1 #[cfg(feature = "bytemuck")]
2 use bytemuck::{Pod, Zeroable};
3 use core::{
4     cmp::Ordering,
5     fmt::{
6         Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex,
7     },
8     iter::{Product, Sum},
9     num::{FpCategory, ParseFloatError},
10     ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign},
11     str::FromStr,
12 };
13 #[cfg(feature = "serde")]
14 use serde::{Deserialize, Serialize};
15 #[cfg(feature = "zerocopy")]
16 use zerocopy::{AsBytes, FromBytes};
17 
18 pub(crate) mod convert;
19 
20 /// A 16-bit floating point type implementing the [`bfloat16`] format.
21 ///
22 /// The [`bfloat16`] floating point format is a truncated 16-bit version of the IEEE 754 standard
23 /// `binary32`, a.k.a [`f32`]. [`bf16`] has approximately the same dynamic range as [`f32`] by
24 /// having a lower precision than [`f16`][crate::f16]. While [`f16`][crate::f16] has a precision of
25 /// 11 bits, [`bf16`] has a precision of only 8 bits.
26 ///
27 /// Like [`f16`][crate::f16], [`bf16`] does not offer arithmetic operations as it is intended for
28 /// compact storage rather than calculations. Operations should be performed with [`f32`] or
29 /// higher-precision types and converted to/from [`bf16`] as necessary.
30 ///
31 /// [`bfloat16`]: https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
32 #[allow(non_camel_case_types)]
33 #[derive(Clone, Copy, Default)]
34 #[repr(transparent)]
35 #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
36 #[cfg_attr(feature = "bytemuck", derive(Zeroable, Pod))]
37 #[cfg_attr(feature = "zerocopy", derive(AsBytes, FromBytes))]
38 pub struct bf16(u16);
39 
40 impl bf16 {
41     /// Constructs a [`bf16`] value from the raw bits.
42     #[inline]
from_bits(bits: u16) -> bf1643     pub const fn from_bits(bits: u16) -> bf16 {
44         bf16(bits)
45     }
46 
47     /// Constructs a [`bf16`] value from a 32-bit floating point value.
48     ///
49     /// If the 32-bit value is too large to fit, ±∞ will result. NaN values are preserved.
50     /// Subnormal values that are too tiny to be represented will result in ±0. All other values
51     /// are truncated and rounded to the nearest representable value.
52     #[inline]
from_f32(value: f32) -> bf1653     pub fn from_f32(value: f32) -> bf16 {
54         bf16(convert::f32_to_bf16(value))
55     }
56 
57     /// Constructs a [`bf16`] value from a 64-bit floating point value.
58     ///
59     /// If the 64-bit value is to large to fit, ±∞ will result. NaN values are preserved.
60     /// 64-bit subnormal values are too tiny to be represented and result in ±0. Exponents that
61     /// underflow the minimum exponent will result in subnormals or ±0. All other values are
62     /// truncated and rounded to the nearest representable value.
63     #[inline]
from_f64(value: f64) -> bf1664     pub fn from_f64(value: f64) -> bf16 {
65         bf16(convert::f64_to_bf16(value))
66     }
67 
68     /// Converts a [`bf16`] into the underlying bit representation.
69     #[inline]
to_bits(self) -> u1670     pub const fn to_bits(self) -> u16 {
71         self.0
72     }
73 
74     /// Returns the memory representation of the underlying bit representation as a byte array in
75     /// little-endian byte order.
76     ///
77     /// # Examples
78     ///
79     /// ```rust
80     /// # use half::prelude::*;
81     /// let bytes = bf16::from_f32(12.5).to_le_bytes();
82     /// assert_eq!(bytes, [0x48, 0x41]);
83     /// ```
84     #[inline]
to_le_bytes(self) -> [u8; 2]85     pub const fn to_le_bytes(self) -> [u8; 2] {
86         self.0.to_le_bytes()
87     }
88 
89     /// Returns the memory representation of the underlying bit representation as a byte array in
90     /// big-endian (network) byte order.
91     ///
92     /// # Examples
93     ///
94     /// ```rust
95     /// # use half::prelude::*;
96     /// let bytes = bf16::from_f32(12.5).to_be_bytes();
97     /// assert_eq!(bytes, [0x41, 0x48]);
98     /// ```
99     #[inline]
to_be_bytes(self) -> [u8; 2]100     pub const fn to_be_bytes(self) -> [u8; 2] {
101         self.0.to_be_bytes()
102     }
103 
104     /// Returns the memory representation of the underlying bit representation as a byte array in
105     /// native byte order.
106     ///
107     /// As the target platform's native endianness is used, portable code should use
108     /// [`to_be_bytes`][bf16::to_be_bytes] or [`to_le_bytes`][bf16::to_le_bytes], as appropriate,
109     /// instead.
110     ///
111     /// # Examples
112     ///
113     /// ```rust
114     /// # use half::prelude::*;
115     /// let bytes = bf16::from_f32(12.5).to_ne_bytes();
116     /// assert_eq!(bytes, if cfg!(target_endian = "big") {
117     ///     [0x41, 0x48]
118     /// } else {
119     ///     [0x48, 0x41]
120     /// });
121     /// ```
122     #[inline]
to_ne_bytes(self) -> [u8; 2]123     pub const fn to_ne_bytes(self) -> [u8; 2] {
124         self.0.to_ne_bytes()
125     }
126 
127     /// Creates a floating point value from its representation as a byte array in little endian.
128     ///
129     /// # Examples
130     ///
131     /// ```rust
132     /// # use half::prelude::*;
133     /// let value = bf16::from_le_bytes([0x48, 0x41]);
134     /// assert_eq!(value, bf16::from_f32(12.5));
135     /// ```
136     #[inline]
from_le_bytes(bytes: [u8; 2]) -> bf16137     pub const fn from_le_bytes(bytes: [u8; 2]) -> bf16 {
138         bf16::from_bits(u16::from_le_bytes(bytes))
139     }
140 
141     /// Creates a floating point value from its representation as a byte array in big endian.
142     ///
143     /// # Examples
144     ///
145     /// ```rust
146     /// # use half::prelude::*;
147     /// let value = bf16::from_be_bytes([0x41, 0x48]);
148     /// assert_eq!(value, bf16::from_f32(12.5));
149     /// ```
150     #[inline]
from_be_bytes(bytes: [u8; 2]) -> bf16151     pub const fn from_be_bytes(bytes: [u8; 2]) -> bf16 {
152         bf16::from_bits(u16::from_be_bytes(bytes))
153     }
154 
155     /// Creates a floating point value from its representation as a byte array in native endian.
156     ///
157     /// As the target platform's native endianness is used, portable code likely wants to use
158     /// [`from_be_bytes`][bf16::from_be_bytes] or [`from_le_bytes`][bf16::from_le_bytes], as
159     /// appropriate instead.
160     ///
161     /// # Examples
162     ///
163     /// ```rust
164     /// # use half::prelude::*;
165     /// let value = bf16::from_ne_bytes(if cfg!(target_endian = "big") {
166     ///     [0x41, 0x48]
167     /// } else {
168     ///     [0x48, 0x41]
169     /// });
170     /// assert_eq!(value, bf16::from_f32(12.5));
171     /// ```
172     #[inline]
from_ne_bytes(bytes: [u8; 2]) -> bf16173     pub const fn from_ne_bytes(bytes: [u8; 2]) -> bf16 {
174         bf16::from_bits(u16::from_ne_bytes(bytes))
175     }
176 
177     /// Converts a [`bf16`] value into an [`f32`] value.
178     ///
179     /// This conversion is lossless as all values can be represented exactly in [`f32`].
180     #[inline]
to_f32(self) -> f32181     pub fn to_f32(self) -> f32 {
182         convert::bf16_to_f32(self.0)
183     }
184 
185     /// Converts a [`bf16`] value into an [`f64`] value.
186     ///
187     /// This conversion is lossless as all values can be represented exactly in [`f64`].
188     #[inline]
to_f64(self) -> f64189     pub fn to_f64(self) -> f64 {
190         convert::bf16_to_f64(self.0)
191     }
192 
193     /// Returns `true` if this value is NaN and `false` otherwise.
194     ///
195     /// # Examples
196     ///
197     /// ```rust
198     /// # use half::prelude::*;
199     ///
200     /// let nan = bf16::NAN;
201     /// let f = bf16::from_f32(7.0_f32);
202     ///
203     /// assert!(nan.is_nan());
204     /// assert!(!f.is_nan());
205     /// ```
206     #[inline]
is_nan(self) -> bool207     pub const fn is_nan(self) -> bool {
208         self.0 & 0x7FFFu16 > 0x7F80u16
209     }
210 
211     /// Returns `true` if this value is ±∞ and `false` otherwise.
212     ///
213     /// # Examples
214     ///
215     /// ```rust
216     /// # use half::prelude::*;
217     ///
218     /// let f = bf16::from_f32(7.0f32);
219     /// let inf = bf16::INFINITY;
220     /// let neg_inf = bf16::NEG_INFINITY;
221     /// let nan = bf16::NAN;
222     ///
223     /// assert!(!f.is_infinite());
224     /// assert!(!nan.is_infinite());
225     ///
226     /// assert!(inf.is_infinite());
227     /// assert!(neg_inf.is_infinite());
228     /// ```
229     #[inline]
is_infinite(self) -> bool230     pub const fn is_infinite(self) -> bool {
231         self.0 & 0x7FFFu16 == 0x7F80u16
232     }
233 
234     /// Returns `true` if this number is neither infinite nor NaN.
235     ///
236     /// # Examples
237     ///
238     /// ```rust
239     /// # use half::prelude::*;
240     ///
241     /// let f = bf16::from_f32(7.0f32);
242     /// let inf = bf16::INFINITY;
243     /// let neg_inf = bf16::NEG_INFINITY;
244     /// let nan = bf16::NAN;
245     ///
246     /// assert!(f.is_finite());
247     ///
248     /// assert!(!nan.is_finite());
249     /// assert!(!inf.is_finite());
250     /// assert!(!neg_inf.is_finite());
251     /// ```
252     #[inline]
is_finite(self) -> bool253     pub const fn is_finite(self) -> bool {
254         self.0 & 0x7F80u16 != 0x7F80u16
255     }
256 
257     /// Returns `true` if the number is neither zero, infinite, subnormal, or NaN.
258     ///
259     /// # Examples
260     ///
261     /// ```rust
262     /// # use half::prelude::*;
263     ///
264     /// let min = bf16::MIN_POSITIVE;
265     /// let max = bf16::MAX;
266     /// let lower_than_min = bf16::from_f32(1.0e-39_f32);
267     /// let zero = bf16::from_f32(0.0_f32);
268     ///
269     /// assert!(min.is_normal());
270     /// assert!(max.is_normal());
271     ///
272     /// assert!(!zero.is_normal());
273     /// assert!(!bf16::NAN.is_normal());
274     /// assert!(!bf16::INFINITY.is_normal());
275     /// // Values between 0 and `min` are subnormal.
276     /// assert!(!lower_than_min.is_normal());
277     /// ```
278     #[inline]
is_normal(self) -> bool279     pub const fn is_normal(self) -> bool {
280         let exp = self.0 & 0x7F80u16;
281         exp != 0x7F80u16 && exp != 0
282     }
283 
284     /// Returns the floating point category of the number.
285     ///
286     /// If only one property is going to be tested, it is generally faster to use the specific
287     /// predicate instead.
288     ///
289     /// # Examples
290     ///
291     /// ```rust
292     /// use std::num::FpCategory;
293     /// # use half::prelude::*;
294     ///
295     /// let num = bf16::from_f32(12.4_f32);
296     /// let inf = bf16::INFINITY;
297     ///
298     /// assert_eq!(num.classify(), FpCategory::Normal);
299     /// assert_eq!(inf.classify(), FpCategory::Infinite);
300     /// ```
classify(self) -> FpCategory301     pub const fn classify(self) -> FpCategory {
302         let exp = self.0 & 0x7F80u16;
303         let man = self.0 & 0x007Fu16;
304         match (exp, man) {
305             (0, 0) => FpCategory::Zero,
306             (0, _) => FpCategory::Subnormal,
307             (0x7F80u16, 0) => FpCategory::Infinite,
308             (0x7F80u16, _) => FpCategory::Nan,
309             _ => FpCategory::Normal,
310         }
311     }
312 
313     /// Returns a number that represents the sign of `self`.
314     ///
315     /// * 1.0 if the number is positive, +0.0 or [`INFINITY`][bf16::INFINITY]
316     /// * −1.0 if the number is negative, −0.0` or [`NEG_INFINITY`][bf16::NEG_INFINITY]
317     /// * [`NAN`][bf16::NAN] if the number is NaN
318     ///
319     /// # Examples
320     ///
321     /// ```rust
322     /// # use half::prelude::*;
323     ///
324     /// let f = bf16::from_f32(3.5_f32);
325     ///
326     /// assert_eq!(f.signum(), bf16::from_f32(1.0));
327     /// assert_eq!(bf16::NEG_INFINITY.signum(), bf16::from_f32(-1.0));
328     ///
329     /// assert!(bf16::NAN.signum().is_nan());
330     /// ```
signum(self) -> bf16331     pub const fn signum(self) -> bf16 {
332         if self.is_nan() {
333             self
334         } else if self.0 & 0x8000u16 != 0 {
335             Self::NEG_ONE
336         } else {
337             Self::ONE
338         }
339     }
340 
341     /// Returns `true` if and only if `self` has a positive sign, including +0.0, NaNs with a
342     /// positive sign bit and +∞.
343     ///
344     /// # Examples
345     ///
346     /// ```rust
347     /// # use half::prelude::*;
348     ///
349     /// let nan = bf16::NAN;
350     /// let f = bf16::from_f32(7.0_f32);
351     /// let g = bf16::from_f32(-7.0_f32);
352     ///
353     /// assert!(f.is_sign_positive());
354     /// assert!(!g.is_sign_positive());
355     /// // NaN can be either positive or negative
356     /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
357     /// ```
358     #[inline]
is_sign_positive(self) -> bool359     pub const fn is_sign_positive(self) -> bool {
360         self.0 & 0x8000u16 == 0
361     }
362 
363     /// Returns `true` if and only if `self` has a negative sign, including −0.0, NaNs with a
364     /// negative sign bit and −∞.
365     ///
366     /// # Examples
367     ///
368     /// ```rust
369     /// # use half::prelude::*;
370     ///
371     /// let nan = bf16::NAN;
372     /// let f = bf16::from_f32(7.0f32);
373     /// let g = bf16::from_f32(-7.0f32);
374     ///
375     /// assert!(!f.is_sign_negative());
376     /// assert!(g.is_sign_negative());
377     /// // NaN can be either positive or negative
378     /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
379     /// ```
380     #[inline]
is_sign_negative(self) -> bool381     pub const fn is_sign_negative(self) -> bool {
382         self.0 & 0x8000u16 != 0
383     }
384 
385     /// Returns a number composed of the magnitude of `self` and the sign of `sign`.
386     ///
387     /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
388     /// If `self` is NaN, then NaN with the sign of `sign` is returned.
389     ///
390     /// # Examples
391     ///
392     /// ```
393     /// # use half::prelude::*;
394     /// let f = bf16::from_f32(3.5);
395     ///
396     /// assert_eq!(f.copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5));
397     /// assert_eq!(f.copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5));
398     /// assert_eq!((-f).copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5));
399     /// assert_eq!((-f).copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5));
400     ///
401     /// assert!(bf16::NAN.copysign(bf16::from_f32(1.0)).is_nan());
402     /// ```
403     #[inline]
copysign(self, sign: bf16) -> bf16404     pub const fn copysign(self, sign: bf16) -> bf16 {
405         bf16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16))
406     }
407 
408     /// Returns the maximum of the two numbers.
409     ///
410     /// If one of the arguments is NaN, then the other argument is returned.
411     ///
412     /// # Examples
413     ///
414     /// ```
415     /// # use half::prelude::*;
416     /// let x = bf16::from_f32(1.0);
417     /// let y = bf16::from_f32(2.0);
418     ///
419     /// assert_eq!(x.max(y), y);
420     /// ```
421     #[inline]
max(self, other: bf16) -> bf16422     pub fn max(self, other: bf16) -> bf16 {
423         if other > self && !other.is_nan() {
424             other
425         } else {
426             self
427         }
428     }
429 
430     /// Returns the minimum of the two numbers.
431     ///
432     /// If one of the arguments is NaN, then the other argument is returned.
433     ///
434     /// # Examples
435     ///
436     /// ```
437     /// # use half::prelude::*;
438     /// let x = bf16::from_f32(1.0);
439     /// let y = bf16::from_f32(2.0);
440     ///
441     /// assert_eq!(x.min(y), x);
442     /// ```
443     #[inline]
min(self, other: bf16) -> bf16444     pub fn min(self, other: bf16) -> bf16 {
445         if other < self && !other.is_nan() {
446             other
447         } else {
448             self
449         }
450     }
451 
452     /// Restrict a value to a certain interval unless it is NaN.
453     ///
454     /// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`.
455     /// Otherwise this returns `self`.
456     ///
457     /// Note that this function returns NaN if the initial value was NaN as well.
458     ///
459     /// # Panics
460     /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
461     ///
462     /// # Examples
463     ///
464     /// ```
465     /// # use half::prelude::*;
466     /// assert!(bf16::from_f32(-3.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(-2.0));
467     /// assert!(bf16::from_f32(0.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(0.0));
468     /// assert!(bf16::from_f32(2.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(1.0));
469     /// assert!(bf16::NAN.clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)).is_nan());
470     /// ```
471     #[inline]
clamp(self, min: bf16, max: bf16) -> bf16472     pub fn clamp(self, min: bf16, max: bf16) -> bf16 {
473         assert!(min <= max);
474         let mut x = self;
475         if x < min {
476             x = min;
477         }
478         if x > max {
479             x = max;
480         }
481         x
482     }
483 
484     /// Approximate number of [`bf16`] significant digits in base 10
485     pub const DIGITS: u32 = 2;
486     /// [`bf16`]
487     /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value
488     ///
489     /// This is the difference between 1.0 and the next largest representable number.
490     pub const EPSILON: bf16 = bf16(0x3C00u16);
491     /// [`bf16`] positive Infinity (+∞)
492     pub const INFINITY: bf16 = bf16(0x7F80u16);
493     /// Number of [`bf16`] significant digits in base 2
494     pub const MANTISSA_DIGITS: u32 = 8;
495     /// Largest finite [`bf16`] value
496     pub const MAX: bf16 = bf16(0x7F7F);
497     /// Maximum possible [`bf16`] power of 10 exponent
498     pub const MAX_10_EXP: i32 = 38;
499     /// Maximum possible [`bf16`] power of 2 exponent
500     pub const MAX_EXP: i32 = 128;
501     /// Smallest finite [`bf16`] value
502     pub const MIN: bf16 = bf16(0xFF7F);
503     /// Minimum possible normal [`bf16`] power of 10 exponent
504     pub const MIN_10_EXP: i32 = -37;
505     /// One greater than the minimum possible normal [`bf16`] power of 2 exponent
506     pub const MIN_EXP: i32 = -125;
507     /// Smallest positive normal [`bf16`] value
508     pub const MIN_POSITIVE: bf16 = bf16(0x0080u16);
509     /// [`bf16`] Not a Number (NaN)
510     pub const NAN: bf16 = bf16(0x7FC0u16);
511     /// [`bf16`] negative infinity (-∞).
512     pub const NEG_INFINITY: bf16 = bf16(0xFF80u16);
513     /// The radix or base of the internal representation of [`bf16`]
514     pub const RADIX: u32 = 2;
515 
516     /// Minimum positive subnormal [`bf16`] value
517     pub const MIN_POSITIVE_SUBNORMAL: bf16 = bf16(0x0001u16);
518     /// Maximum subnormal [`bf16`] value
519     pub const MAX_SUBNORMAL: bf16 = bf16(0x007Fu16);
520 
521     /// [`bf16`] 1
522     pub const ONE: bf16 = bf16(0x3F80u16);
523     /// [`bf16`] 0
524     pub const ZERO: bf16 = bf16(0x0000u16);
525     /// [`bf16`] -0
526     pub const NEG_ZERO: bf16 = bf16(0x8000u16);
527     /// [`bf16`] -1
528     pub const NEG_ONE: bf16 = bf16(0xBF80u16);
529 
530     /// [`bf16`] Euler's number (ℯ)
531     pub const E: bf16 = bf16(0x402Eu16);
532     /// [`bf16`] Archimedes' constant (π)
533     pub const PI: bf16 = bf16(0x4049u16);
534     /// [`bf16`] 1/π
535     pub const FRAC_1_PI: bf16 = bf16(0x3EA3u16);
536     /// [`bf16`] 1/√2
537     pub const FRAC_1_SQRT_2: bf16 = bf16(0x3F35u16);
538     /// [`bf16`] 2/π
539     pub const FRAC_2_PI: bf16 = bf16(0x3F23u16);
540     /// [`bf16`] 2/√π
541     pub const FRAC_2_SQRT_PI: bf16 = bf16(0x3F90u16);
542     /// [`bf16`] π/2
543     pub const FRAC_PI_2: bf16 = bf16(0x3FC9u16);
544     /// [`bf16`] π/3
545     pub const FRAC_PI_3: bf16 = bf16(0x3F86u16);
546     /// [`bf16`] π/4
547     pub const FRAC_PI_4: bf16 = bf16(0x3F49u16);
548     /// [`bf16`] π/6
549     pub const FRAC_PI_6: bf16 = bf16(0x3F06u16);
550     /// [`bf16`] π/8
551     pub const FRAC_PI_8: bf16 = bf16(0x3EC9u16);
552     /// [`bf16`] ���� 10
553     pub const LN_10: bf16 = bf16(0x4013u16);
554     /// [`bf16`] ���� 2
555     pub const LN_2: bf16 = bf16(0x3F31u16);
556     /// [`bf16`] ������₁₀ℯ
557     pub const LOG10_E: bf16 = bf16(0x3EDEu16);
558     /// [`bf16`] ������₁₀2
559     pub const LOG10_2: bf16 = bf16(0x3E9Au16);
560     /// [`bf16`] ������₂ℯ
561     pub const LOG2_E: bf16 = bf16(0x3FB9u16);
562     /// [`bf16`] ������₂10
563     pub const LOG2_10: bf16 = bf16(0x4055u16);
564     /// [`bf16`] √2
565     pub const SQRT_2: bf16 = bf16(0x3FB5u16);
566 }
567 
568 impl From<bf16> for f32 {
569     #[inline]
from(x: bf16) -> f32570     fn from(x: bf16) -> f32 {
571         x.to_f32()
572     }
573 }
574 
575 impl From<bf16> for f64 {
576     #[inline]
from(x: bf16) -> f64577     fn from(x: bf16) -> f64 {
578         x.to_f64()
579     }
580 }
581 
582 impl From<i8> for bf16 {
583     #[inline]
from(x: i8) -> bf16584     fn from(x: i8) -> bf16 {
585         // Convert to f32, then to bf16
586         bf16::from_f32(f32::from(x))
587     }
588 }
589 
590 impl From<u8> for bf16 {
591     #[inline]
from(x: u8) -> bf16592     fn from(x: u8) -> bf16 {
593         // Convert to f32, then to f16
594         bf16::from_f32(f32::from(x))
595     }
596 }
597 
598 impl PartialEq for bf16 {
eq(&self, other: &bf16) -> bool599     fn eq(&self, other: &bf16) -> bool {
600         if self.is_nan() || other.is_nan() {
601             false
602         } else {
603             (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0)
604         }
605     }
606 }
607 
608 impl PartialOrd for bf16 {
partial_cmp(&self, other: &bf16) -> Option<Ordering>609     fn partial_cmp(&self, other: &bf16) -> Option<Ordering> {
610         if self.is_nan() || other.is_nan() {
611             None
612         } else {
613             let neg = self.0 & 0x8000u16 != 0;
614             let other_neg = other.0 & 0x8000u16 != 0;
615             match (neg, other_neg) {
616                 (false, false) => Some(self.0.cmp(&other.0)),
617                 (false, true) => {
618                     if (self.0 | other.0) & 0x7FFFu16 == 0 {
619                         Some(Ordering::Equal)
620                     } else {
621                         Some(Ordering::Greater)
622                     }
623                 }
624                 (true, false) => {
625                     if (self.0 | other.0) & 0x7FFFu16 == 0 {
626                         Some(Ordering::Equal)
627                     } else {
628                         Some(Ordering::Less)
629                     }
630                 }
631                 (true, true) => Some(other.0.cmp(&self.0)),
632             }
633         }
634     }
635 
lt(&self, other: &bf16) -> bool636     fn lt(&self, other: &bf16) -> bool {
637         if self.is_nan() || other.is_nan() {
638             false
639         } else {
640             let neg = self.0 & 0x8000u16 != 0;
641             let other_neg = other.0 & 0x8000u16 != 0;
642             match (neg, other_neg) {
643                 (false, false) => self.0 < other.0,
644                 (false, true) => false,
645                 (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0,
646                 (true, true) => self.0 > other.0,
647             }
648         }
649     }
650 
le(&self, other: &bf16) -> bool651     fn le(&self, other: &bf16) -> bool {
652         if self.is_nan() || other.is_nan() {
653             false
654         } else {
655             let neg = self.0 & 0x8000u16 != 0;
656             let other_neg = other.0 & 0x8000u16 != 0;
657             match (neg, other_neg) {
658                 (false, false) => self.0 <= other.0,
659                 (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0,
660                 (true, false) => true,
661                 (true, true) => self.0 >= other.0,
662             }
663         }
664     }
665 
gt(&self, other: &bf16) -> bool666     fn gt(&self, other: &bf16) -> bool {
667         if self.is_nan() || other.is_nan() {
668             false
669         } else {
670             let neg = self.0 & 0x8000u16 != 0;
671             let other_neg = other.0 & 0x8000u16 != 0;
672             match (neg, other_neg) {
673                 (false, false) => self.0 > other.0,
674                 (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0,
675                 (true, false) => false,
676                 (true, true) => self.0 < other.0,
677             }
678         }
679     }
680 
ge(&self, other: &bf16) -> bool681     fn ge(&self, other: &bf16) -> bool {
682         if self.is_nan() || other.is_nan() {
683             false
684         } else {
685             let neg = self.0 & 0x8000u16 != 0;
686             let other_neg = other.0 & 0x8000u16 != 0;
687             match (neg, other_neg) {
688                 (false, false) => self.0 >= other.0,
689                 (false, true) => true,
690                 (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0,
691                 (true, true) => self.0 <= other.0,
692             }
693         }
694     }
695 }
696 
697 impl FromStr for bf16 {
698     type Err = ParseFloatError;
from_str(src: &str) -> Result<bf16, ParseFloatError>699     fn from_str(src: &str) -> Result<bf16, ParseFloatError> {
700         f32::from_str(src).map(bf16::from_f32)
701     }
702 }
703 
704 impl Debug for bf16 {
fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>705     fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
706         write!(f, "{:?}", self.to_f32())
707     }
708 }
709 
710 impl Display for bf16 {
fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>711     fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
712         write!(f, "{}", self.to_f32())
713     }
714 }
715 
716 impl LowerExp for bf16 {
fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>717     fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
718         write!(f, "{:e}", self.to_f32())
719     }
720 }
721 
722 impl UpperExp for bf16 {
fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>723     fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
724         write!(f, "{:E}", self.to_f32())
725     }
726 }
727 
728 impl Binary for bf16 {
fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>729     fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
730         write!(f, "{:b}", self.0)
731     }
732 }
733 
734 impl Octal for bf16 {
fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>735     fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
736         write!(f, "{:o}", self.0)
737     }
738 }
739 
740 impl LowerHex for bf16 {
fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>741     fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
742         write!(f, "{:x}", self.0)
743     }
744 }
745 
746 impl UpperHex for bf16 {
fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>747     fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
748         write!(f, "{:X}", self.0)
749     }
750 }
751 
752 impl Neg for bf16 {
753     type Output = Self;
754 
neg(self) -> Self::Output755     fn neg(self) -> Self::Output {
756         Self(self.0 ^ 0x8000)
757     }
758 }
759 
760 impl Add for bf16 {
761     type Output = Self;
762 
add(self, rhs: Self) -> Self::Output763     fn add(self, rhs: Self) -> Self::Output {
764         Self::from_f32(Self::to_f32(self) + Self::to_f32(rhs))
765     }
766 }
767 
768 impl Add<&bf16> for bf16 {
769     type Output = <bf16 as Add<bf16>>::Output;
770 
771     #[inline]
add(self, rhs: &bf16) -> Self::Output772     fn add(self, rhs: &bf16) -> Self::Output {
773         self.add(*rhs)
774     }
775 }
776 
777 impl Add<&bf16> for &bf16 {
778     type Output = <bf16 as Add<bf16>>::Output;
779 
780     #[inline]
add(self, rhs: &bf16) -> Self::Output781     fn add(self, rhs: &bf16) -> Self::Output {
782         (*self).add(*rhs)
783     }
784 }
785 
786 impl Add<bf16> for &bf16 {
787     type Output = <bf16 as Add<bf16>>::Output;
788 
789     #[inline]
add(self, rhs: bf16) -> Self::Output790     fn add(self, rhs: bf16) -> Self::Output {
791         (*self).add(rhs)
792     }
793 }
794 
795 impl AddAssign for bf16 {
796     #[inline]
add_assign(&mut self, rhs: Self)797     fn add_assign(&mut self, rhs: Self) {
798         *self = (*self).add(rhs);
799     }
800 }
801 
802 impl AddAssign<&bf16> for bf16 {
803     #[inline]
add_assign(&mut self, rhs: &bf16)804     fn add_assign(&mut self, rhs: &bf16) {
805         *self = (*self).add(rhs);
806     }
807 }
808 
809 impl Sub for bf16 {
810     type Output = Self;
811 
sub(self, rhs: Self) -> Self::Output812     fn sub(self, rhs: Self) -> Self::Output {
813         Self::from_f32(Self::to_f32(self) - Self::to_f32(rhs))
814     }
815 }
816 
817 impl Sub<&bf16> for bf16 {
818     type Output = <bf16 as Sub<bf16>>::Output;
819 
820     #[inline]
sub(self, rhs: &bf16) -> Self::Output821     fn sub(self, rhs: &bf16) -> Self::Output {
822         self.sub(*rhs)
823     }
824 }
825 
826 impl Sub<&bf16> for &bf16 {
827     type Output = <bf16 as Sub<bf16>>::Output;
828 
829     #[inline]
sub(self, rhs: &bf16) -> Self::Output830     fn sub(self, rhs: &bf16) -> Self::Output {
831         (*self).sub(*rhs)
832     }
833 }
834 
835 impl Sub<bf16> for &bf16 {
836     type Output = <bf16 as Sub<bf16>>::Output;
837 
838     #[inline]
sub(self, rhs: bf16) -> Self::Output839     fn sub(self, rhs: bf16) -> Self::Output {
840         (*self).sub(rhs)
841     }
842 }
843 
844 impl SubAssign for bf16 {
845     #[inline]
sub_assign(&mut self, rhs: Self)846     fn sub_assign(&mut self, rhs: Self) {
847         *self = (*self).sub(rhs);
848     }
849 }
850 
851 impl SubAssign<&bf16> for bf16 {
852     #[inline]
sub_assign(&mut self, rhs: &bf16)853     fn sub_assign(&mut self, rhs: &bf16) {
854         *self = (*self).sub(rhs);
855     }
856 }
857 
858 impl Mul for bf16 {
859     type Output = Self;
860 
mul(self, rhs: Self) -> Self::Output861     fn mul(self, rhs: Self) -> Self::Output {
862         Self::from_f32(Self::to_f32(self) * Self::to_f32(rhs))
863     }
864 }
865 
866 impl Mul<&bf16> for bf16 {
867     type Output = <bf16 as Mul<bf16>>::Output;
868 
869     #[inline]
mul(self, rhs: &bf16) -> Self::Output870     fn mul(self, rhs: &bf16) -> Self::Output {
871         self.mul(*rhs)
872     }
873 }
874 
875 impl Mul<&bf16> for &bf16 {
876     type Output = <bf16 as Mul<bf16>>::Output;
877 
878     #[inline]
mul(self, rhs: &bf16) -> Self::Output879     fn mul(self, rhs: &bf16) -> Self::Output {
880         (*self).mul(*rhs)
881     }
882 }
883 
884 impl Mul<bf16> for &bf16 {
885     type Output = <bf16 as Mul<bf16>>::Output;
886 
887     #[inline]
mul(self, rhs: bf16) -> Self::Output888     fn mul(self, rhs: bf16) -> Self::Output {
889         (*self).mul(rhs)
890     }
891 }
892 
893 impl MulAssign for bf16 {
894     #[inline]
mul_assign(&mut self, rhs: Self)895     fn mul_assign(&mut self, rhs: Self) {
896         *self = (*self).mul(rhs);
897     }
898 }
899 
900 impl MulAssign<&bf16> for bf16 {
901     #[inline]
mul_assign(&mut self, rhs: &bf16)902     fn mul_assign(&mut self, rhs: &bf16) {
903         *self = (*self).mul(rhs);
904     }
905 }
906 
907 impl Div for bf16 {
908     type Output = Self;
909 
div(self, rhs: Self) -> Self::Output910     fn div(self, rhs: Self) -> Self::Output {
911         Self::from_f32(Self::to_f32(self) / Self::to_f32(rhs))
912     }
913 }
914 
915 impl Div<&bf16> for bf16 {
916     type Output = <bf16 as Div<bf16>>::Output;
917 
918     #[inline]
div(self, rhs: &bf16) -> Self::Output919     fn div(self, rhs: &bf16) -> Self::Output {
920         self.div(*rhs)
921     }
922 }
923 
924 impl Div<&bf16> for &bf16 {
925     type Output = <bf16 as Div<bf16>>::Output;
926 
927     #[inline]
div(self, rhs: &bf16) -> Self::Output928     fn div(self, rhs: &bf16) -> Self::Output {
929         (*self).div(*rhs)
930     }
931 }
932 
933 impl Div<bf16> for &bf16 {
934     type Output = <bf16 as Div<bf16>>::Output;
935 
936     #[inline]
div(self, rhs: bf16) -> Self::Output937     fn div(self, rhs: bf16) -> Self::Output {
938         (*self).div(rhs)
939     }
940 }
941 
942 impl DivAssign for bf16 {
943     #[inline]
div_assign(&mut self, rhs: Self)944     fn div_assign(&mut self, rhs: Self) {
945         *self = (*self).div(rhs);
946     }
947 }
948 
949 impl DivAssign<&bf16> for bf16 {
950     #[inline]
div_assign(&mut self, rhs: &bf16)951     fn div_assign(&mut self, rhs: &bf16) {
952         *self = (*self).div(rhs);
953     }
954 }
955 
956 impl Rem for bf16 {
957     type Output = Self;
958 
rem(self, rhs: Self) -> Self::Output959     fn rem(self, rhs: Self) -> Self::Output {
960         Self::from_f32(Self::to_f32(self) % Self::to_f32(rhs))
961     }
962 }
963 
964 impl Rem<&bf16> for bf16 {
965     type Output = <bf16 as Rem<bf16>>::Output;
966 
967     #[inline]
rem(self, rhs: &bf16) -> Self::Output968     fn rem(self, rhs: &bf16) -> Self::Output {
969         self.rem(*rhs)
970     }
971 }
972 
973 impl Rem<&bf16> for &bf16 {
974     type Output = <bf16 as Rem<bf16>>::Output;
975 
976     #[inline]
rem(self, rhs: &bf16) -> Self::Output977     fn rem(self, rhs: &bf16) -> Self::Output {
978         (*self).rem(*rhs)
979     }
980 }
981 
982 impl Rem<bf16> for &bf16 {
983     type Output = <bf16 as Rem<bf16>>::Output;
984 
985     #[inline]
rem(self, rhs: bf16) -> Self::Output986     fn rem(self, rhs: bf16) -> Self::Output {
987         (*self).rem(rhs)
988     }
989 }
990 
991 impl RemAssign for bf16 {
992     #[inline]
rem_assign(&mut self, rhs: Self)993     fn rem_assign(&mut self, rhs: Self) {
994         *self = (*self).rem(rhs);
995     }
996 }
997 
998 impl RemAssign<&bf16> for bf16 {
999     #[inline]
rem_assign(&mut self, rhs: &bf16)1000     fn rem_assign(&mut self, rhs: &bf16) {
1001         *self = (*self).rem(rhs);
1002     }
1003 }
1004 
1005 impl Product for bf16 {
1006     #[inline]
product<I: Iterator<Item = Self>>(iter: I) -> Self1007     fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
1008         bf16::from_f32(iter.map(|f| f.to_f32()).product())
1009     }
1010 }
1011 
1012 impl<'a> Product<&'a bf16> for bf16 {
1013     #[inline]
product<I: Iterator<Item = &'a bf16>>(iter: I) -> Self1014     fn product<I: Iterator<Item = &'a bf16>>(iter: I) -> Self {
1015         bf16::from_f32(iter.map(|f| f.to_f32()).product())
1016     }
1017 }
1018 
1019 impl Sum for bf16 {
1020     #[inline]
sum<I: Iterator<Item = Self>>(iter: I) -> Self1021     fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
1022         bf16::from_f32(iter.map(|f| f.to_f32()).sum())
1023     }
1024 }
1025 
1026 impl<'a> Sum<&'a bf16> for bf16 {
1027     #[inline]
sum<I: Iterator<Item = &'a bf16>>(iter: I) -> Self1028     fn sum<I: Iterator<Item = &'a bf16>>(iter: I) -> Self {
1029         bf16::from_f32(iter.map(|f| f.to_f32()).product())
1030     }
1031 }
1032 
1033 #[allow(
1034     clippy::cognitive_complexity,
1035     clippy::float_cmp,
1036     clippy::neg_cmp_op_on_partial_ord
1037 )]
1038 #[cfg(test)]
1039 mod test {
1040     use super::*;
1041     use core::cmp::Ordering;
1042     #[cfg(feature = "num-traits")]
1043     use num_traits::{AsPrimitive, FromPrimitive, ToPrimitive};
1044     use quickcheck_macros::quickcheck;
1045 
1046     #[cfg(feature = "num-traits")]
1047     #[test]
as_primitive()1048     fn as_primitive() {
1049         let two = bf16::from_f32(2.0);
1050         assert_eq!(<i32 as AsPrimitive<bf16>>::as_(2), two);
1051         assert_eq!(<bf16 as AsPrimitive<i32>>::as_(two), 2);
1052 
1053         assert_eq!(<f32 as AsPrimitive<bf16>>::as_(2.0), two);
1054         assert_eq!(<bf16 as AsPrimitive<f32>>::as_(two), 2.0);
1055 
1056         assert_eq!(<f64 as AsPrimitive<bf16>>::as_(2.0), two);
1057         assert_eq!(<bf16 as AsPrimitive<f64>>::as_(two), 2.0);
1058     }
1059 
1060     #[cfg(feature = "num-traits")]
1061     #[test]
to_primitive()1062     fn to_primitive() {
1063         let two = bf16::from_f32(2.0);
1064         assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32);
1065         assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32);
1066         assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64);
1067     }
1068 
1069     #[cfg(feature = "num-traits")]
1070     #[test]
from_primitive()1071     fn from_primitive() {
1072         let two = bf16::from_f32(2.0);
1073         assert_eq!(<bf16 as FromPrimitive>::from_i32(2).unwrap(), two);
1074         assert_eq!(<bf16 as FromPrimitive>::from_f32(2.0).unwrap(), two);
1075         assert_eq!(<bf16 as FromPrimitive>::from_f64(2.0).unwrap(), two);
1076     }
1077 
1078     #[test]
test_bf16_consts_from_f32()1079     fn test_bf16_consts_from_f32() {
1080         let one = bf16::from_f32(1.0);
1081         let zero = bf16::from_f32(0.0);
1082         let neg_zero = bf16::from_f32(-0.0);
1083         let neg_one = bf16::from_f32(-1.0);
1084         let inf = bf16::from_f32(core::f32::INFINITY);
1085         let neg_inf = bf16::from_f32(core::f32::NEG_INFINITY);
1086         let nan = bf16::from_f32(core::f32::NAN);
1087 
1088         assert_eq!(bf16::ONE, one);
1089         assert_eq!(bf16::ZERO, zero);
1090         assert!(zero.is_sign_positive());
1091         assert_eq!(bf16::NEG_ZERO, neg_zero);
1092         assert!(neg_zero.is_sign_negative());
1093         assert_eq!(bf16::NEG_ONE, neg_one);
1094         assert!(neg_one.is_sign_negative());
1095         assert_eq!(bf16::INFINITY, inf);
1096         assert_eq!(bf16::NEG_INFINITY, neg_inf);
1097         assert!(nan.is_nan());
1098         assert!(bf16::NAN.is_nan());
1099 
1100         let e = bf16::from_f32(core::f32::consts::E);
1101         let pi = bf16::from_f32(core::f32::consts::PI);
1102         let frac_1_pi = bf16::from_f32(core::f32::consts::FRAC_1_PI);
1103         let frac_1_sqrt_2 = bf16::from_f32(core::f32::consts::FRAC_1_SQRT_2);
1104         let frac_2_pi = bf16::from_f32(core::f32::consts::FRAC_2_PI);
1105         let frac_2_sqrt_pi = bf16::from_f32(core::f32::consts::FRAC_2_SQRT_PI);
1106         let frac_pi_2 = bf16::from_f32(core::f32::consts::FRAC_PI_2);
1107         let frac_pi_3 = bf16::from_f32(core::f32::consts::FRAC_PI_3);
1108         let frac_pi_4 = bf16::from_f32(core::f32::consts::FRAC_PI_4);
1109         let frac_pi_6 = bf16::from_f32(core::f32::consts::FRAC_PI_6);
1110         let frac_pi_8 = bf16::from_f32(core::f32::consts::FRAC_PI_8);
1111         let ln_10 = bf16::from_f32(core::f32::consts::LN_10);
1112         let ln_2 = bf16::from_f32(core::f32::consts::LN_2);
1113         let log10_e = bf16::from_f32(core::f32::consts::LOG10_E);
1114         // core::f32::consts::LOG10_2 requires rustc 1.43.0
1115         let log10_2 = bf16::from_f32(2f32.log10());
1116         let log2_e = bf16::from_f32(core::f32::consts::LOG2_E);
1117         // core::f32::consts::LOG2_10 requires rustc 1.43.0
1118         let log2_10 = bf16::from_f32(10f32.log2());
1119         let sqrt_2 = bf16::from_f32(core::f32::consts::SQRT_2);
1120 
1121         assert_eq!(bf16::E, e);
1122         assert_eq!(bf16::PI, pi);
1123         assert_eq!(bf16::FRAC_1_PI, frac_1_pi);
1124         assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2);
1125         assert_eq!(bf16::FRAC_2_PI, frac_2_pi);
1126         assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
1127         assert_eq!(bf16::FRAC_PI_2, frac_pi_2);
1128         assert_eq!(bf16::FRAC_PI_3, frac_pi_3);
1129         assert_eq!(bf16::FRAC_PI_4, frac_pi_4);
1130         assert_eq!(bf16::FRAC_PI_6, frac_pi_6);
1131         assert_eq!(bf16::FRAC_PI_8, frac_pi_8);
1132         assert_eq!(bf16::LN_10, ln_10);
1133         assert_eq!(bf16::LN_2, ln_2);
1134         assert_eq!(bf16::LOG10_E, log10_e);
1135         assert_eq!(bf16::LOG10_2, log10_2);
1136         assert_eq!(bf16::LOG2_E, log2_e);
1137         assert_eq!(bf16::LOG2_10, log2_10);
1138         assert_eq!(bf16::SQRT_2, sqrt_2);
1139     }
1140 
1141     #[test]
test_bf16_consts_from_f64()1142     fn test_bf16_consts_from_f64() {
1143         let one = bf16::from_f64(1.0);
1144         let zero = bf16::from_f64(0.0);
1145         let neg_zero = bf16::from_f64(-0.0);
1146         let inf = bf16::from_f64(core::f64::INFINITY);
1147         let neg_inf = bf16::from_f64(core::f64::NEG_INFINITY);
1148         let nan = bf16::from_f64(core::f64::NAN);
1149 
1150         assert_eq!(bf16::ONE, one);
1151         assert_eq!(bf16::ZERO, zero);
1152         assert_eq!(bf16::NEG_ZERO, neg_zero);
1153         assert_eq!(bf16::INFINITY, inf);
1154         assert_eq!(bf16::NEG_INFINITY, neg_inf);
1155         assert!(nan.is_nan());
1156         assert!(bf16::NAN.is_nan());
1157 
1158         let e = bf16::from_f64(core::f64::consts::E);
1159         let pi = bf16::from_f64(core::f64::consts::PI);
1160         let frac_1_pi = bf16::from_f64(core::f64::consts::FRAC_1_PI);
1161         let frac_1_sqrt_2 = bf16::from_f64(core::f64::consts::FRAC_1_SQRT_2);
1162         let frac_2_pi = bf16::from_f64(core::f64::consts::FRAC_2_PI);
1163         let frac_2_sqrt_pi = bf16::from_f64(core::f64::consts::FRAC_2_SQRT_PI);
1164         let frac_pi_2 = bf16::from_f64(core::f64::consts::FRAC_PI_2);
1165         let frac_pi_3 = bf16::from_f64(core::f64::consts::FRAC_PI_3);
1166         let frac_pi_4 = bf16::from_f64(core::f64::consts::FRAC_PI_4);
1167         let frac_pi_6 = bf16::from_f64(core::f64::consts::FRAC_PI_6);
1168         let frac_pi_8 = bf16::from_f64(core::f64::consts::FRAC_PI_8);
1169         let ln_10 = bf16::from_f64(core::f64::consts::LN_10);
1170         let ln_2 = bf16::from_f64(core::f64::consts::LN_2);
1171         let log10_e = bf16::from_f64(core::f64::consts::LOG10_E);
1172         // core::f64::consts::LOG10_2 requires rustc 1.43.0
1173         let log10_2 = bf16::from_f64(2f64.log10());
1174         let log2_e = bf16::from_f64(core::f64::consts::LOG2_E);
1175         // core::f64::consts::LOG2_10 requires rustc 1.43.0
1176         let log2_10 = bf16::from_f64(10f64.log2());
1177         let sqrt_2 = bf16::from_f64(core::f64::consts::SQRT_2);
1178 
1179         assert_eq!(bf16::E, e);
1180         assert_eq!(bf16::PI, pi);
1181         assert_eq!(bf16::FRAC_1_PI, frac_1_pi);
1182         assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2);
1183         assert_eq!(bf16::FRAC_2_PI, frac_2_pi);
1184         assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
1185         assert_eq!(bf16::FRAC_PI_2, frac_pi_2);
1186         assert_eq!(bf16::FRAC_PI_3, frac_pi_3);
1187         assert_eq!(bf16::FRAC_PI_4, frac_pi_4);
1188         assert_eq!(bf16::FRAC_PI_6, frac_pi_6);
1189         assert_eq!(bf16::FRAC_PI_8, frac_pi_8);
1190         assert_eq!(bf16::LN_10, ln_10);
1191         assert_eq!(bf16::LN_2, ln_2);
1192         assert_eq!(bf16::LOG10_E, log10_e);
1193         assert_eq!(bf16::LOG10_2, log10_2);
1194         assert_eq!(bf16::LOG2_E, log2_e);
1195         assert_eq!(bf16::LOG2_10, log2_10);
1196         assert_eq!(bf16::SQRT_2, sqrt_2);
1197     }
1198 
1199     #[test]
test_nan_conversion_to_smaller()1200     fn test_nan_conversion_to_smaller() {
1201         let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64);
1202         let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64);
1203         let nan32 = f32::from_bits(0x7F80_0001u32);
1204         let neg_nan32 = f32::from_bits(0xFF80_0001u32);
1205         let nan32_from_64 = nan64 as f32;
1206         let neg_nan32_from_64 = neg_nan64 as f32;
1207         let nan16_from_64 = bf16::from_f64(nan64);
1208         let neg_nan16_from_64 = bf16::from_f64(neg_nan64);
1209         let nan16_from_32 = bf16::from_f32(nan32);
1210         let neg_nan16_from_32 = bf16::from_f32(neg_nan32);
1211 
1212         assert!(nan64.is_nan() && nan64.is_sign_positive());
1213         assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative());
1214         assert!(nan32.is_nan() && nan32.is_sign_positive());
1215         assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
1216         assert!(nan32_from_64.is_nan() && nan32_from_64.is_sign_positive());
1217         assert!(neg_nan32_from_64.is_nan() && neg_nan32_from_64.is_sign_negative());
1218         assert!(nan16_from_64.is_nan() && nan16_from_64.is_sign_positive());
1219         assert!(neg_nan16_from_64.is_nan() && neg_nan16_from_64.is_sign_negative());
1220         assert!(nan16_from_32.is_nan() && nan16_from_32.is_sign_positive());
1221         assert!(neg_nan16_from_32.is_nan() && neg_nan16_from_32.is_sign_negative());
1222     }
1223 
1224     #[test]
test_nan_conversion_to_larger()1225     fn test_nan_conversion_to_larger() {
1226         let nan16 = bf16::from_bits(0x7F81u16);
1227         let neg_nan16 = bf16::from_bits(0xFF81u16);
1228         let nan32 = f32::from_bits(0x7F80_0001u32);
1229         let neg_nan32 = f32::from_bits(0xFF80_0001u32);
1230         let nan32_from_16 = f32::from(nan16);
1231         let neg_nan32_from_16 = f32::from(neg_nan16);
1232         let nan64_from_16 = f64::from(nan16);
1233         let neg_nan64_from_16 = f64::from(neg_nan16);
1234         let nan64_from_32 = f64::from(nan32);
1235         let neg_nan64_from_32 = f64::from(neg_nan32);
1236 
1237         assert!(nan16.is_nan() && nan16.is_sign_positive());
1238         assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative());
1239         assert!(nan32.is_nan() && nan32.is_sign_positive());
1240         assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
1241         assert!(nan32_from_16.is_nan() && nan32_from_16.is_sign_positive());
1242         assert!(neg_nan32_from_16.is_nan() && neg_nan32_from_16.is_sign_negative());
1243         assert!(nan64_from_16.is_nan() && nan64_from_16.is_sign_positive());
1244         assert!(neg_nan64_from_16.is_nan() && neg_nan64_from_16.is_sign_negative());
1245         assert!(nan64_from_32.is_nan() && nan64_from_32.is_sign_positive());
1246         assert!(neg_nan64_from_32.is_nan() && neg_nan64_from_32.is_sign_negative());
1247     }
1248 
1249     #[test]
test_bf16_to_f32()1250     fn test_bf16_to_f32() {
1251         let f = bf16::from_f32(7.0);
1252         assert_eq!(f.to_f32(), 7.0f32);
1253 
1254         // 7.1 is NOT exactly representable in 16-bit, it's rounded
1255         let f = bf16::from_f32(7.1);
1256         let diff = (f.to_f32() - 7.1f32).abs();
1257         // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
1258         assert!(diff <= 4.0 * bf16::EPSILON.to_f32());
1259 
1260         let tiny32 = f32::from_bits(0x0001_0000u32);
1261         assert_eq!(bf16::from_bits(0x0001).to_f32(), tiny32);
1262         assert_eq!(bf16::from_bits(0x0005).to_f32(), 5.0 * tiny32);
1263 
1264         assert_eq!(bf16::from_bits(0x0001), bf16::from_f32(tiny32));
1265         assert_eq!(bf16::from_bits(0x0005), bf16::from_f32(5.0 * tiny32));
1266     }
1267 
1268     #[test]
test_bf16_to_f64()1269     fn test_bf16_to_f64() {
1270         let f = bf16::from_f64(7.0);
1271         assert_eq!(f.to_f64(), 7.0f64);
1272 
1273         // 7.1 is NOT exactly representable in 16-bit, it's rounded
1274         let f = bf16::from_f64(7.1);
1275         let diff = (f.to_f64() - 7.1f64).abs();
1276         // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
1277         assert!(diff <= 4.0 * bf16::EPSILON.to_f64());
1278 
1279         let tiny64 = 2.0f64.powi(-133);
1280         assert_eq!(bf16::from_bits(0x0001).to_f64(), tiny64);
1281         assert_eq!(bf16::from_bits(0x0005).to_f64(), 5.0 * tiny64);
1282 
1283         assert_eq!(bf16::from_bits(0x0001), bf16::from_f64(tiny64));
1284         assert_eq!(bf16::from_bits(0x0005), bf16::from_f64(5.0 * tiny64));
1285     }
1286 
1287     #[test]
test_comparisons()1288     fn test_comparisons() {
1289         let zero = bf16::from_f64(0.0);
1290         let one = bf16::from_f64(1.0);
1291         let neg_zero = bf16::from_f64(-0.0);
1292         let neg_one = bf16::from_f64(-1.0);
1293 
1294         assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal));
1295         assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal));
1296         assert!(zero == neg_zero);
1297         assert!(neg_zero == zero);
1298         assert!(!(zero != neg_zero));
1299         assert!(!(neg_zero != zero));
1300         assert!(!(zero < neg_zero));
1301         assert!(!(neg_zero < zero));
1302         assert!(zero <= neg_zero);
1303         assert!(neg_zero <= zero);
1304         assert!(!(zero > neg_zero));
1305         assert!(!(neg_zero > zero));
1306         assert!(zero >= neg_zero);
1307         assert!(neg_zero >= zero);
1308 
1309         assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater));
1310         assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less));
1311         assert!(!(one == neg_zero));
1312         assert!(!(neg_zero == one));
1313         assert!(one != neg_zero);
1314         assert!(neg_zero != one);
1315         assert!(!(one < neg_zero));
1316         assert!(neg_zero < one);
1317         assert!(!(one <= neg_zero));
1318         assert!(neg_zero <= one);
1319         assert!(one > neg_zero);
1320         assert!(!(neg_zero > one));
1321         assert!(one >= neg_zero);
1322         assert!(!(neg_zero >= one));
1323 
1324         assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater));
1325         assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less));
1326         assert!(!(one == neg_one));
1327         assert!(!(neg_one == one));
1328         assert!(one != neg_one);
1329         assert!(neg_one != one);
1330         assert!(!(one < neg_one));
1331         assert!(neg_one < one);
1332         assert!(!(one <= neg_one));
1333         assert!(neg_one <= one);
1334         assert!(one > neg_one);
1335         assert!(!(neg_one > one));
1336         assert!(one >= neg_one);
1337         assert!(!(neg_one >= one));
1338     }
1339 
1340     #[test]
1341     #[allow(clippy::erasing_op, clippy::identity_op)]
round_to_even_f32()1342     fn round_to_even_f32() {
1343         // smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133
1344         let min_sub = bf16::from_bits(1);
1345         let min_sub_f = (-133f32).exp2();
1346         assert_eq!(bf16::from_f32(min_sub_f).to_bits(), min_sub.to_bits());
1347         assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits());
1348 
1349         // 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding)
1350         // 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even)
1351         // 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up)
1352         assert_eq!(
1353             bf16::from_f32(min_sub_f * 0.49).to_bits(),
1354             min_sub.to_bits() * 0
1355         );
1356         assert_eq!(
1357             bf16::from_f32(min_sub_f * 0.50).to_bits(),
1358             min_sub.to_bits() * 0
1359         );
1360         assert_eq!(
1361             bf16::from_f32(min_sub_f * 0.51).to_bits(),
1362             min_sub.to_bits() * 1
1363         );
1364 
1365         // 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding)
1366         // 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even)
1367         // 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up)
1368         assert_eq!(
1369             bf16::from_f32(min_sub_f * 1.49).to_bits(),
1370             min_sub.to_bits() * 1
1371         );
1372         assert_eq!(
1373             bf16::from_f32(min_sub_f * 1.50).to_bits(),
1374             min_sub.to_bits() * 2
1375         );
1376         assert_eq!(
1377             bf16::from_f32(min_sub_f * 1.51).to_bits(),
1378             min_sub.to_bits() * 2
1379         );
1380 
1381         // 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding)
1382         // 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even)
1383         // 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up)
1384         assert_eq!(
1385             bf16::from_f32(min_sub_f * 2.49).to_bits(),
1386             min_sub.to_bits() * 2
1387         );
1388         assert_eq!(
1389             bf16::from_f32(min_sub_f * 2.50).to_bits(),
1390             min_sub.to_bits() * 2
1391         );
1392         assert_eq!(
1393             bf16::from_f32(min_sub_f * 2.51).to_bits(),
1394             min_sub.to_bits() * 3
1395         );
1396 
1397         assert_eq!(
1398             bf16::from_f32(250.49f32).to_bits(),
1399             bf16::from_f32(250.0).to_bits()
1400         );
1401         assert_eq!(
1402             bf16::from_f32(250.50f32).to_bits(),
1403             bf16::from_f32(250.0).to_bits()
1404         );
1405         assert_eq!(
1406             bf16::from_f32(250.51f32).to_bits(),
1407             bf16::from_f32(251.0).to_bits()
1408         );
1409         assert_eq!(
1410             bf16::from_f32(251.49f32).to_bits(),
1411             bf16::from_f32(251.0).to_bits()
1412         );
1413         assert_eq!(
1414             bf16::from_f32(251.50f32).to_bits(),
1415             bf16::from_f32(252.0).to_bits()
1416         );
1417         assert_eq!(
1418             bf16::from_f32(251.51f32).to_bits(),
1419             bf16::from_f32(252.0).to_bits()
1420         );
1421         assert_eq!(
1422             bf16::from_f32(252.49f32).to_bits(),
1423             bf16::from_f32(252.0).to_bits()
1424         );
1425         assert_eq!(
1426             bf16::from_f32(252.50f32).to_bits(),
1427             bf16::from_f32(252.0).to_bits()
1428         );
1429         assert_eq!(
1430             bf16::from_f32(252.51f32).to_bits(),
1431             bf16::from_f32(253.0).to_bits()
1432         );
1433     }
1434 
1435     #[test]
1436     #[allow(clippy::erasing_op, clippy::identity_op)]
round_to_even_f64()1437     fn round_to_even_f64() {
1438         // smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133
1439         let min_sub = bf16::from_bits(1);
1440         let min_sub_f = (-133f64).exp2();
1441         assert_eq!(bf16::from_f64(min_sub_f).to_bits(), min_sub.to_bits());
1442         assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits());
1443 
1444         // 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding)
1445         // 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even)
1446         // 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up)
1447         assert_eq!(
1448             bf16::from_f64(min_sub_f * 0.49).to_bits(),
1449             min_sub.to_bits() * 0
1450         );
1451         assert_eq!(
1452             bf16::from_f64(min_sub_f * 0.50).to_bits(),
1453             min_sub.to_bits() * 0
1454         );
1455         assert_eq!(
1456             bf16::from_f64(min_sub_f * 0.51).to_bits(),
1457             min_sub.to_bits() * 1
1458         );
1459 
1460         // 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding)
1461         // 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even)
1462         // 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up)
1463         assert_eq!(
1464             bf16::from_f64(min_sub_f * 1.49).to_bits(),
1465             min_sub.to_bits() * 1
1466         );
1467         assert_eq!(
1468             bf16::from_f64(min_sub_f * 1.50).to_bits(),
1469             min_sub.to_bits() * 2
1470         );
1471         assert_eq!(
1472             bf16::from_f64(min_sub_f * 1.51).to_bits(),
1473             min_sub.to_bits() * 2
1474         );
1475 
1476         // 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding)
1477         // 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even)
1478         // 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up)
1479         assert_eq!(
1480             bf16::from_f64(min_sub_f * 2.49).to_bits(),
1481             min_sub.to_bits() * 2
1482         );
1483         assert_eq!(
1484             bf16::from_f64(min_sub_f * 2.50).to_bits(),
1485             min_sub.to_bits() * 2
1486         );
1487         assert_eq!(
1488             bf16::from_f64(min_sub_f * 2.51).to_bits(),
1489             min_sub.to_bits() * 3
1490         );
1491 
1492         assert_eq!(
1493             bf16::from_f64(250.49f64).to_bits(),
1494             bf16::from_f64(250.0).to_bits()
1495         );
1496         assert_eq!(
1497             bf16::from_f64(250.50f64).to_bits(),
1498             bf16::from_f64(250.0).to_bits()
1499         );
1500         assert_eq!(
1501             bf16::from_f64(250.51f64).to_bits(),
1502             bf16::from_f64(251.0).to_bits()
1503         );
1504         assert_eq!(
1505             bf16::from_f64(251.49f64).to_bits(),
1506             bf16::from_f64(251.0).to_bits()
1507         );
1508         assert_eq!(
1509             bf16::from_f64(251.50f64).to_bits(),
1510             bf16::from_f64(252.0).to_bits()
1511         );
1512         assert_eq!(
1513             bf16::from_f64(251.51f64).to_bits(),
1514             bf16::from_f64(252.0).to_bits()
1515         );
1516         assert_eq!(
1517             bf16::from_f64(252.49f64).to_bits(),
1518             bf16::from_f64(252.0).to_bits()
1519         );
1520         assert_eq!(
1521             bf16::from_f64(252.50f64).to_bits(),
1522             bf16::from_f64(252.0).to_bits()
1523         );
1524         assert_eq!(
1525             bf16::from_f64(252.51f64).to_bits(),
1526             bf16::from_f64(253.0).to_bits()
1527         );
1528     }
1529 
1530     impl quickcheck::Arbitrary for bf16 {
arbitrary(g: &mut quickcheck::Gen) -> Self1531         fn arbitrary(g: &mut quickcheck::Gen) -> Self {
1532             bf16(u16::arbitrary(g))
1533         }
1534     }
1535 
1536     #[quickcheck]
qc_roundtrip_bf16_f32_is_identity(f: bf16) -> bool1537     fn qc_roundtrip_bf16_f32_is_identity(f: bf16) -> bool {
1538         let roundtrip = bf16::from_f32(f.to_f32());
1539         if f.is_nan() {
1540             roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
1541         } else {
1542             f.0 == roundtrip.0
1543         }
1544     }
1545 
1546     #[quickcheck]
qc_roundtrip_bf16_f64_is_identity(f: bf16) -> bool1547     fn qc_roundtrip_bf16_f64_is_identity(f: bf16) -> bool {
1548         let roundtrip = bf16::from_f64(f.to_f64());
1549         if f.is_nan() {
1550             roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
1551         } else {
1552             f.0 == roundtrip.0
1553         }
1554     }
1555 }
1556