 * allow total_bytes to be twice as big */
983 	if (td_trimwrite(td))
984 		total_bytes += td->total_io_size;
985 
986 	while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
987 		(!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
988 		td->o.time_based) {
989 		struct timespec comp_time;
990 		struct io_u *io_u;
991 		int full;
992 		enum fio_ddir ddir;
993 
994 		check_update_rusage(td);
995 
996 		if (td->terminate || td->done)
997 			break;
998 
999 		update_ts_cache(td);
1000 
1001 		if (runtime_exceeded(td, &td->ts_cache)) {
1002 			__update_ts_cache(td);
1003 			if (runtime_exceeded(td, &td->ts_cache)) {
1004 				fio_mark_td_terminate(td);
1005 				break;
1006 			}
1007 		}
1008 
1009 		if (flow_threshold_exceeded(td))
1010 			continue;
1011 
1012 		/*
1013 		 * Break if we exceeded the bytes. The exception is time
1014 		 * based runs, but we still need to break out of the loop
1015 		 * for those to run verification, if enabled.
1016 		 * Jobs read from iolog do not use this stop condition.
1017 		 */
1018 		if (bytes_issued >= total_bytes &&
1019 		    !td->o.read_iolog_file &&
1020 		    (!td->o.time_based ||
1021 		     (td->o.time_based && td->o.verify != VERIFY_NONE)))
1022 			break;
1023 
1024 		io_u = get_io_u(td);
1025 		if (IS_ERR_OR_NULL(io_u)) {
1026 			int err = PTR_ERR(io_u);
1027 
1028 			io_u = NULL;
1029 			ddir = DDIR_INVAL;
1030 			if (err == -EBUSY) {
1031 				ret = FIO_Q_BUSY;
1032 				goto reap;
1033 			}
1034 			if (td->o.latency_target)
1035 				goto reap;
1036 			break;
1037 		}
1038 
1039 		if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY)
1040 			populate_verify_io_u(td, io_u);
1041 
1042 		ddir = io_u->ddir;
1043 
1044 		/*
1045 		 * Add verification end_io handler if:
1046 		 *	- Asked to verify (!td_rw(td))
1047 		 *	- Or the io_u is from our verify list (mixed write/ver)
1048 		 */
1049 		if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1050 		    ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1051 
1052 			if (verify_state_should_stop(td, io_u)) {
1053 				put_io_u(td, io_u);
1054 				break;
1055 			}
1056 
1057 			if (td->o.verify_async)
1058 				io_u->end_io = verify_io_u_async;
1059 			else
1060 				io_u->end_io = verify_io_u;
1061 			td_set_runstate(td, TD_VERIFYING);
1062 		} else if (in_ramp_time(td))
1063 			td_set_runstate(td, TD_RAMP);
1064 		else
1065 			td_set_runstate(td, TD_RUNNING);
1066 
1067 		/*
1068 		 * Always log IO before it's issued, so we know the specific
1069 		 * order of it. The logged unit will track when the IO has
1070 		 * completed.
1071 		 */
1072 		if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1073 		    td->o.do_verify &&
1074 		    td->o.verify != VERIFY_NONE &&
1075 		    !td->o.experimental_verify)
1076 			log_io_piece(td, io_u);
1077 
1078 		if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1079 			const unsigned long long blen = io_u->xfer_buflen;
1080 			const enum fio_ddir __ddir = acct_ddir(io_u);
1081 
1082 			if (td->error)
1083 				break;
1084 
1085 			workqueue_enqueue(&td->io_wq, &io_u->work);
1086 			ret = FIO_Q_QUEUED;
1087 
1088 			if (ddir_rw(__ddir)) {
1089 				td->io_issues[__ddir]++;
1090 				td->io_issue_bytes[__ddir] += blen;
1091 				td->rate_io_issue_bytes[__ddir] += blen;
1092 			}
1093 
1094 			if (should_check_rate(td))
1095 				td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
1096 
1097 		} else {
1098 			ret = io_u_submit(td, io_u);
1099 
1100 			if (should_check_rate(td))
1101 				td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1102 
1103 			if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1104 				break;
1105 
1106 			/*
1107 			 * See if we need to complete some commands. Note that
1108 			 * we can get BUSY even without IO queued, if the
1109 			 * system is resource starved.
1110 			 */
1111 reap:
1112 			full = queue_full(td) ||
1113 				(ret == FIO_Q_BUSY && td->cur_depth);
1114 			if (full || io_in_polling(td))
1115 				ret = wait_for_completions(td, &comp_time);
1116 		}
1117 		if (ret < 0)
1118 			break;
1119 
1120 		if (ddir_rw(ddir) && td->o.thinktime)
1121 			handle_thinktime(td, ddir, &comp_time);
1122 
1123 		if (!ddir_rw_sum(td->bytes_done) &&
1124 		    !td_ioengine_flagged(td, FIO_NOIO))
1125 			continue;
1126 
1127 		if (!in_ramp_time(td) && should_check_rate(td)) {
1128 			if (check_min_rate(td, &comp_time)) {
1129 				if (exitall_on_terminate || td->o.exitall_error)
1130 					fio_terminate_threads(td->groupid, td->o.exit_what);
1131 				td_verror(td, EIO, "check_min_rate");
1132 				break;
1133 			}
1134 		}
1135 		if (!in_ramp_time(td) && td->o.latency_target)
1136 			lat_target_check(td);
1137 	}
1138 
1139 	check_update_rusage(td);
1140 
1141 	if (td->trim_entries)
1142 		log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1143 
1144 	if (td->o.fill_device && (td->error == ENOSPC || td->error == EDQUOT)) {
1145 		td->error = 0;
1146 		fio_mark_td_terminate(td);
1147 	}
1148 	if (!td->error) {
1149 		struct fio_file *f;
1150 
1151 		if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1152 			workqueue_flush(&td->io_wq);
1153 			i = 0;
1154 		} else
1155 			i = td->cur_depth;
1156 
1157 		if (i) {
1158 			ret = io_u_queued_complete(td, i);
1159 			if (td->o.fill_device &&
1160 			    (td->error == ENOSPC || td->error == EDQUOT))
1161 				td->error = 0;
1162 		}
1163 
1164 		if (should_fsync(td) && (td->o.end_fsync || td->o.fsync_on_close)) {
1165 			td_set_runstate(td, TD_FSYNCING);
1166 
1167 			for_each_file(td, f, i) {
1168 				if (!fio_file_fsync(td, f))
1169 					continue;
1170 
1171 				log_err("fio: end_fsync failed for file %s\n",
1172 								f->file_name);
1173 			}
1174 		}
1175 	} else
1176 		cleanup_pending_aio(td);
1177 
1178 	/*
1179 	 * stop job if we failed doing any IO
1180 	 */
1181 	if (!ddir_rw_sum(td->this_io_bytes))
1182 		td->done = 1;
1183 
1184 	for (i = 0; i < DDIR_RWDIR_CNT; i++)
1185 		bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1186 }
1187 
1188 static void free_file_completion_logging(struct thread_data *td)
1189 {
1190 	struct fio_file *f;
1191 	unsigned int i;
1192 
1193 	for_each_file(td, f, i) {
1194 		if (!f->last_write_comp)
1195 			break;
1196 		sfree(f->last_write_comp);
1197 	}
1198 }
1199 
1200 static int init_file_completion_logging(struct thread_data *td,
1201 					unsigned int depth)
1202 {
1203 	struct fio_file *f;
1204 	unsigned int i;
1205 
1206 	if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1207 		return 0;
1208 
1209 	for_each_file(td, f, i) {
1210 		f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1211 		if (!f->last_write_comp)
1212 			goto cleanup;
1213 	}
1214 
1215 	return 0;
1216 
1217 cleanup:
1218 	free_file_completion_logging(td);
1219 	log_err("fio: failed to alloc write comp data\n");
1220 	return 1;
1221 }
1222 
1223 static void cleanup_io_u(struct thread_data *td)
1224 {
1225 	struct io_u *io_u;
1226 
1227 	while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1228 
1229 		if (td->io_ops->io_u_free)
1230 			td->io_ops->io_u_free(td, io_u);
1231 
1232 		fio_memfree(io_u, sizeof(*io_u), td_offload_overlap(td));
1233 	}
1234 
1235 	free_io_mem(td);
1236 
1237 	io_u_rexit(&td->io_u_requeues);
1238 	io_u_qexit(&td->io_u_freelist, false);
1239 	io_u_qexit(&td->io_u_all, td_offload_overlap(td));
1240 
1241 	free_file_completion_logging(td);
1242 }
1243 
1244 static int init_io_u(struct thread_data *td)
1245 {
1246 	struct io_u *io_u;
1247 	int cl_align, i, max_units;
1248 	int err;
1249 
1250 	max_units = td->o.iodepth;
1251 
1252 	err = 0;
1253 	err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1254 	err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth, false);
1255 	err += !io_u_qinit(&td->io_u_all, td->o.iodepth, td_offload_overlap(td));
1256 
1257 	if (err) {
1258 		log_err("fio: failed setting up IO queues\n");
1259 		return 1;
1260 	}
1261 
1262 	cl_align = os_cache_line_size();
1263 
1264 	for (i = 0; i < max_units; i++) {
1265 		void *ptr;
1266 
1267 		if (td->terminate)
1268 			return 1;
1269 
1270 		ptr = fio_memalign(cl_align, sizeof(*io_u), td_offload_overlap(td));
1271 		if (!ptr) {
1272 			log_err("fio: unable to allocate aligned memory\n");
1273 			return 1;
1274 		}
1275 
1276 		io_u = ptr;
1277 		memset(io_u, 0, sizeof(*io_u));
1278 		INIT_FLIST_HEAD(&io_u->verify_list);
1279 		dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1280 
1281 		io_u->index = i;
1282 		io_u->flags = IO_U_F_FREE;
1283 		io_u_qpush(&td->io_u_freelist, io_u);
1284 
1285 		/*
1286 		 * io_u never leaves this stack, used for iteration of all
1287 		 * io_u buffers.
1288 		 */
1289 		io_u_qpush(&td->io_u_all, io_u);
1290 
1291 		if (td->io_ops->io_u_init) {
1292 			int ret = td->io_ops->io_u_init(td, io_u);
1293 
1294 			if (ret) {
1295 				log_err("fio: failed to init engine data: %d\n", ret);
1296 				return 1;
1297 			}
1298 		}
1299 	}
1300 
1301 	init_io_u_buffers(td);
1302 
1303 	if (init_file_completion_logging(td, max_units))
1304 		return 1;
1305 
1306 	return 0;
1307 }
1308 
1309 int init_io_u_buffers(struct thread_data *td)
1310 {
1311 	struct io_u *io_u;
1312 	unsigned long long max_bs, min_write;
1313 	int i, max_units;
1314 	int data_xfer = 1;
1315 	char *p;
1316 
1317 	max_units = td->o.iodepth;
1318 	max_bs = td_max_bs(td);
1319 	min_write = td->o.min_bs[DDIR_WRITE];
1320 	td->orig_buffer_size = (unsigned long long) max_bs
1321 					* (unsigned long long) max_units;
1322 
1323 	if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1324 		data_xfer = 0;
1325 
1326 	/*
1327 	 * if we may later need to do address alignment, then add any
1328 	 * possible adjustment here so that we don't cause a buffer
1329 	 * overflow later. this adjustment may be too much if we get
1330 	 * lucky and the allocator gives us an aligned address.
1331 	 */
1332 	if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1333 	    td_ioengine_flagged(td, FIO_RAWIO))
1334 		td->orig_buffer_size += page_mask + td->o.mem_align;
1335 
1336 	if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1337 		unsigned long long bs;
1338 
1339 		bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1340 		td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1341 	}
1342 
1343 	if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1344 		log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1345 		return 1;
1346 	}
1347 
1348 	if (data_xfer && allocate_io_mem(td))
1349 		return 1;
1350 
1351 	if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1352 	    td_ioengine_flagged(td, FIO_RAWIO))
1353 		p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1354 	else
1355 		p = td->orig_buffer;
1356 
1357 	for (i = 0; i < max_units; i++) {
1358 		io_u = td->io_u_all.io_us[i];
1359 		dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1360 
1361 		if (data_xfer) {
1362 			io_u->buf = p;
1363 			dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1364 
1365 			if (td_write(td))
1366 				io_u_fill_buffer(td, io_u, min_write, max_bs);
1367 			if (td_write(td) && td->o.verify_pattern_bytes) {
1368 				/*
1369 				 * Fill the buffer with the pattern if we are
1370 				 * going to be doing writes.
1371 				 */
1372 				fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1373 			}
1374 		}
1375 		p += max_bs;
1376 	}
1377 
1378 	return 0;
1379 }
1380 
1381 #ifdef FIO_HAVE_IOSCHED_SWITCH
1382 /*
1383  * These functions are Linux specific.
1384  * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1385  */
1386 static int set_ioscheduler(struct thread_data *td, struct fio_file *file)
1387 {
1388 	char tmp[256], tmp2[128], *p;
1389 	FILE *f;
1390 	int ret;
1391 
1392 	assert(file->du && file->du->sysfs_root);
1393 	sprintf(tmp, "%s/queue/scheduler", file->du->sysfs_root);
1394 
1395 	f = fopen(tmp, "r+");
1396 	if (!f) {
1397 		if (errno == ENOENT) {
1398 			log_err("fio: os or kernel doesn't support IO scheduler"
1399 				" switching\n");
1400 			return 0;
1401 		}
1402 		td_verror(td, errno, "fopen iosched");
1403 		return 1;
1404 	}
1405 
1406 	/*
1407 	 * Set io scheduler.
1408 	 */
1409 	ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1410 	if (ferror(f) || ret != 1) {
1411 		td_verror(td, errno, "fwrite");
1412 		fclose(f);
1413 		return 1;
1414 	}
1415 
1416 	rewind(f);
1417 
1418 	/*
1419 	 * Read back and check that the selected scheduler is now the default.
1420 	 */
1421 	ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1422 	if (ferror(f) || ret < 0) {
1423 		td_verror(td, errno, "fread");
1424 		fclose(f);
1425 		return 1;
1426 	}
1427 	tmp[ret] = '\0';
1428 	/*
1429 	 * either a list of io schedulers or "none\n" is expected. Strip the
1430 	 * trailing newline.
1431 	 */
1432 	p = tmp;
1433 	strsep(&p, "\n");
1434 
1435 	/*
1436 	 * Write to "none" entry doesn't fail, so check the result here.
1437 	 */
1438 	if (!strcmp(tmp, "none")) {
1439 		log_err("fio: io scheduler is not tunable\n");
1440 		fclose(f);
1441 		return 0;
1442 	}
1443 
1444 	sprintf(tmp2, "[%s]", td->o.ioscheduler);
1445 	if (!strstr(tmp, tmp2)) {
1446 		log_err("fio: unable to set io scheduler to %s\n", td->o.ioscheduler);
1447 		td_verror(td, EINVAL, "iosched_switch");
1448 		fclose(f);
1449 		return 1;
1450 	}
1451 
1452 	fclose(f);
1453 	return 0;
1454 }
1455 
1456 static int switch_ioscheduler(struct thread_data *td)
1457 {
1458 	struct fio_file *f;
1459 	unsigned int i;
1460 	int ret = 0;
1461 
1462 	if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1463 		return 0;
1464 
1465 	assert(td->files && td->files[0]);
1466 
1467 	for_each_file(td, f, i) {
1468 
1469 		/* Only consider regular files and block device files */
1470 		switch (f->filetype) {
1471 		case FIO_TYPE_FILE:
1472 		case FIO_TYPE_BLOCK:
1473 			/*
1474 			 * Make sure that the device hosting the file could
1475 			 * be determined.
1476 			 */
1477 			if (!f->du)
1478 				continue;
1479 			break;
1480 		case FIO_TYPE_CHAR:
1481 		case FIO_TYPE_PIPE:
1482 		default:
1483 			continue;
1484 		}
1485 
1486 		ret = set_ioscheduler(td, f);
1487 		if (ret)
1488 			return ret;
1489 	}
1490 
1491 	return 0;
1492 }
1493 
1494 #else
1495 
1496 static int switch_ioscheduler(struct thread_data *td)
1497 {
1498 	return 0;
1499 }
1500 
1501 #endif /* FIO_HAVE_IOSCHED_SWITCH */
1502 
1503 static bool keep_running(struct thread_data *td)
1504 {
1505 	unsigned long long limit;
1506 
1507 	if (td->done)
1508 		return false;
1509 	if (td->terminate)
1510 		return false;
1511 	if (td->o.time_based)
1512 		return true;
1513 	if (td->o.loops) {
1514 		td->o.loops--;
1515 		return true;
1516 	}
1517 	if (exceeds_number_ios(td))
1518 		return false;
1519 
1520 	if (td->o.io_size)
1521 		limit = td->o.io_size;
1522 	else
1523 		limit = td->o.size;
1524 
1525 	if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1526 		uint64_t diff;
1527 
1528 		/*
1529 		 * If the difference is less than the maximum IO size, we
1530 		 * are done.
1531 		 */
1532 		diff = limit - ddir_rw_sum(td->io_bytes);
1533 		if (diff < td_max_bs(td))
1534 			return false;
1535 
1536 		if (fio_files_done(td) && !td->o.io_size)
1537 			return false;
1538 
1539 		return true;
1540 	}
1541 
1542 	return false;
1543 }
1544 
1545 static int exec_string(struct thread_options *o, const char *string,
1546 		       const char *mode)
1547 {
1548 	int ret;
1549 	char *str;
1550 
1551 	if (asprintf(&str, "%s > %s.%s.txt 2>&1", string, o->name, mode) < 0)
1552 		return -1;
1553 
1554 	log_info("%s : Saving output of %s in %s.%s.txt\n", o->name, mode,
1555 		 o->name, mode);
1556 	ret = system(str);
1557 	if (ret == -1)
1558 		log_err("fio: exec of cmd <%s> failed\n", str);
1559 
1560 	free(str);
1561 	return ret;
1562 }
1563 
1564 /*
1565  * Dry run to compute correct state of numberio for verification.
1566  */
1567 static uint64_t do_dry_run(struct thread_data *td)
1568 {
1569 	td_set_runstate(td, TD_RUNNING);
1570 
1571 	while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1572 		(!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1573 		struct io_u *io_u;
1574 		int ret;
1575 
1576 		if (td->terminate || td->done)
1577 			break;
1578 
1579 		io_u = get_io_u(td);
1580 		if (IS_ERR_OR_NULL(io_u))
1581 			break;
1582 
1583 		io_u_set(td, io_u, IO_U_F_FLIGHT);
1584 		io_u->error = 0;
1585 		io_u->resid = 0;
1586 		if (ddir_rw(acct_ddir(io_u)))
1587 			td->io_issues[acct_ddir(io_u)]++;
1588 		if (ddir_rw(io_u->ddir)) {
1589 			io_u_mark_depth(td, 1);
1590 			td->ts.total_io_u[io_u->ddir]++;
1591 		}
1592 
1593 		if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1594 		    td->o.do_verify &&
1595 		    td->o.verify != VERIFY_NONE &&
1596 		    !td->o.experimental_verify)
1597 			log_io_piece(td, io_u);
1598 
1599 		ret = io_u_sync_complete(td, io_u);
1600 		(void) ret;
1601 	}
1602 
1603 	return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1604 }
1605 
1606 struct fork_data {
1607 	struct thread_data *td;
1608 	struct sk_out *sk_out;
1609 };
1610 
1611 /*
1612  * Entry point for the thread based jobs. The process based jobs end up
1613  * here as well, after a little setup.
1614  */
1615 static void *thread_main(void *data)
1616 {
1617 	struct fork_data *fd = data;
1618 	unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1619 	struct thread_data *td = fd->td;
1620 	struct thread_options *o = &td->o;
1621 	struct sk_out *sk_out = fd->sk_out;
1622 	uint64_t bytes_done[DDIR_RWDIR_CNT];
1623 	int deadlock_loop_cnt;
1624 	bool clear_state;
1625 	int res, ret;
1626 
1627 	sk_out_assign(sk_out);
1628 	free(fd);
1629 
1630 	if (!o->use_thread) {
1631 		setsid();
1632 		td->pid = getpid();
1633 	} else
1634 		td->pid = gettid();
1635 
1636 	fio_local_clock_init();
1637 
1638 	dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1639 
1640 	if (is_backend)
1641 		fio_server_send_start(td);
1642 
1643 	INIT_FLIST_HEAD(&td->io_log_list);
1644 	INIT_FLIST_HEAD(&td->io_hist_list);
1645 	INIT_FLIST_HEAD(&td->verify_list);
1646 	INIT_FLIST_HEAD(&td->trim_list);
1647 	td->io_hist_tree = RB_ROOT;
1648 
1649 	ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1650 	if (ret) {
1651 		td_verror(td, ret, "mutex_cond_init_pshared");
1652 		goto err;
1653 	}
1654 	ret = cond_init_pshared(&td->verify_cond);
1655 	if (ret) {
1656 		td_verror(td, ret, "mutex_cond_pshared");
1657 		goto err;
1658 	}
1659 
1660 	td_set_runstate(td, TD_INITIALIZED);
1661 	dprint(FD_MUTEX, "up startup_sem\n");
1662 	fio_sem_up(startup_sem);
1663 	dprint(FD_MUTEX, "wait on td->sem\n");
1664 	fio_sem_down(td->sem);
1665 	dprint(FD_MUTEX, "done waiting on td->sem\n");
1666 
1667 	/*
1668 	 * A new gid requires privilege, so we need to do this before setting
1669 	 * the uid.
1670 	 */
1671 	if (o->gid != -1U && setgid(o->gid)) {
1672 		td_verror(td, errno, "setgid");
1673 		goto err;
1674 	}
1675 	if (o->uid != -1U && setuid(o->uid)) {
1676 		td_verror(td, errno, "setuid");
1677 		goto err;
1678 	}
1679 
1680 	td_zone_gen_index(td);
1681 
1682 	/*
1683 	 * Do this early, we don't want the compress threads to be limited
1684 	 * to the same CPUs as the IO workers. So do this before we set
1685 	 * any potential CPU affinity
1686 	 */
1687 	if (iolog_compress_init(td, sk_out))
1688 		goto err;
1689 
1690 	/*
1691 	 * If we have a gettimeofday() thread, make sure we exclude that
1692 	 * thread from this job
1693 	 */
1694 	if (o->gtod_cpu)
1695 		fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1696 
1697 	/*
1698 	 * Set affinity first, in case it has an impact on the memory
1699 	 * allocations.
1700 	 */
1701 	if (fio_option_is_set(o, cpumask)) {
1702 		if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1703 			ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1704 			if (!ret) {
1705 				log_err("fio: no CPUs set\n");
1706 				log_err("fio: Try increasing number of available CPUs\n");
1707 				td_verror(td, EINVAL, "cpus_split");
1708 				goto err;
1709 			}
1710 		}
1711 		ret = fio_setaffinity(td->pid, o->cpumask);
1712 		if (ret == -1) {
1713 			td_verror(td, errno, "cpu_set_affinity");
1714 			goto err;
1715 		}
1716 	}
1717 
1718 #ifdef CONFIG_LIBNUMA
1719 	/* numa node setup */
1720 	if (fio_option_is_set(o, numa_cpunodes) ||
1721 	    fio_option_is_set(o, numa_memnodes)) {
1722 		struct bitmask *mask;
1723 
1724 		if (numa_available() < 0) {
1725 			td_verror(td, errno, "Does not support NUMA API\n");
1726 			goto err;
1727 		}
1728 
1729 		if (fio_option_is_set(o, numa_cpunodes)) {
1730 			mask = numa_parse_nodestring(o->numa_cpunodes);
1731 			ret = numa_run_on_node_mask(mask);
1732 			numa_free_nodemask(mask);
1733 			if (ret == -1) {
1734 				td_verror(td, errno, \
1735 					"numa_run_on_node_mask failed\n");
1736 				goto err;
1737 			}
1738 		}
1739 
1740 		if (fio_option_is_set(o, numa_memnodes)) {
1741 			mask = NULL;
1742 			if (o->numa_memnodes)
1743 				mask = numa_parse_nodestring(o->numa_memnodes);
1744 
1745 			switch (o->numa_mem_mode) {
1746 			case MPOL_INTERLEAVE:
1747 				numa_set_interleave_mask(mask);
1748 				break;
1749 			case MPOL_BIND:
1750 				numa_set_membind(mask);
1751 				break;
1752 			case MPOL_LOCAL:
1753 				numa_set_localalloc();
1754 				break;
1755 			case MPOL_PREFERRED:
1756 				numa_set_preferred(o->numa_mem_prefer_node);
1757 				break;
1758 			case MPOL_DEFAULT:
1759 			default:
1760 				break;
1761 			}
1762 
1763 			if (mask)
1764 				numa_free_nodemask(mask);
1765 
1766 		}
1767 	}
1768 #endif
1769 
1770 	if (fio_pin_memory(td))
1771 		goto err;
1772 
1773 	/*
1774 	 * May alter parameters that init_io_u() will use, so we need to
1775 	 * do this first.
1776 	 */
1777 	if (!init_iolog(td))
1778 		goto err;
1779 
1780 	if (td_io_init(td))
1781 		goto err;
1782 
1783 	if (init_io_u(td))
1784 		goto err;
1785 
1786 	if (td->io_ops->post_init && td->io_ops->post_init(td))
1787 		goto err;
1788 
1789 	if (o->verify_async && verify_async_init(td))
1790 		goto err;
1791 
1792 	if (fio_option_is_set(o, ioprio) ||
1793 	    fio_option_is_set(o, ioprio_class)) {
1794 		ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1795 		if (ret == -1) {
1796 			td_verror(td, errno, "ioprio_set");
1797 			goto err;
1798 		}
1799 		td->ioprio = ioprio_value(o->ioprio_class, o->ioprio);
1800 	}
1801 
1802 	if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1803 		goto err;
1804 
1805 	errno = 0;
1806 	if (nice(o->nice) == -1 && errno != 0) {
1807 		td_verror(td, errno, "nice");
1808 		goto err;
1809 	}
1810 
1811 	if (o->ioscheduler && switch_ioscheduler(td))
1812 		goto err;
1813 
1814 	if (!o->create_serialize && setup_files(td))
1815 		goto err;
1816 
1817 	if (!init_random_map(td))
1818 		goto err;
1819 
1820 	if (o->exec_prerun && exec_string(o, o->exec_prerun, "prerun"))
1821 		goto err;
1822 
1823 	if (o->pre_read && !pre_read_files(td))
1824 		goto err;
1825 
1826 	fio_verify_init(td);
1827 
1828 	if (rate_submit_init(td, sk_out))
1829 		goto err;
1830 
1831 	set_epoch_time(td, o->log_unix_epoch);
1832 	fio_getrusage(&td->ru_start);
1833 	memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1834 	memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1835 	memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1836 
1837 	init_thinktime(td);
1838 
1839 	if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1840 			o->ratemin[DDIR_TRIM]) {
1841 	        memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1842 					sizeof(td->bw_sample_time));
1843 	        memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1844 					sizeof(td->bw_sample_time));
1845 	        memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1846 					sizeof(td->bw_sample_time));
1847 	}
1848 
1849 	memset(bytes_done, 0, sizeof(bytes_done));
1850 	clear_state = false;
1851 
1852 	while (keep_running(td)) {
1853 		uint64_t verify_bytes;
1854 
1855 		fio_gettime(&td->start, NULL);
1856 		memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1857 
1858 		if (clear_state) {
1859 			clear_io_state(td, 0);
1860 
1861 			if (o->unlink_each_loop && unlink_all_files(td))
1862 				break;
1863 		}
1864 
1865 		prune_io_piece_log(td);
1866 
1867 		if (td->o.verify_only && td_write(td))
1868 			verify_bytes = do_dry_run(td);
1869 		else {
1870 			do_io(td, bytes_done);
1871 
1872 			if (!ddir_rw_sum(bytes_done)) {
1873 				fio_mark_td_terminate(td);
1874 				verify_bytes = 0;
1875 			} else {
1876 				verify_bytes = bytes_done[DDIR_WRITE] +
1877 						bytes_done[DDIR_TRIM];
1878 			}
1879 		}
1880 
1881 		/*
1882 		 * If we took too long to shut down, the main thread could
1883 		 * already consider us reaped/exited. If that happens, break
1884 		 * out and clean up.
1885 		 */
1886 		if (td->runstate >= TD_EXITED)
1887 			break;
1888 
1889 		clear_state = true;
1890 
1891 		/*
1892 		 * Make sure we've successfully updated the rusage stats
1893 		 * before waiting on the stat mutex. Otherwise we could have
1894 		 * the stat thread holding stat mutex and waiting for
1895 		 * the rusage_sem, which would never get upped because
1896 		 * this thread is waiting for the stat mutex.
1897 		 */
1898 		deadlock_loop_cnt = 0;
1899 		do {
1900 			check_update_rusage(td);
1901 			if (!fio_sem_down_trylock(stat_sem))
1902 				break;
1903 			usleep(1000);
1904 			if (deadlock_loop_cnt++ > 5000) {
1905 				log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1906 				td->error = EDEADLK;
1907 				goto err;
1908 			}
1909 		} while (1);
1910 
1911 		if (td_read(td) && td->io_bytes[DDIR_READ])
1912 			update_runtime(td, elapsed_us, DDIR_READ);
1913 		if (td_write(td) && td->io_bytes[DDIR_WRITE])
1914 			update_runtime(td, elapsed_us, DDIR_WRITE);
1915 		if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1916 			update_runtime(td, elapsed_us, DDIR_TRIM);
1917 		fio_gettime(&td->start, NULL);
1918 		fio_sem_up(stat_sem);
1919 
1920 		if (td->error || td->terminate)
1921 			break;
1922 
1923 		if (!o->do_verify ||
1924 		    o->verify == VERIFY_NONE ||
1925 		    td_ioengine_flagged(td, FIO_UNIDIR))
1926 			continue;
1927 
1928 		clear_io_state(td, 0);
1929 
1930 		fio_gettime(&td->start, NULL);
1931 
1932 		do_verify(td, verify_bytes);
1933 
1934 		/*
1935 		 * See comment further up for why this is done here.
1936 		 */
1937 		check_update_rusage(td);
1938 
1939 		fio_sem_down(stat_sem);
1940 		update_runtime(td, elapsed_us, DDIR_READ);
1941 		fio_gettime(&td->start, NULL);
1942 		fio_sem_up(stat_sem);
1943 
1944 		if (td->error || td->terminate)
1945 			break;
1946 	}
1947 
1948 	/*
1949 	 * Acquire this lock if we were doing overlap checking in
1950 	 * offload mode so that we don't clean up this job while
1951 	 * another thread is checking its io_u's for overlap
1952 	 */
1953 	if (td_offload_overlap(td)) {
1954 		int res = pthread_mutex_lock(&overlap_check);
1955 		assert(res == 0);
1956 	}
1957 	td_set_runstate(td, TD_FINISHING);
1958 	if (td_offload_overlap(td)) {
1959 		res = pthread_mutex_unlock(&overlap_check);
1960 		assert(res == 0);
1961 	}
1962 
1963 	update_rusage_stat(td);
1964 	td->ts.total_run_time = mtime_since_now(&td->epoch);
1965 	for_each_rw_ddir(ddir) {
1966 		td->ts.io_bytes[ddir] = td->io_bytes[ddir];
1967 	}
1968 
1969 	if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1970 	    (td->o.verify != VERIFY_NONE && td_write(td)))
1971 		verify_save_state(td->thread_number);
1972 
1973 	fio_unpin_memory(td);
1974 
1975 	td_writeout_logs(td, true);
1976 
1977 	iolog_compress_exit(td);
1978 	rate_submit_exit(td);
1979 
1980 	if (o->exec_postrun)
1981 		exec_string(o, o->exec_postrun, "postrun");
1982 
1983 	if (exitall_on_terminate || (o->exitall_error && td->error))
1984 		fio_terminate_threads(td->groupid, td->o.exit_what);
1985 
1986 err:
1987 	if (td->error)
1988 		log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1989 							td->verror);
1990 
1991 	if (o->verify_async)
1992 		verify_async_exit(td);
1993 
1994 	close_and_free_files(td);
1995 	cleanup_io_u(td);
1996 	close_ioengine(td);
1997 	cgroup_shutdown(td, cgroup_mnt);
1998 	verify_free_state(td);
1999 	td_zone_free_index(td);
2000 
2001 	if (fio_option_is_set(o, cpumask)) {
2002 		ret = fio_cpuset_exit(&o->cpumask);
2003 		if (ret)
2004 			td_verror(td, ret, "fio_cpuset_exit");
2005 	}
2006 
2007 	/*
2008 	 * do this very late, it will log file closing as well
2009 	 */
2010 	if (o->write_iolog_file)
2011 		write_iolog_close(td);
2012 	if (td->io_log_rfile)
2013 		fclose(td->io_log_rfile);
2014 
2015 	td_set_runstate(td, TD_EXITED);
2016 
2017 	/*
2018 	 * Do this last after setting our runstate to exited, so we
2019 	 * know that the stat thread is signaled.
2020 	 */
2021 	check_update_rusage(td);
2022 
2023 	sk_out_drop();
2024 	return (void *) (uintptr_t) td->error;
2025 }
2026 
2027 /*
2028  * Run over the job map and reap the threads that have exited, if any.
2029  */
2030 static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
2031 			 uint64_t *m_rate)
2032 {
2033 	struct thread_data *td;
2034 	unsigned int cputhreads, realthreads, pending;
2035 	int i, status, ret;
2036 
2037 	/*
2038 	 * reap exited threads (TD_EXITED -> TD_REAPED)
2039 	 */
2040 	realthreads = pending = cputhreads = 0;
2041 	for_each_td(td, i) {
2042 		int flags = 0;
2043 
2044 		 if (!strcmp(td->o.ioengine, "cpuio"))
2045 			cputhreads++;
2046 		else
2047 			realthreads++;
2048 
2049 		if (!td->pid) {
2050 			pending++;
2051 			continue;
2052 		}
2053 		if (td->runstate == TD_REAPED)
2054 			continue;
2055 		if (td->o.use_thread) {
2056 			if (td->runstate == TD_EXITED) {
2057 				td_set_runstate(td, TD_REAPED);
2058 				goto reaped;
2059 			}
2060 			continue;
2061 		}
2062 
2063 		flags = WNOHANG;
2064 		if (td->runstate == TD_EXITED)
2065 			flags = 0;
2066 
2067 		/*
2068 		 * check if someone quit or got killed in an unusual way
2069 		 */
2070 		ret = waitpid(td->pid, &status, flags);
2071 		if (ret < 0) {
2072 			if (errno == ECHILD) {
2073 				log_err("fio: pid=%d disappeared %d\n",
2074 						(int) td->pid, td->runstate);
2075 				td->sig = ECHILD;
2076 				td_set_runstate(td, TD_REAPED);
2077 				goto reaped;
2078 			}
2079 			perror("waitpid");
2080 		} else if (ret == td->pid) {
2081 			if (WIFSIGNALED(status)) {
2082 				int sig = WTERMSIG(status);
2083 
2084 				if (sig != SIGTERM && sig != SIGUSR2)
2085 					log_err("fio: pid=%d, got signal=%d\n",
2086 							(int) td->pid, sig);
2087 				td->sig = sig;
2088 				td_set_runstate(td, TD_REAPED);
2089 				goto reaped;
2090 			}
2091 			if (WIFEXITED(status)) {
2092 				if (WEXITSTATUS(status) && !td->error)
2093 					td->error = WEXITSTATUS(status);
2094 
2095 				td_set_runstate(td, TD_REAPED);
2096 				goto reaped;
2097 			}
2098 		}
2099 
2100 		/*
2101 		 * If the job is stuck, do a forceful timeout of it and
2102 		 * move on.
2103 		 */
2104 		if (td->terminate &&
2105 		    td->runstate < TD_FSYNCING &&
2106 		    time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2107 			log_err("fio: job '%s' (state=%d) hasn't exited in "
2108 				"%lu seconds, it appears to be stuck. Doing "
2109 				"forceful exit of this job.\n",
2110 				td->o.name, td->runstate,
2111 				(unsigned long) time_since_now(&td->terminate_time));
2112 			td_set_runstate(td, TD_REAPED);
2113 			goto reaped;
2114 		}
2115 
2116 		/*
2117 		 * thread is not dead, continue
2118 		 */
2119 		pending++;
2120 		continue;
2121 reaped:
2122 		(*nr_running)--;
2123 		(*m_rate) -= ddir_rw_sum(td->o.ratemin);
2124 		(*t_rate) -= ddir_rw_sum(td->o.rate);
2125 		if (!td->pid)
2126 			pending--;
2127 
2128 		if (td->error)
2129 			exit_value++;
2130 
2131 		done_secs += mtime_since_now(&td->epoch) / 1000;
2132 		profile_td_exit(td);
2133 		flow_exit_job(td);
2134 	}
2135 
2136 	if (*nr_running == cputhreads && !pending && realthreads)
2137 		fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2138 }
2139 
2140 static bool __check_trigger_file(void)
2141 {
2142 	struct stat sb;
2143 
2144 	if (!trigger_file)
2145 		return false;
2146 
2147 	if (stat(trigger_file, &sb))
2148 		return false;
2149 
2150 	if (unlink(trigger_file) < 0)
2151 		log_err("fio: failed to unlink %s: %s\n", trigger_file,
2152 							strerror(errno));
2153 
2154 	return true;
2155 }
2156 
2157 static bool trigger_timedout(void)
2158 {
2159 	if (trigger_timeout)
2160 		if (time_since_genesis() >= trigger_timeout) {
2161 			trigger_timeout = 0;
2162 			return true;
2163 		}
2164 
2165 	return false;
2166 }
2167 
2168 void exec_trigger(const char *cmd)
2169 {
2170 	int ret;
2171 
2172 	if (!cmd || cmd[0] == '\0')
2173 		return;
2174 
2175 	ret = system(cmd);
2176 	if (ret == -1)
2177 		log_err("fio: failed executing %s trigger\n", cmd);
2178 }
2179 
2180 void check_trigger_file(void)
2181 {
2182 	if (__check_trigger_file() || trigger_timedout()) {
2183 		if (nr_clients)
2184 			fio_clients_send_trigger(trigger_remote_cmd);
2185 		else {
2186 			verify_save_state(IO_LIST_ALL);
2187 			fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2188 			exec_trigger(trigger_cmd);
2189 		}
2190 	}
2191 }
2192 
2193 static int fio_verify_load_state(struct thread_data *td)
2194 {
2195 	int ret;
2196 
2197 	if (!td->o.verify_state)
2198 		return 0;
2199 
2200 	if (is_backend) {
2201 		void *data;
2202 
2203 		ret = fio_server_get_verify_state(td->o.name,
2204 					td->thread_number - 1, &data);
2205 		if (!ret)
2206 			verify_assign_state(td, data);
2207 	} else {
2208 		char prefix[PATH_MAX];
2209 
2210 		if (aux_path)
2211 			sprintf(prefix, "%s%clocal", aux_path,
2212 					FIO_OS_PATH_SEPARATOR);
2213 		else
2214 			strcpy(prefix, "local");
2215 		ret = verify_load_state(td, prefix);
2216 	}
2217 
2218 	return ret;
2219 }
2220 
2221 static void do_usleep(unsigned int usecs)
2222 {
2223 	check_for_running_stats();
2224 	check_trigger_file();
2225 	usleep(usecs);
2226 }
2227 
2228 static bool check_mount_writes(struct thread_data *td)
2229 {
2230 	struct fio_file *f;
2231 	unsigned int i;
2232 
2233 	if (!td_write(td) || td->o.allow_mounted_write)
2234 		return false;
2235 
2236 	/*
2237 	 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2238 	 * are mkfs'd and mounted.
2239 	 */
2240 	for_each_file(td, f, i) {
2241 #ifdef FIO_HAVE_CHARDEV_SIZE
2242 		if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2243 #else
2244 		if (f->filetype != FIO_TYPE_BLOCK)
2245 #endif
2246 			continue;
2247 		if (device_is_mounted(f->file_name))
2248 			goto mounted;
2249 	}
2250 
2251 	return false;
2252 mounted:
2253 	log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2254 	return true;
2255 }
2256 
2257 static bool waitee_running(struct thread_data *me)
2258 {
2259 	const char *waitee = me->o.wait_for;
2260 	const char *self = me->o.name;
2261 	struct thread_data *td;
2262 	int i;
2263 
2264 	if (!waitee)
2265 		return false;
2266 
2267 	for_each_td(td, i) {
2268 		if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2269 			continue;
2270 
2271 		if (td->runstate < TD_EXITED) {
2272 			dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2273 					self, td->o.name,
2274 					runstate_to_name(td->runstate));
2275 			return true;
2276 		}
2277 	}
2278 
2279 	dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2280 	return false;
2281 }
2282 
2283 /*
2284  * Main function for kicking off and reaping jobs, as needed.
2285  */
2286 static void run_threads(struct sk_out *sk_out)
2287 {
2288 	struct thread_data *td;
2289 	unsigned int i, todo, nr_running, nr_started;
2290 	uint64_t m_rate, t_rate;
2291 	uint64_t spent;
2292 
2293 	if (fio_gtod_offload && fio_start_gtod_thread())
2294 		return;
2295 
2296 	fio_idle_prof_init();
2297 
2298 	set_sig_handlers();
2299 
2300 	nr_thread = nr_process = 0;
2301 	for_each_td(td, i) {
2302 		if (check_mount_writes(td))
2303 			return;
2304 		if (td->o.use_thread)
2305 			nr_thread++;
2306 		else
2307 			nr_process++;
2308 	}
2309 
2310 	if (output_format & FIO_OUTPUT_NORMAL) {
2311 		struct buf_output out;
2312 
2313 		buf_output_init(&out);
2314 		__log_buf(&out, "Starting ");
2315 		if (nr_thread)
2316 			__log_buf(&out, "%d thread%s", nr_thread,
2317 						nr_thread > 1 ? "s" : "");
2318 		if (nr_process) {
2319 			if (nr_thread)
2320 				__log_buf(&out, " and ");
2321 			__log_buf(&out, "%d process%s", nr_process,
2322 						nr_process > 1 ? "es" : "");
2323 		}
2324 		__log_buf(&out, "\n");
2325 		log_info_buf(out.buf, out.buflen);
2326 		buf_output_free(&out);
2327 	}
2328 
2329 	todo = thread_number;
2330 	nr_running = 0;
2331 	nr_started = 0;
2332 	m_rate = t_rate = 0;
2333 
2334 	for_each_td(td, i) {
2335 		print_status_init(td->thread_number - 1);
2336 
2337 		if (!td->o.create_serialize)
2338 			continue;
2339 
2340 		if (fio_verify_load_state(td))
2341 			goto reap;
2342 
2343 		/*
2344 		 * do file setup here so it happens sequentially,
2345 		 * we don't want X number of threads getting their
2346 		 * client data interspersed on disk
2347 		 */
2348 		if (setup_files(td)) {
2349 reap:
2350 			exit_value++;
2351 			if (td->error)
2352 				log_err("fio: pid=%d, err=%d/%s\n",
2353 					(int) td->pid, td->error, td->verror);
2354 			td_set_runstate(td, TD_REAPED);
2355 			todo--;
2356 		} else {
2357 			struct fio_file *f;
2358 			unsigned int j;
2359 
2360 			/*
2361 			 * for sharing to work, each job must always open
2362 			 * its own files. so close them, if we opened them
2363 			 * for creation
2364 			 */
2365 			for_each_file(td, f, j) {
2366 				if (fio_file_open(f))
2367 					td_io_close_file(td, f);
2368 			}
2369 		}
2370 	}
2371 
2372 	/* start idle threads before io threads start to run */
2373 	fio_idle_prof_start();
2374 
2375 	set_genesis_time();
2376 
2377 	while (todo) {
2378 		struct thread_data *map[REAL_MAX_JOBS];
2379 		struct timespec this_start;
2380 		int this_jobs = 0, left;
2381 		struct fork_data *fd;
2382 
2383 		/*
2384 		 * create threads (TD_NOT_CREATED -> TD_CREATED)
2385 		 */
2386 		for_each_td(td, i) {
2387 			if (td->runstate != TD_NOT_CREATED)
2388 				continue;
2389 
2390 			/*
2391 			 * never got a chance to start, killed by other
2392 			 * thread for some reason
2393 			 */
2394 			if (td->terminate) {
2395 				todo--;
2396 				continue;
2397 			}
2398 
2399 			if (td->o.start_delay) {
2400 				spent = utime_since_genesis();
2401 
2402 				if (td->o.start_delay > spent)
2403 					continue;
2404 			}
2405 
2406 			if (td->o.stonewall && (nr_started || nr_running)) {
2407 				dprint(FD_PROCESS, "%s: stonewall wait\n",
2408 							td->o.name);
2409 				break;
2410 			}
2411 
2412 			if (waitee_running(td)) {
2413 				dprint(FD_PROCESS, "%s: waiting for %s\n",
2414 						td->o.name, td->o.wait_for);
2415 				continue;
2416 			}
2417 
2418 			init_disk_util(td);
2419 
2420 			td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2421 			td->update_rusage = 0;
2422 
2423 			/*
2424 			 * Set state to created. Thread will transition
2425 			 * to TD_INITIALIZED when it's done setting up.
2426 			 */
2427 			td_set_runstate(td, TD_CREATED);
2428 			map[this_jobs++] = td;
2429 			nr_started++;
2430 
2431 			fd = calloc(1, sizeof(*fd));
2432 			fd->td = td;
2433 			fd->sk_out = sk_out;
2434 
2435 			if (td->o.use_thread) {
2436 				int ret;
2437 
2438 				dprint(FD_PROCESS, "will pthread_create\n");
2439 				ret = pthread_create(&td->thread, NULL,
2440 							thread_main, fd);
2441 				if (ret) {
2442 					log_err("pthread_create: %s\n",
2443 							strerror(ret));
2444 					free(fd);
2445 					nr_started--;
2446 					break;
2447 				}
2448 				fd = NULL;
2449 				ret = pthread_detach(td->thread);
2450 				if (ret)
2451 					log_err("pthread_detach: %s",
2452 							strerror(ret));
2453 			} else {
2454 				pid_t pid;
2455 				dprint(FD_PROCESS, "will fork\n");
2456 				pid = fork();
2457 				if (!pid) {
2458 					int ret;
2459 
2460 					ret = (int)(uintptr_t)thread_main(fd);
2461 					_exit(ret);
2462 				} else if (i == fio_debug_jobno)
2463 					*fio_debug_jobp = pid;
2464 			}
2465 			dprint(FD_MUTEX, "wait on startup_sem\n");
2466 			if (fio_sem_down_timeout(startup_sem, 10000)) {
2467 				log_err("fio: job startup hung? exiting.\n");
2468 				fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2469 				fio_abort = true;
2470 				nr_started--;
2471 				free(fd);
2472 				break;
2473 			}
2474 			dprint(FD_MUTEX, "done waiting on startup_sem\n");
2475 		}
2476 
2477 		/*
2478 		 * Wait for the started threads to transition to
2479 		 * TD_INITIALIZED.
2480 		 */
2481 		fio_gettime(&this_start, NULL);
2482 		left = this_jobs;
2483 		while (left && !fio_abort) {
2484 			if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2485 				break;
2486 
2487 			do_usleep(100000);
2488 
2489 			for (i = 0; i < this_jobs; i++) {
2490 				td = map[i];
2491 				if (!td)
2492 					continue;
2493 				if (td->runstate == TD_INITIALIZED) {
2494 					map[i] = NULL;
2495 					left--;
2496 				} else if (td->runstate >= TD_EXITED) {
2497 					map[i] = NULL;
2498 					left--;
2499 					todo--;
2500 					nr_running++; /* work-around... */
2501 				}
2502 			}
2503 		}
2504 
2505 		if (left) {
2506 			log_err("fio: %d job%s failed to start\n", left,
2507 					left > 1 ? "s" : "");
2508 			for (i = 0; i < this_jobs; i++) {
2509 				td = map[i];
2510 				if (!td)
2511 					continue;
2512 				kill(td->pid, SIGTERM);
2513 			}
2514 			break;
2515 		}
2516 
2517 		/*
2518 		 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2519 		 */
2520 		for_each_td(td, i) {
2521 			if (td->runstate != TD_INITIALIZED)
2522 				continue;
2523 
2524 			if (in_ramp_time(td))
2525 				td_set_runstate(td, TD_RAMP);
2526 			else
2527 				td_set_runstate(td, TD_RUNNING);
2528 			nr_running++;
2529 			nr_started--;
2530 			m_rate += ddir_rw_sum(td->o.ratemin);
2531 			t_rate += ddir_rw_sum(td->o.rate);
2532 			todo--;
2533 			fio_sem_up(td->sem);
2534 		}
2535 
2536 		reap_threads(&nr_running, &t_rate, &m_rate);
2537 
2538 		if (todo)
2539 			do_usleep(100000);
2540 	}
2541 
2542 	while (nr_running) {
2543 		reap_threads(&nr_running, &t_rate, &m_rate);
2544 		do_usleep(10000);
2545 	}
2546 
2547 	fio_idle_prof_stop();
2548 
2549 	update_io_ticks();
2550 }
2551 
2552 static void free_disk_util(void)
2553 {
2554 	disk_util_prune_entries();
2555 	helper_thread_destroy();
2556 }
2557 
2558 int fio_backend(struct sk_out *sk_out)
2559 {
2560 	struct thread_data *td;
2561 	int i;
2562 
2563 	if (exec_profile) {
2564 		if (load_profile(exec_profile))
2565 			return 1;
2566 		free(exec_profile);
2567 		exec_profile = NULL;
2568 	}
2569 	if (!thread_number)
2570 		return 0;
2571 
2572 	if (write_bw_log) {
2573 		struct log_params p = {
2574 			.log_type = IO_LOG_TYPE_BW,
2575 		};
2576 
2577 		setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2578 		setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2579 		setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2580 	}
2581 
2582 	startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2583 	if (!sk_out)
2584 		is_local_backend = true;
2585 	if (startup_sem == NULL)
2586 		return 1;
2587 
2588 	set_genesis_time();
2589 	stat_init();
2590 	if (helper_thread_create(startup_sem, sk_out))
2591 		log_err("fio: failed to create helper thread\n");
2592 
2593 	cgroup_list = smalloc(sizeof(*cgroup_list));
2594 	if (cgroup_list)
2595 		INIT_FLIST_HEAD(cgroup_list);
2596 
2597 	run_threads(sk_out);
2598 
2599 	helper_thread_exit();
2600 
2601 	if (!fio_abort) {
2602 		__show_run_stats();
2603 		if (write_bw_log) {
2604 			for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2605 				struct io_log *log = agg_io_log[i];
2606 
2607 				flush_log(log, false);
2608 				free_log(log);
2609 			}
2610 		}
2611 	}
2612 
2613 	for_each_td(td, i) {
2614 		steadystate_free(td);
2615 		fio_options_free(td);
2616 		fio_dump_options_free(td);
2617 		if (td->rusage_sem) {
2618 			fio_sem_remove(td->rusage_sem);
2619 			td->rusage_sem = NULL;
2620 		}
2621 		fio_sem_remove(td->sem);
2622 		td->sem = NULL;
2623 	}
2624 
2625 	free_disk_util();
2626 	if (cgroup_list) {
2627 		cgroup_kill(cgroup_list);
2628 		sfree(cgroup_list);
2629 	}
2630 
2631 	fio_sem_remove(startup_sem);
2632 	stat_exit();
2633 	return exit_value;
2634 }
2635