1;
2; jchuff-sse2-64.asm - Huffman entropy encoding (64-bit SSE2)
3;
4; Copyright 2009-2011, 2014-2016 D. R. Commander.
5; Copyright 2015 Matthieu Darbois
6;
7; Based on
8; x86 SIMD extension for IJG JPEG library
9; Copyright (C) 1999-2006, MIYASAKA Masaru.
10; For conditions of distribution and use, see copyright notice in jsimdext.inc
11;
12; This file should be assembled with NASM (Netwide Assembler),
13; can *not* be assembled with Microsoft's MASM or any compatible
14; assembler (including Borland's Turbo Assembler).
15; NASM is available from http://nasm.sourceforge.net/ or
16; http://sourceforge.net/project/showfiles.php?group_id=6208
17;
18; This file contains an SSE2 implementation for Huffman coding of one block.
19; The following code is based directly on jchuff.c; see jchuff.c for more
20; details.
21;
22; [TAB8]
23
24%include "jsimdext.inc"
25
26; --------------------------------------------------------------------------
27        SECTION SEG_CONST
28
29        alignz  16
30        global  EXTN(jconst_huff_encode_one_block) PRIVATE
31
32EXTN(jconst_huff_encode_one_block):
33
34%include "jpeg_nbits_table.inc"
35
36        alignz  16
37
38; --------------------------------------------------------------------------
39        SECTION SEG_TEXT
40        BITS    64
41
42; These macros perform the same task as the emit_bits() function in the
43; original libjpeg code.  In addition to reducing overhead by explicitly
44; inlining the code, additional performance is achieved by taking into
45; account the size of the bit buffer and waiting until it is almost full
46; before emptying it.  This mostly benefits 64-bit platforms, since 6
47; bytes can be stored in a 64-bit bit buffer before it has to be emptied.
48
49%macro EMIT_BYTE 0
50        sub put_bits, 8  ; put_bits -= 8;
51        mov rdx, put_buffer
52        mov ecx, put_bits
53        shr rdx, cl  ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits);
54        mov byte [buffer], dl  ; *buffer++ = c;
55        add buffer, 1
56        cmp dl, 0xFF  ; need to stuff a zero byte?
57        jne %%.EMIT_BYTE_END
58        mov byte [buffer], 0  ; *buffer++ = 0;
59        add buffer, 1
60%%.EMIT_BYTE_END:
61%endmacro
62
63%macro PUT_BITS 1
64        add put_bits, ecx  ; put_bits += size;
65        shl put_buffer, cl  ; put_buffer = (put_buffer << size);
66        or  put_buffer, %1
67%endmacro
68
69%macro CHECKBUF31 0
70        cmp put_bits, 32  ; if (put_bits > 31) {
71        jl %%.CHECKBUF31_END
72        EMIT_BYTE
73        EMIT_BYTE
74        EMIT_BYTE
75        EMIT_BYTE
76%%.CHECKBUF31_END:
77%endmacro
78
79%macro CHECKBUF47 0
80        cmp put_bits, 48  ; if (put_bits > 47) {
81        jl %%.CHECKBUF47_END
82        EMIT_BYTE
83        EMIT_BYTE
84        EMIT_BYTE
85        EMIT_BYTE
86        EMIT_BYTE
87        EMIT_BYTE
88%%.CHECKBUF47_END:
89%endmacro
90
91%macro EMIT_BITS 2
92        CHECKBUF47
93        mov ecx, %2
94        PUT_BITS %1
95%endmacro
96
97%macro kloop_prepare 37  ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3)
98    pxor xmm8, xmm8  ; __m128i neg = _mm_setzero_si128();
99    pxor xmm9, xmm9  ; __m128i neg = _mm_setzero_si128();
100    pxor xmm10, xmm10  ; __m128i neg = _mm_setzero_si128();
101    pxor xmm11, xmm11  ; __m128i neg = _mm_setzero_si128();
102    pinsrw %34, word [r12 + %2  * SIZEOF_WORD], 0  ; xmm_shadow[0] = block[jno0];
103    pinsrw %35, word [r12 + %10 * SIZEOF_WORD], 0  ; xmm_shadow[8] = block[jno8];
104    pinsrw %36, word [r12 + %18 * SIZEOF_WORD], 0  ; xmm_shadow[16] = block[jno16];
105    pinsrw %37, word [r12 + %26 * SIZEOF_WORD], 0  ; xmm_shadow[24] = block[jno24];
106    pinsrw %34, word [r12 + %3  * SIZEOF_WORD], 1  ; xmm_shadow[1] = block[jno1];
107    pinsrw %35, word [r12 + %11 * SIZEOF_WORD], 1  ; xmm_shadow[9] = block[jno9];
108    pinsrw %36, word [r12 + %19 * SIZEOF_WORD], 1  ; xmm_shadow[17] = block[jno17];
109    pinsrw %37, word [r12 + %27 * SIZEOF_WORD], 1  ; xmm_shadow[25] = block[jno25];
110    pinsrw %34, word [r12 + %4  * SIZEOF_WORD], 2  ; xmm_shadow[2] = block[jno2];
111    pinsrw %35, word [r12 + %12 * SIZEOF_WORD], 2  ; xmm_shadow[10] = block[jno10];
112    pinsrw %36, word [r12 + %20 * SIZEOF_WORD], 2  ; xmm_shadow[18] = block[jno18];
113    pinsrw %37, word [r12 + %28 * SIZEOF_WORD], 2  ; xmm_shadow[26] = block[jno26];
114    pinsrw %34, word [r12 + %5  * SIZEOF_WORD], 3  ; xmm_shadow[3] = block[jno3];
115    pinsrw %35, word [r12 + %13 * SIZEOF_WORD], 3  ; xmm_shadow[11] = block[jno11];
116    pinsrw %36, word [r12 + %21 * SIZEOF_WORD], 3  ; xmm_shadow[19] = block[jno19];
117    pinsrw %37, word [r12 + %29 * SIZEOF_WORD], 3  ; xmm_shadow[27] = block[jno27];
118    pinsrw %34, word [r12 + %6  * SIZEOF_WORD], 4  ; xmm_shadow[4] = block[jno4];
119    pinsrw %35, word [r12 + %14 * SIZEOF_WORD], 4  ; xmm_shadow[12] = block[jno12];
120    pinsrw %36, word [r12 + %22 * SIZEOF_WORD], 4  ; xmm_shadow[20] = block[jno20];
121    pinsrw %37, word [r12 + %30 * SIZEOF_WORD], 4  ; xmm_shadow[28] = block[jno28];
122    pinsrw %34, word [r12 + %7  * SIZEOF_WORD], 5  ; xmm_shadow[5] = block[jno5];
123    pinsrw %35, word [r12 + %15 * SIZEOF_WORD], 5  ; xmm_shadow[13] = block[jno13];
124    pinsrw %36, word [r12 + %23 * SIZEOF_WORD], 5  ; xmm_shadow[21] = block[jno21];
125    pinsrw %37, word [r12 + %31 * SIZEOF_WORD], 5  ; xmm_shadow[29] = block[jno29];
126    pinsrw %34, word [r12 + %8  * SIZEOF_WORD], 6  ; xmm_shadow[6] = block[jno6];
127    pinsrw %35, word [r12 + %16 * SIZEOF_WORD], 6  ; xmm_shadow[14] = block[jno14];
128    pinsrw %36, word [r12 + %24 * SIZEOF_WORD], 6  ; xmm_shadow[22] = block[jno22];
129    pinsrw %37, word [r12 + %32 * SIZEOF_WORD], 6  ; xmm_shadow[30] = block[jno30];
130    pinsrw %34, word [r12 + %9  * SIZEOF_WORD], 7  ; xmm_shadow[7] = block[jno7];
131    pinsrw %35, word [r12 + %17 * SIZEOF_WORD], 7  ; xmm_shadow[15] = block[jno15];
132    pinsrw %36, word [r12 + %25 * SIZEOF_WORD], 7  ; xmm_shadow[23] = block[jno23];
133%if %1 != 32
134    pinsrw %37, word [r12 + %33 * SIZEOF_WORD], 7  ; xmm_shadow[31] = block[jno31];
135%else
136    pinsrw %37, ebx, 7  ; xmm_shadow[31] = block[jno31];
137%endif
138    pcmpgtw xmm8, %34  ; neg = _mm_cmpgt_epi16(neg, x1);
139    pcmpgtw xmm9, %35  ; neg = _mm_cmpgt_epi16(neg, x1);
140    pcmpgtw xmm10, %36  ; neg = _mm_cmpgt_epi16(neg, x1);
141    pcmpgtw xmm11, %37  ; neg = _mm_cmpgt_epi16(neg, x1);
142    paddw %34, xmm8   ; x1 = _mm_add_epi16(x1, neg);
143    paddw %35, xmm9   ; x1 = _mm_add_epi16(x1, neg);
144    paddw %36, xmm10  ; x1 = _mm_add_epi16(x1, neg);
145    paddw %37, xmm11  ; x1 = _mm_add_epi16(x1, neg);
146    pxor %34, xmm8    ; x1 = _mm_xor_si128(x1, neg);
147    pxor %35, xmm9    ; x1 = _mm_xor_si128(x1, neg);
148    pxor %36, xmm10   ; x1 = _mm_xor_si128(x1, neg);
149    pxor %37, xmm11   ; x1 = _mm_xor_si128(x1, neg);
150    pxor xmm8, %34    ; neg = _mm_xor_si128(neg, x1);
151    pxor xmm9, %35    ; neg = _mm_xor_si128(neg, x1);
152    pxor xmm10, %36   ; neg = _mm_xor_si128(neg, x1);
153    pxor xmm11, %37   ; neg = _mm_xor_si128(neg, x1);
154    movdqa XMMWORD [t1 + %1 * SIZEOF_WORD], %34  ; _mm_storeu_si128((__m128i *)(t1 + ko), x1);
155    movdqa XMMWORD [t1 + (%1 + 8) * SIZEOF_WORD], %35  ; _mm_storeu_si128((__m128i *)(t1 + ko + 8), x1);
156    movdqa XMMWORD [t1 + (%1 + 16) * SIZEOF_WORD], %36  ; _mm_storeu_si128((__m128i *)(t1 + ko + 16), x1);
157    movdqa XMMWORD [t1 + (%1 + 24) * SIZEOF_WORD], %37  ; _mm_storeu_si128((__m128i *)(t1 + ko + 24), x1);
158    movdqa XMMWORD [t2 + %1 * SIZEOF_WORD], xmm8  ; _mm_storeu_si128((__m128i *)(t2 + ko), neg);
159    movdqa XMMWORD [t2 + (%1 + 8) * SIZEOF_WORD], xmm9  ; _mm_storeu_si128((__m128i *)(t2 + ko + 8), neg);
160    movdqa XMMWORD [t2 + (%1 + 16) * SIZEOF_WORD], xmm10  ; _mm_storeu_si128((__m128i *)(t2 + ko + 16), neg);
161    movdqa XMMWORD [t2 + (%1 + 24) * SIZEOF_WORD], xmm11  ; _mm_storeu_si128((__m128i *)(t2 + ko + 24), neg);
162%endmacro
163
164;
165; Encode a single block's worth of coefficients.
166;
167; GLOBAL(JOCTET*)
168; jsimd_huff_encode_one_block_sse2 (working_state *state, JOCTET *buffer,
169;                                   JCOEFPTR block, int last_dc_val,
170;                                   c_derived_tbl *dctbl, c_derived_tbl *actbl)
171;
172
173; r10 = working_state *state
174; r11 = JOCTET *buffer
175; r12 = JCOEFPTR block
176; r13 = int last_dc_val
177; r14 = c_derived_tbl *dctbl
178; r15 = c_derived_tbl *actbl
179
180%define t1              rbp-(DCTSIZE2*SIZEOF_WORD)
181%define t2              t1-(DCTSIZE2*SIZEOF_WORD)
182%define put_buffer      r8
183%define put_bits        r9d
184%define buffer          rax
185
186        align   16
187        global  EXTN(jsimd_huff_encode_one_block_sse2) PRIVATE
188
189EXTN(jsimd_huff_encode_one_block_sse2):
190        push    rbp
191        mov     rax,rsp                         ; rax = original rbp
192        sub     rsp, byte 4
193        and     rsp, byte (-SIZEOF_XMMWORD)     ; align to 128 bits
194        mov     [rsp],rax
195        mov     rbp,rsp                         ; rbp = aligned rbp
196        lea     rsp, [t2]
197        collect_args
198%ifdef WIN64
199        movaps  XMMWORD [rsp-1*SIZEOF_XMMWORD], xmm8
200        movaps  XMMWORD [rsp-2*SIZEOF_XMMWORD], xmm9
201        movaps  XMMWORD [rsp-3*SIZEOF_XMMWORD], xmm10
202        movaps  XMMWORD [rsp-4*SIZEOF_XMMWORD], xmm11
203        sub     rsp, 4*SIZEOF_XMMWORD
204%endif
205        push rbx
206
207        mov buffer, r11  ; r11 is now sratch
208
209        mov put_buffer, MMWORD [r10+16]  ; put_buffer = state->cur.put_buffer;
210        mov put_bits,    DWORD [r10+24]  ; put_bits = state->cur.put_bits;
211        push r10  ; r10 is now scratch
212
213        ; Encode the DC coefficient difference per section F.1.2.1
214        movsx edi, word [r12]  ; temp = temp2 = block[0] - last_dc_val;
215        sub   edi, r13d  ; r13 is not used anymore
216        mov   ebx, edi
217
218        ; This is a well-known technique for obtaining the absolute value
219        ; without a branch.  It is derived from an assembly language technique
220        ; presented in "How to Optimize for the Pentium Processors",
221        ; Copyright (c) 1996, 1997 by Agner Fog.
222        mov esi, edi
223        sar esi, 31   ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
224        xor edi, esi  ; temp ^= temp3;
225        sub edi, esi  ; temp -= temp3;
226
227        ; For a negative input, want temp2 = bitwise complement of abs(input)
228        ; This code assumes we are on a two's complement machine
229        add ebx, esi  ; temp2 += temp3;
230
231        ; Find the number of bits needed for the magnitude of the coefficient
232        lea   r11, [rel jpeg_nbits_table]
233        movzx rdi, byte [r11 + rdi]  ; nbits = JPEG_NBITS(temp);
234        ; Emit the Huffman-coded symbol for the number of bits
235        mov   r11d,  INT [r14 + rdi * 4]  ; code = dctbl->ehufco[nbits];
236        movzx  esi, byte [r14 + rdi + 1024]  ; size = dctbl->ehufsi[nbits];
237        EMIT_BITS r11, esi  ; EMIT_BITS(code, size)
238
239        ; Mask off any extra bits in code
240        mov esi, 1
241        mov ecx, edi
242        shl esi, cl
243        dec esi
244        and ebx, esi  ; temp2 &= (((JLONG) 1)<<nbits) - 1;
245
246        ; Emit that number of bits of the value, if positive,
247        ; or the complement of its magnitude, if negative.
248        EMIT_BITS rbx, edi  ; EMIT_BITS(temp2, nbits)
249
250        ; Prepare data
251        xor ebx, ebx
252        kloop_prepare  0,  1,  8,  16, 9,  2,  3,  10, 17, 24, 32, 25, \
253                       18, 11, 4,  5,  12, 19, 26, 33, 40, 48, 41, 34, \
254                       27, 20, 13, 6,  7,  14, 21, 28, 35, \
255                       xmm0, xmm1, xmm2, xmm3
256        kloop_prepare  32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \
257                       30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \
258                       53, 60, 61, 54, 47, 55, 62, 63, 63, \
259                       xmm4, xmm5, xmm6, xmm7
260
261        pxor xmm8, xmm8
262        pcmpeqw xmm0, xmm8  ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
263        pcmpeqw xmm1, xmm8  ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
264        pcmpeqw xmm2, xmm8  ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
265        pcmpeqw xmm3, xmm8  ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
266        pcmpeqw xmm4, xmm8  ; tmp4 = _mm_cmpeq_epi16(tmp4, zero);
267        pcmpeqw xmm5, xmm8  ; tmp5 = _mm_cmpeq_epi16(tmp5, zero);
268        pcmpeqw xmm6, xmm8  ; tmp6 = _mm_cmpeq_epi16(tmp6, zero);
269        pcmpeqw xmm7, xmm8  ; tmp7 = _mm_cmpeq_epi16(tmp7, zero);
270        packsswb xmm0, xmm1  ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
271        packsswb xmm2, xmm3  ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
272        packsswb xmm4, xmm5  ; tmp4 = _mm_packs_epi16(tmp4, tmp5);
273        packsswb xmm6, xmm7  ; tmp6 = _mm_packs_epi16(tmp6, tmp7);
274        pmovmskb r11d, xmm0  ; index  = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
275        pmovmskb r12d, xmm2  ; index  = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
276        pmovmskb r13d, xmm4  ; index  = ((uint64_t)_mm_movemask_epi8(tmp4)) << 32;
277        pmovmskb r14d, xmm6  ; index  = ((uint64_t)_mm_movemask_epi8(tmp6)) << 48;
278        shl r12, 16
279        shl r14, 16
280        or  r11, r12
281        or  r13, r14
282        shl r13, 32
283        or  r11, r13
284        not r11  ; index = ~index;
285
286        ;mov MMWORD [ t1 + DCTSIZE2 * SIZEOF_WORD ], r11
287        ;jmp .EFN
288
289        mov   r13d,  INT [r15 + 240 * 4]  ; code_0xf0 = actbl->ehufco[0xf0];
290        movzx r14d, byte [r15 + 1024 + 240]  ; size_0xf0 = actbl->ehufsi[0xf0];
291        lea rsi, [t1]
292.BLOOP:
293        bsf r12, r11  ; r = __builtin_ctzl(index);
294        jz .ELOOP
295        mov rcx, r12
296        lea rsi, [rsi+r12*2]  ; k += r;
297        shr r11, cl  ; index >>= r;
298        movzx rdi, word [rsi]  ; temp = t1[k];
299        lea   rbx, [rel jpeg_nbits_table]
300        movzx rdi, byte [rbx + rdi]  ; nbits = JPEG_NBITS(temp);
301.BRLOOP:
302        cmp r12, 16  ; while (r > 15) {
303        jl .ERLOOP
304        EMIT_BITS r13, r14d  ; EMIT_BITS(code_0xf0, size_0xf0)
305        sub r12, 16  ; r -= 16;
306        jmp .BRLOOP
307.ERLOOP:
308        ; Emit Huffman symbol for run length / number of bits
309        CHECKBUF31  ; uses rcx, rdx
310
311        shl r12, 4  ; temp3 = (r << 4) + nbits;
312        add r12, rdi
313        mov   ebx,  INT [r15 + r12 * 4]  ; code = actbl->ehufco[temp3];
314        movzx ecx, byte [r15 + r12 + 1024]  ; size = actbl->ehufsi[temp3];
315        PUT_BITS rbx
316
317        ;EMIT_CODE(code, size)
318
319        movsx ebx, word [rsi-DCTSIZE2*2]  ; temp2 = t2[k];
320        ; Mask off any extra bits in code
321        mov rcx, rdi
322        mov rdx, 1
323        shl rdx, cl
324        dec rdx
325        and rbx, rdx  ; temp2 &= (((JLONG) 1)<<nbits) - 1;
326        PUT_BITS rbx  ; PUT_BITS(temp2, nbits)
327
328        shr r11, 1  ; index >>= 1;
329        add rsi, 2  ; ++k;
330        jmp .BLOOP
331.ELOOP:
332        ; If the last coef(s) were zero, emit an end-of-block code
333        lea rdi, [t1 + (DCTSIZE2-1) * 2]  ; r = DCTSIZE2-1-k;
334        cmp rdi, rsi  ; if (r > 0) {
335        je .EFN
336        mov   ebx,  INT [r15]  ; code = actbl->ehufco[0];
337        movzx r12d, byte [r15 + 1024]  ; size = actbl->ehufsi[0];
338        EMIT_BITS rbx, r12d
339.EFN:
340        pop r10
341        ; Save put_buffer & put_bits
342        mov MMWORD [r10+16], put_buffer  ; state->cur.put_buffer = put_buffer;
343        mov DWORD  [r10+24], put_bits  ; state->cur.put_bits = put_bits;
344
345        pop rbx
346%ifdef WIN64
347        movaps  xmm11, XMMWORD [rsp+0*SIZEOF_XMMWORD]
348        movaps  xmm10, XMMWORD [rsp+1*SIZEOF_XMMWORD]
349        movaps  xmm9, XMMWORD [rsp+2*SIZEOF_XMMWORD]
350        movaps  xmm8, XMMWORD [rsp+3*SIZEOF_XMMWORD]
351        add     rsp, 4*SIZEOF_XMMWORD
352%endif
353        uncollect_args
354        mov     rsp,rbp         ; rsp <- aligned rbp
355        pop     rsp             ; rsp <- original rbp
356        pop     rbp
357        ret
358
359; For some reason, the OS X linker does not honor the request to align the
360; segment unless we do this.
361        align   16
362