1 /*
2  * bt_matchfinder.h - Lempel-Ziv matchfinding with a hash table of binary trees
3  *
4  * Originally public domain; changes after 2016-09-07 are copyrighted.
5  *
6  * Copyright 2016 Eric Biggers
7  *
8  * Permission is hereby granted, free of charge, to any person
9  * obtaining a copy of this software and associated documentation
10  * files (the "Software"), to deal in the Software without
11  * restriction, including without limitation the rights to use,
12  * copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the
14  * Software is furnished to do so, subject to the following
15  * conditions:
16  *
17  * The above copyright notice and this permission notice shall be
18  * included in all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
21  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
22  * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
23  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
24  * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
25  * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
26  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
27  * OTHER DEALINGS IN THE SOFTWARE.
28  *
29  * ----------------------------------------------------------------------------
30  *
31  * This is a Binary Trees (bt) based matchfinder.
32  *
33  * The main data structure is a hash table where each hash bucket contains a
34  * binary tree of sequences whose first 4 bytes share the same hash code.  Each
35  * sequence is identified by its starting position in the input buffer.  Each
36  * binary tree is always sorted such that each left child represents a sequence
37  * lexicographically lesser than its parent and each right child represents a
38  * sequence lexicographically greater than its parent.
39  *
40  * The algorithm processes the input buffer sequentially.  At each byte
41  * position, the hash code of the first 4 bytes of the sequence beginning at
42  * that position (the sequence being matched against) is computed.  This
43  * identifies the hash bucket to use for that position.  Then, a new binary tree
44  * node is created to represent the current sequence.  Then, in a single tree
45  * traversal, the hash bucket's binary tree is searched for matches and is
46  * re-rooted at the new node.
47  *
48  * Compared to the simpler algorithm that uses linked lists instead of binary
49  * trees (see hc_matchfinder.h), the binary tree version gains more information
50  * at each node visitation.  Ideally, the binary tree version will examine only
51  * 'log(n)' nodes to find the same matches that the linked list version will
52  * find by examining 'n' nodes.  In addition, the binary tree version can
53  * examine fewer bytes at each node by taking advantage of the common prefixes
54  * that result from the sort order, whereas the linked list version may have to
55  * examine up to the full length of the match at each node.
56  *
57  * However, it is not always best to use the binary tree version.  It requires
58  * nearly twice as much memory as the linked list version, and it takes time to
59  * keep the binary trees sorted, even at positions where the compressor does not
60  * need matches.  Generally, when doing fast compression on small buffers,
61  * binary trees are the wrong approach.  They are best suited for thorough
62  * compression and/or large buffers.
63  *
64  * ----------------------------------------------------------------------------
65  */
66 
67 
68 #include "matchfinder_common.h"
69 
70 #define BT_MATCHFINDER_HASH3_ORDER 16
71 #define BT_MATCHFINDER_HASH3_WAYS  2
72 #define BT_MATCHFINDER_HASH4_ORDER 16
73 
74 #define BT_MATCHFINDER_TOTAL_HASH_LENGTH		\
75 	((1UL << BT_MATCHFINDER_HASH3_ORDER) * BT_MATCHFINDER_HASH3_WAYS + \
76 	 (1UL << BT_MATCHFINDER_HASH4_ORDER))
77 
78 /* Representation of a match found by the bt_matchfinder  */
79 struct lz_match {
80 
81 	/* The number of bytes matched.  */
82 	u16 length;
83 
84 	/* The offset back from the current position that was matched.  */
85 	u16 offset;
86 };
87 
88 struct bt_matchfinder {
89 
90 	/* The hash table for finding length 3 matches  */
91 	mf_pos_t hash3_tab[1UL << BT_MATCHFINDER_HASH3_ORDER][BT_MATCHFINDER_HASH3_WAYS];
92 
93 	/* The hash table which contains the roots of the binary trees for
94 	 * finding length 4+ matches  */
95 	mf_pos_t hash4_tab[1UL << BT_MATCHFINDER_HASH4_ORDER];
96 
97 	/* The child node references for the binary trees.  The left and right
98 	 * children of the node for the sequence with position 'pos' are
99 	 * 'child_tab[pos * 2]' and 'child_tab[pos * 2 + 1]', respectively.  */
100 	mf_pos_t child_tab[2UL * MATCHFINDER_WINDOW_SIZE];
101 
102 }
103 #ifdef _aligned_attribute
104 _aligned_attribute(MATCHFINDER_ALIGNMENT)
105 #endif
106 ;
107 
108 /* Prepare the matchfinder for a new input buffer.  */
109 static forceinline void
bt_matchfinder_init(struct bt_matchfinder * mf)110 bt_matchfinder_init(struct bt_matchfinder *mf)
111 {
112 	matchfinder_init((mf_pos_t *)mf, BT_MATCHFINDER_TOTAL_HASH_LENGTH);
113 }
114 
115 static forceinline void
bt_matchfinder_slide_window(struct bt_matchfinder * mf)116 bt_matchfinder_slide_window(struct bt_matchfinder *mf)
117 {
118 	matchfinder_rebase((mf_pos_t *)mf,
119 			   sizeof(struct bt_matchfinder) / sizeof(mf_pos_t));
120 }
121 
122 static forceinline mf_pos_t *
bt_left_child(struct bt_matchfinder * mf,s32 node)123 bt_left_child(struct bt_matchfinder *mf, s32 node)
124 {
125 	return &mf->child_tab[2 * (node & (MATCHFINDER_WINDOW_SIZE - 1)) + 0];
126 }
127 
128 static forceinline mf_pos_t *
bt_right_child(struct bt_matchfinder * mf,s32 node)129 bt_right_child(struct bt_matchfinder *mf, s32 node)
130 {
131 	return &mf->child_tab[2 * (node & (MATCHFINDER_WINDOW_SIZE - 1)) + 1];
132 }
133 
134 /* The minimum permissible value of 'max_len' for bt_matchfinder_get_matches()
135  * and bt_matchfinder_skip_position().  There must be sufficiently many bytes
136  * remaining to load a 32-bit integer from the *next* position.  */
137 #define BT_MATCHFINDER_REQUIRED_NBYTES	5
138 
139 /* Advance the binary tree matchfinder by one byte, optionally recording
140  * matches.  @record_matches should be a compile-time constant.  */
141 static forceinline struct lz_match *
bt_matchfinder_advance_one_byte(struct bt_matchfinder * const restrict mf,const u8 * const restrict in_base,const ptrdiff_t cur_pos,const u32 max_len,const u32 nice_len,const u32 max_search_depth,u32 * const restrict next_hashes,u32 * const restrict best_len_ret,struct lz_match * restrict lz_matchptr,const bool record_matches)142 bt_matchfinder_advance_one_byte(struct bt_matchfinder * const restrict mf,
143 				const u8 * const restrict in_base,
144 				const ptrdiff_t cur_pos,
145 				const u32 max_len,
146 				const u32 nice_len,
147 				const u32 max_search_depth,
148 				u32 * const restrict next_hashes,
149 				u32 * const restrict best_len_ret,
150 				struct lz_match * restrict lz_matchptr,
151 				const bool record_matches)
152 {
153 	const u8 *in_next = in_base + cur_pos;
154 	u32 depth_remaining = max_search_depth;
155 	const s32 cutoff = cur_pos - MATCHFINDER_WINDOW_SIZE;
156 	u32 next_hashseq;
157 	u32 hash3;
158 	u32 hash4;
159 	s32 cur_node;
160 #if BT_MATCHFINDER_HASH3_WAYS >= 2
161 	s32 cur_node_2;
162 #endif
163 	const u8 *matchptr;
164 	mf_pos_t *pending_lt_ptr, *pending_gt_ptr;
165 	u32 best_lt_len, best_gt_len;
166 	u32 len;
167 	u32 best_len = 3;
168 
169 	STATIC_ASSERT(BT_MATCHFINDER_HASH3_WAYS >= 1 &&
170 		      BT_MATCHFINDER_HASH3_WAYS <= 2);
171 
172 	next_hashseq = get_unaligned_le32(in_next + 1);
173 
174 	hash3 = next_hashes[0];
175 	hash4 = next_hashes[1];
176 
177 	next_hashes[0] = lz_hash(next_hashseq & 0xFFFFFF, BT_MATCHFINDER_HASH3_ORDER);
178 	next_hashes[1] = lz_hash(next_hashseq, BT_MATCHFINDER_HASH4_ORDER);
179 	prefetchw(&mf->hash3_tab[next_hashes[0]]);
180 	prefetchw(&mf->hash4_tab[next_hashes[1]]);
181 
182 	cur_node = mf->hash3_tab[hash3][0];
183 	mf->hash3_tab[hash3][0] = cur_pos;
184 #if BT_MATCHFINDER_HASH3_WAYS >= 2
185 	cur_node_2 = mf->hash3_tab[hash3][1];
186 	mf->hash3_tab[hash3][1] = cur_node;
187 #endif
188 	if (record_matches && cur_node > cutoff) {
189 		u32 seq3 = load_u24_unaligned(in_next);
190 		if (seq3 == load_u24_unaligned(&in_base[cur_node])) {
191 			lz_matchptr->length = 3;
192 			lz_matchptr->offset = in_next - &in_base[cur_node];
193 			lz_matchptr++;
194 		}
195 	#if BT_MATCHFINDER_HASH3_WAYS >= 2
196 		else if (cur_node_2 > cutoff &&
197 			seq3 == load_u24_unaligned(&in_base[cur_node_2]))
198 		{
199 			lz_matchptr->length = 3;
200 			lz_matchptr->offset = in_next - &in_base[cur_node_2];
201 			lz_matchptr++;
202 		}
203 	#endif
204 	}
205 
206 	cur_node = mf->hash4_tab[hash4];
207 	mf->hash4_tab[hash4] = cur_pos;
208 
209 	pending_lt_ptr = bt_left_child(mf, cur_pos);
210 	pending_gt_ptr = bt_right_child(mf, cur_pos);
211 
212 	if (cur_node <= cutoff) {
213 		*pending_lt_ptr = MATCHFINDER_INITVAL;
214 		*pending_gt_ptr = MATCHFINDER_INITVAL;
215 		*best_len_ret = best_len;
216 		return lz_matchptr;
217 	}
218 
219 	best_lt_len = 0;
220 	best_gt_len = 0;
221 	len = 0;
222 
223 	for (;;) {
224 		matchptr = &in_base[cur_node];
225 
226 		if (matchptr[len] == in_next[len]) {
227 			len = lz_extend(in_next, matchptr, len + 1, max_len);
228 			if (!record_matches || len > best_len) {
229 				if (record_matches) {
230 					best_len = len;
231 					lz_matchptr->length = len;
232 					lz_matchptr->offset = in_next - matchptr;
233 					lz_matchptr++;
234 				}
235 				if (len >= nice_len) {
236 					*pending_lt_ptr = *bt_left_child(mf, cur_node);
237 					*pending_gt_ptr = *bt_right_child(mf, cur_node);
238 					*best_len_ret = best_len;
239 					return lz_matchptr;
240 				}
241 			}
242 		}
243 
244 		if (matchptr[len] < in_next[len]) {
245 			*pending_lt_ptr = cur_node;
246 			pending_lt_ptr = bt_right_child(mf, cur_node);
247 			cur_node = *pending_lt_ptr;
248 			best_lt_len = len;
249 			if (best_gt_len < len)
250 				len = best_gt_len;
251 		} else {
252 			*pending_gt_ptr = cur_node;
253 			pending_gt_ptr = bt_left_child(mf, cur_node);
254 			cur_node = *pending_gt_ptr;
255 			best_gt_len = len;
256 			if (best_lt_len < len)
257 				len = best_lt_len;
258 		}
259 
260 		if (cur_node <= cutoff || !--depth_remaining) {
261 			*pending_lt_ptr = MATCHFINDER_INITVAL;
262 			*pending_gt_ptr = MATCHFINDER_INITVAL;
263 			*best_len_ret = best_len;
264 			return lz_matchptr;
265 		}
266 	}
267 }
268 
269 /*
270  * Retrieve a list of matches with the current position.
271  *
272  * @mf
273  *	The matchfinder structure.
274  * @in_base
275  *	Pointer to the next byte in the input buffer to process _at the last
276  *	time bt_matchfinder_init() or bt_matchfinder_slide_window() was called_.
277  * @cur_pos
278  *	The current position in the input buffer relative to @in_base (the
279  *	position of the sequence being matched against).
280  * @max_len
281  *	The maximum permissible match length at this position.  Must be >=
282  *	BT_MATCHFINDER_REQUIRED_NBYTES.
283  * @nice_len
284  *	Stop searching if a match of at least this length is found.
285  *	Must be <= @max_len.
286  * @max_search_depth
287  *	Limit on the number of potential matches to consider.  Must be >= 1.
288  * @next_hashes
289  *	The precomputed hash codes for the sequence beginning at @in_next.
290  *	These will be used and then updated with the precomputed hashcodes for
291  *	the sequence beginning at @in_next + 1.
292  * @best_len_ret
293  *	If a match of length >= 4 was found, then the length of the longest such
294  *	match is written here; otherwise 3 is written here.  (Note: this is
295  *	redundant with the 'struct lz_match' array, but this is easier for the
296  *	compiler to optimize when inlined and the caller immediately does a
297  *	check against 'best_len'.)
298  * @lz_matchptr
299  *	An array in which this function will record the matches.  The recorded
300  *	matches will be sorted by strictly increasing length and (non-strictly)
301  *	increasing offset.  The maximum number of matches that may be found is
302  *	'nice_len - 2'.
303  *
304  * The return value is a pointer to the next available slot in the @lz_matchptr
305  * array.  (If no matches were found, this will be the same as @lz_matchptr.)
306  */
307 static forceinline struct lz_match *
bt_matchfinder_get_matches(struct bt_matchfinder * mf,const u8 * in_base,ptrdiff_t cur_pos,u32 max_len,u32 nice_len,u32 max_search_depth,u32 next_hashes[2],u32 * best_len_ret,struct lz_match * lz_matchptr)308 bt_matchfinder_get_matches(struct bt_matchfinder *mf,
309 			   const u8 *in_base,
310 			   ptrdiff_t cur_pos,
311 			   u32 max_len,
312 			   u32 nice_len,
313 			   u32 max_search_depth,
314 			   u32 next_hashes[2],
315 			   u32 *best_len_ret,
316 			   struct lz_match *lz_matchptr)
317 {
318 	return bt_matchfinder_advance_one_byte(mf,
319 					       in_base,
320 					       cur_pos,
321 					       max_len,
322 					       nice_len,
323 					       max_search_depth,
324 					       next_hashes,
325 					       best_len_ret,
326 					       lz_matchptr,
327 					       true);
328 }
329 
330 /*
331  * Advance the matchfinder, but don't record any matches.
332  *
333  * This is very similar to bt_matchfinder_get_matches() because both functions
334  * must do hashing and tree re-rooting.
335  */
336 static forceinline void
bt_matchfinder_skip_position(struct bt_matchfinder * mf,const u8 * in_base,ptrdiff_t cur_pos,u32 nice_len,u32 max_search_depth,u32 next_hashes[2])337 bt_matchfinder_skip_position(struct bt_matchfinder *mf,
338 			     const u8 *in_base,
339 			     ptrdiff_t cur_pos,
340 			     u32 nice_len,
341 			     u32 max_search_depth,
342 			     u32 next_hashes[2])
343 {
344 	u32 best_len;
345 	bt_matchfinder_advance_one_byte(mf,
346 					in_base,
347 					cur_pos,
348 					nice_len,
349 					nice_len,
350 					max_search_depth,
351 					next_hashes,
352 					&best_len,
353 					NULL,
354 					false);
355 }
356