1 /*	$OpenBSD: queue.h,v 1.32 2007/04/30 18:42:34 pedro Exp $	*/
2 /*	$NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $	*/
3 
4 /*
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)queue.h	8.5 (Berkeley) 8/20/94
33  */
34 
35 #ifndef	_SYS_QUEUE_H_
36 #define	_SYS_QUEUE_H_
37 
38 /*
39  * This file defines five types of data structures: singly-linked lists,
40  * lists, simple queues, tail queues, and circular queues.
41  *
42  *
43  * A singly-linked list is headed by a single forward pointer. The elements
44  * are singly linked for minimum space and pointer manipulation overhead at
45  * the expense of O(n) removal for arbitrary elements. New elements can be
46  * added to the list after an existing element or at the head of the list.
47  * Elements being removed from the head of the list should use the explicit
48  * macro for this purpose for optimum efficiency. A singly-linked list may
49  * only be traversed in the forward direction.  Singly-linked lists are ideal
50  * for applications with large datasets and few or no removals or for
51  * implementing a LIFO queue.
52  *
53  * A list is headed by a single forward pointer (or an array of forward
54  * pointers for a hash table header). The elements are doubly linked
55  * so that an arbitrary element can be removed without a need to
56  * traverse the list. New elements can be added to the list before
57  * or after an existing element or at the head of the list. A list
58  * may only be traversed in the forward direction.
59  *
60  * A simple queue is headed by a pair of pointers, one the head of the
61  * list and the other to the tail of the list. The elements are singly
62  * linked to save space, so elements can only be removed from the
63  * head of the list. New elements can be added to the list before or after
64  * an existing element, at the head of the list, or at the end of the
65  * list. A simple queue may only be traversed in the forward direction.
66  *
67  * A tail queue is headed by a pair of pointers, one to the head of the
68  * list and the other to the tail of the list. The elements are doubly
69  * linked so that an arbitrary element can be removed without a need to
70  * traverse the list. New elements can be added to the list before or
71  * after an existing element, at the head of the list, or at the end of
72  * the list. A tail queue may be traversed in either direction.
73  *
74  * A circle queue is headed by a pair of pointers, one to the head of the
75  * list and the other to the tail of the list. The elements are doubly
76  * linked so that an arbitrary element can be removed without a need to
77  * traverse the list. New elements can be added to the list before or after
78  * an existing element, at the head of the list, or at the end of the list.
79  * A circle queue may be traversed in either direction, but has a more
80  * complex end of list detection.
81  *
82  * For details on the use of these macros, see the queue(3) manual page.
83  */
84 
85 #if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
86 #define _Q_INVALIDATE(a) (a) = ((void *)-1)
87 #else
88 #define _Q_INVALIDATE(a)
89 #endif
90 
91 /*
92  * Singly-linked List definitions.
93  */
94 #define SLIST_HEAD(name, type)						\
95 struct name {								\
96 	struct type *slh_first;	/* first element */			\
97 }
98 
99 #define	SLIST_HEAD_INITIALIZER(head)					\
100 	{ NULL }
101 
102 #define SLIST_ENTRY(type)						\
103 struct {								\
104 	struct type *sle_next;	/* next element */			\
105 }
106 
107 /*
108  * Singly-linked List access methods.
109  */
110 #define	SLIST_FIRST(head)	((head)->slh_first)
111 #define	SLIST_END(head)		NULL
112 #define	SLIST_EMPTY(head)	(SLIST_FIRST(head) == SLIST_END(head))
113 #define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
114 
115 #define	SLIST_FOREACH(var, head, field)					\
116 	for((var) = SLIST_FIRST(head);					\
117 	    (var) != SLIST_END(head);					\
118 	    (var) = SLIST_NEXT(var, field))
119 
120 #define	SLIST_FOREACH_PREVPTR(var, varp, head, field)			\
121 	for ((varp) = &SLIST_FIRST((head));				\
122 	    ((var) = *(varp)) != SLIST_END(head);			\
123 	    (varp) = &SLIST_NEXT((var), field))
124 
125 /*
126  * Singly-linked List functions.
127  */
128 #define	SLIST_INIT(head) {						\
129 	SLIST_FIRST(head) = SLIST_END(head);				\
130 }
131 
132 #define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
133 	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
134 	(slistelm)->field.sle_next = (elm);				\
135 } while (0)
136 
137 #define	SLIST_INSERT_HEAD(head, elm, field) do {			\
138 	(elm)->field.sle_next = (head)->slh_first;			\
139 	(head)->slh_first = (elm);					\
140 } while (0)
141 
142 #define	SLIST_REMOVE_NEXT(head, elm, field) do {			\
143 	(elm)->field.sle_next = (elm)->field.sle_next->field.sle_next;	\
144 } while (0)
145 
146 #define	SLIST_REMOVE_HEAD(head, field) do {				\
147 	(head)->slh_first = (head)->slh_first->field.sle_next;		\
148 } while (0)
149 
150 #define SLIST_REMOVE(head, elm, type, field) do {			\
151 	if ((head)->slh_first == (elm)) {				\
152 		SLIST_REMOVE_HEAD((head), field);			\
153 	} else {							\
154 		struct type *curelm = (head)->slh_first;		\
155 									\
156 		while (curelm->field.sle_next != (elm))			\
157 			curelm = curelm->field.sle_next;		\
158 		curelm->field.sle_next =				\
159 		    curelm->field.sle_next->field.sle_next;		\
160 		_Q_INVALIDATE((elm)->field.sle_next);			\
161 	}								\
162 } while (0)
163 
164 /*
165  * List definitions.
166  */
167 #define LIST_HEAD(name, type)						\
168 struct name {								\
169 	struct type *lh_first;	/* first element */			\
170 }
171 
172 #define LIST_HEAD_INITIALIZER(head)					\
173 	{ NULL }
174 
175 #define LIST_ENTRY(type)						\
176 struct {								\
177 	struct type *le_next;	/* next element */			\
178 	struct type **le_prev;	/* address of previous next element */	\
179 }
180 
181 /*
182  * List access methods
183  */
184 #define	LIST_FIRST(head)		((head)->lh_first)
185 #define	LIST_END(head)			NULL
186 #define	LIST_EMPTY(head)		(LIST_FIRST(head) == LIST_END(head))
187 #define	LIST_NEXT(elm, field)		((elm)->field.le_next)
188 
189 #define LIST_FOREACH(var, head, field)					\
190 	for((var) = LIST_FIRST(head);					\
191 	    (var)!= LIST_END(head);					\
192 	    (var) = LIST_NEXT(var, field))
193 
194 /*
195  * List functions.
196  */
197 #define	LIST_INIT(head) do {						\
198 	LIST_FIRST(head) = LIST_END(head);				\
199 } while (0)
200 
201 #define LIST_INSERT_AFTER(listelm, elm, field) do {			\
202 	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
203 		(listelm)->field.le_next->field.le_prev =		\
204 		    &(elm)->field.le_next;				\
205 	(listelm)->field.le_next = (elm);				\
206 	(elm)->field.le_prev = &(listelm)->field.le_next;		\
207 } while (0)
208 
209 #define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
210 	(elm)->field.le_prev = (listelm)->field.le_prev;		\
211 	(elm)->field.le_next = (listelm);				\
212 	*(listelm)->field.le_prev = (elm);				\
213 	(listelm)->field.le_prev = &(elm)->field.le_next;		\
214 } while (0)
215 
216 #define LIST_INSERT_HEAD(head, elm, field) do {				\
217 	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
218 		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
219 	(head)->lh_first = (elm);					\
220 	(elm)->field.le_prev = &(head)->lh_first;			\
221 } while (0)
222 
223 #define LIST_REMOVE(elm, field) do {					\
224 	if ((elm)->field.le_next != NULL)				\
225 		(elm)->field.le_next->field.le_prev =			\
226 		    (elm)->field.le_prev;				\
227 	*(elm)->field.le_prev = (elm)->field.le_next;			\
228 	_Q_INVALIDATE((elm)->field.le_prev);				\
229 	_Q_INVALIDATE((elm)->field.le_next);				\
230 } while (0)
231 
232 #define LIST_REPLACE(elm, elm2, field) do {				\
233 	if (((elm2)->field.le_next = (elm)->field.le_next) != NULL)	\
234 		(elm2)->field.le_next->field.le_prev =			\
235 		    &(elm2)->field.le_next;				\
236 	(elm2)->field.le_prev = (elm)->field.le_prev;			\
237 	*(elm2)->field.le_prev = (elm2);				\
238 	_Q_INVALIDATE((elm)->field.le_prev);				\
239 	_Q_INVALIDATE((elm)->field.le_next);				\
240 } while (0)
241 
242 /*
243  * Simple queue definitions.
244  */
245 #define SIMPLEQ_HEAD(name, type)					\
246 struct name {								\
247 	struct type *sqh_first;	/* first element */			\
248 	struct type **sqh_last;	/* addr of last next element */		\
249 }
250 
251 #define SIMPLEQ_HEAD_INITIALIZER(head)					\
252 	{ NULL, &(head).sqh_first }
253 
254 #define SIMPLEQ_ENTRY(type)						\
255 struct {								\
256 	struct type *sqe_next;	/* next element */			\
257 }
258 
259 /*
260  * Simple queue access methods.
261  */
262 #define	SIMPLEQ_FIRST(head)	    ((head)->sqh_first)
263 #define	SIMPLEQ_END(head)	    NULL
264 #define	SIMPLEQ_EMPTY(head)	    (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
265 #define	SIMPLEQ_NEXT(elm, field)    ((elm)->field.sqe_next)
266 
267 #define SIMPLEQ_FOREACH(var, head, field)				\
268 	for((var) = SIMPLEQ_FIRST(head);				\
269 	    (var) != SIMPLEQ_END(head);					\
270 	    (var) = SIMPLEQ_NEXT(var, field))
271 
272 /*
273  * Simple queue functions.
274  */
275 #define	SIMPLEQ_INIT(head) do {						\
276 	(head)->sqh_first = NULL;					\
277 	(head)->sqh_last = &(head)->sqh_first;				\
278 } while (0)
279 
280 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
281 	if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)	\
282 		(head)->sqh_last = &(elm)->field.sqe_next;		\
283 	(head)->sqh_first = (elm);					\
284 } while (0)
285 
286 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
287 	(elm)->field.sqe_next = NULL;					\
288 	*(head)->sqh_last = (elm);					\
289 	(head)->sqh_last = &(elm)->field.sqe_next;			\
290 } while (0)
291 
292 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
293 	if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
294 		(head)->sqh_last = &(elm)->field.sqe_next;		\
295 	(listelm)->field.sqe_next = (elm);				\
296 } while (0)
297 
298 #define SIMPLEQ_REMOVE_HEAD(head, field) do {			\
299 	if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
300 		(head)->sqh_last = &(head)->sqh_first;			\
301 } while (0)
302 
303 /*
304  * Tail queue definitions.
305  */
306 #define TAILQ_HEAD(name, type)						\
307 struct name {								\
308 	struct type *tqh_first;	/* first element */			\
309 	struct type **tqh_last;	/* addr of last next element */		\
310 }
311 
312 #define TAILQ_HEAD_INITIALIZER(head)					\
313 	{ NULL, &(head).tqh_first }
314 
315 #define TAILQ_ENTRY(type)						\
316 struct {								\
317 	struct type *tqe_next;	/* next element */			\
318 	struct type **tqe_prev;	/* address of previous next element */	\
319 }
320 
321 /*
322  * tail queue access methods
323  */
324 #define	TAILQ_FIRST(head)		((head)->tqh_first)
325 #define	TAILQ_END(head)			NULL
326 #define	TAILQ_NEXT(elm, field)		((elm)->field.tqe_next)
327 #define TAILQ_LAST(head, headname)					\
328 	(*(((struct headname *)((head)->tqh_last))->tqh_last))
329 /* XXX */
330 #define TAILQ_PREV(elm, headname, field)				\
331 	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
332 #define	TAILQ_EMPTY(head)						\
333 	(TAILQ_FIRST(head) == TAILQ_END(head))
334 
335 #define TAILQ_FOREACH(var, head, field)					\
336 	for((var) = TAILQ_FIRST(head);					\
337 	    (var) != TAILQ_END(head);					\
338 	    (var) = TAILQ_NEXT(var, field))
339 
340 #define TAILQ_FOREACH_REVERSE(var, head, headname, field)		\
341 	for((var) = TAILQ_LAST(head, headname);				\
342 	    (var) != TAILQ_END(head);					\
343 	    (var) = TAILQ_PREV(var, headname, field))
344 
345 /*
346  * Tail queue functions.
347  */
348 #define	TAILQ_INIT(head) do {						\
349 	(head)->tqh_first = NULL;					\
350 	(head)->tqh_last = &(head)->tqh_first;				\
351 } while (0)
352 
353 #define TAILQ_INSERT_HEAD(head, elm, field) do {			\
354 	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
355 		(head)->tqh_first->field.tqe_prev =			\
356 		    &(elm)->field.tqe_next;				\
357 	else								\
358 		(head)->tqh_last = &(elm)->field.tqe_next;		\
359 	(head)->tqh_first = (elm);					\
360 	(elm)->field.tqe_prev = &(head)->tqh_first;			\
361 } while (0)
362 
363 #define TAILQ_INSERT_TAIL(head, elm, field) do {			\
364 	(elm)->field.tqe_next = NULL;					\
365 	(elm)->field.tqe_prev = (head)->tqh_last;			\
366 	*(head)->tqh_last = (elm);					\
367 	(head)->tqh_last = &(elm)->field.tqe_next;			\
368 } while (0)
369 
370 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
371 	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
372 		(elm)->field.tqe_next->field.tqe_prev =			\
373 		    &(elm)->field.tqe_next;				\
374 	else								\
375 		(head)->tqh_last = &(elm)->field.tqe_next;		\
376 	(listelm)->field.tqe_next = (elm);				\
377 	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
378 } while (0)
379 
380 #define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
381 	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
382 	(elm)->field.tqe_next = (listelm);				\
383 	*(listelm)->field.tqe_prev = (elm);				\
384 	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
385 } while (0)
386 
387 #define TAILQ_REMOVE(head, elm, field) do {				\
388 	if (((elm)->field.tqe_next) != NULL)				\
389 		(elm)->field.tqe_next->field.tqe_prev =			\
390 		    (elm)->field.tqe_prev;				\
391 	else								\
392 		(head)->tqh_last = (elm)->field.tqe_prev;		\
393 	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
394 	_Q_INVALIDATE((elm)->field.tqe_prev);				\
395 	_Q_INVALIDATE((elm)->field.tqe_next);				\
396 } while (0)
397 
398 #define TAILQ_REPLACE(head, elm, elm2, field) do {			\
399 	if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL)	\
400 		(elm2)->field.tqe_next->field.tqe_prev =		\
401 		    &(elm2)->field.tqe_next;				\
402 	else								\
403 		(head)->tqh_last = &(elm2)->field.tqe_next;		\
404 	(elm2)->field.tqe_prev = (elm)->field.tqe_prev;			\
405 	*(elm2)->field.tqe_prev = (elm2);				\
406 	_Q_INVALIDATE((elm)->field.tqe_prev);				\
407 	_Q_INVALIDATE((elm)->field.tqe_next);				\
408 } while (0)
409 
410 /*
411  * Circular queue definitions.
412  */
413 #define CIRCLEQ_HEAD(name, type)					\
414 struct name {								\
415 	struct type *cqh_first;		/* first element */		\
416 	struct type *cqh_last;		/* last element */		\
417 }
418 
419 #define CIRCLEQ_HEAD_INITIALIZER(head)					\
420 	{ CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
421 
422 #define CIRCLEQ_ENTRY(type)						\
423 struct {								\
424 	struct type *cqe_next;		/* next element */		\
425 	struct type *cqe_prev;		/* previous element */		\
426 }
427 
428 /*
429  * Circular queue access methods
430  */
431 #define	CIRCLEQ_FIRST(head)		((head)->cqh_first)
432 #define	CIRCLEQ_LAST(head)		((head)->cqh_last)
433 #define	CIRCLEQ_END(head)		((void *)(head))
434 #define	CIRCLEQ_NEXT(elm, field)	((elm)->field.cqe_next)
435 #define	CIRCLEQ_PREV(elm, field)	((elm)->field.cqe_prev)
436 #define	CIRCLEQ_EMPTY(head)						\
437 	(CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
438 
439 #define CIRCLEQ_FOREACH(var, head, field)				\
440 	for((var) = CIRCLEQ_FIRST(head);				\
441 	    (var) != CIRCLEQ_END(head);					\
442 	    (var) = CIRCLEQ_NEXT(var, field))
443 
444 #define CIRCLEQ_FOREACH_REVERSE(var, head, field)			\
445 	for((var) = CIRCLEQ_LAST(head);					\
446 	    (var) != CIRCLEQ_END(head);					\
447 	    (var) = CIRCLEQ_PREV(var, field))
448 
449 /*
450  * Circular queue functions.
451  */
452 #define	CIRCLEQ_INIT(head) do {						\
453 	(head)->cqh_first = CIRCLEQ_END(head);				\
454 	(head)->cqh_last = CIRCLEQ_END(head);				\
455 } while (0)
456 
457 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
458 	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
459 	(elm)->field.cqe_prev = (listelm);				\
460 	if ((listelm)->field.cqe_next == CIRCLEQ_END(head))		\
461 		(head)->cqh_last = (elm);				\
462 	else								\
463 		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
464 	(listelm)->field.cqe_next = (elm);				\
465 } while (0)
466 
467 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {		\
468 	(elm)->field.cqe_next = (listelm);				\
469 	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
470 	if ((listelm)->field.cqe_prev == CIRCLEQ_END(head))		\
471 		(head)->cqh_first = (elm);				\
472 	else								\
473 		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
474 	(listelm)->field.cqe_prev = (elm);				\
475 } while (0)
476 
477 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do {			\
478 	(elm)->field.cqe_next = (head)->cqh_first;			\
479 	(elm)->field.cqe_prev = CIRCLEQ_END(head);			\
480 	if ((head)->cqh_last == CIRCLEQ_END(head))			\
481 		(head)->cqh_last = (elm);				\
482 	else								\
483 		(head)->cqh_first->field.cqe_prev = (elm);		\
484 	(head)->cqh_first = (elm);					\
485 } while (0)
486 
487 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do {			\
488 	(elm)->field.cqe_next = CIRCLEQ_END(head);			\
489 	(elm)->field.cqe_prev = (head)->cqh_last;			\
490 	if ((head)->cqh_first == CIRCLEQ_END(head))			\
491 		(head)->cqh_first = (elm);				\
492 	else								\
493 		(head)->cqh_last->field.cqe_next = (elm);		\
494 	(head)->cqh_last = (elm);					\
495 } while (0)
496 
497 #define	CIRCLEQ_REMOVE(head, elm, field) do {				\
498 	if ((elm)->field.cqe_next == CIRCLEQ_END(head))			\
499 		(head)->cqh_last = (elm)->field.cqe_prev;		\
500 	else								\
501 		(elm)->field.cqe_next->field.cqe_prev =			\
502 		    (elm)->field.cqe_prev;				\
503 	if ((elm)->field.cqe_prev == CIRCLEQ_END(head))			\
504 		(head)->cqh_first = (elm)->field.cqe_next;		\
505 	else								\
506 		(elm)->field.cqe_prev->field.cqe_next =			\
507 		    (elm)->field.cqe_next;				\
508 	_Q_INVALIDATE((elm)->field.cqe_prev);				\
509 	_Q_INVALIDATE((elm)->field.cqe_next);				\
510 } while (0)
511 
512 #define CIRCLEQ_REPLACE(head, elm, elm2, field) do {			\
513 	if (((elm2)->field.cqe_next = (elm)->field.cqe_next) ==		\
514 	    CIRCLEQ_END(head))						\
515 		(head).cqh_last = (elm2);				\
516 	else								\
517 		(elm2)->field.cqe_next->field.cqe_prev = (elm2);	\
518 	if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) ==		\
519 	    CIRCLEQ_END(head))						\
520 		(head).cqh_first = (elm2);				\
521 	else								\
522 		(elm2)->field.cqe_prev->field.cqe_next = (elm2);	\
523 	_Q_INVALIDATE((elm)->field.cqe_prev);				\
524 	_Q_INVALIDATE((elm)->field.cqe_next);				\
525 } while (0)
526 
527 #endif	/* !_SYS_QUEUE_H_ */
528