1 /* The MIT License
2 
3    Copyright (c) 2008, 2010 by Attractive Chaos <attractor@live.co.uk>
4 
5    Permission is hereby granted, free of charge, to any person obtaining
6    a copy of this software and associated documentation files (the
7    "Software"), to deal in the Software without restriction, including
8    without limitation the rights to use, copy, modify, merge, publish,
9    distribute, sublicense, and/or sell copies of the Software, and to
10    permit persons to whom the Software is furnished to do so, subject to
11    the following conditions:
12 
13    The above copyright notice and this permission notice shall be
14    included in all copies or substantial portions of the Software.
15 
16    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
18    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
20    BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
21    ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22    CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23    SOFTWARE.
24 */
25 
26 /* Hooke-Jeeves algorithm for nonlinear minimization
27 
28    Based on the pseudocodes by Bell and Pike (CACM 9(9):684-685), and
29    the revision by Tomlin and Smith (CACM 12(11):637-638). Both of the
30    papers are comments on Kaupe's Algorithm 178 "Direct Search" (ACM
31    6(6):313-314). The original algorithm was designed by Hooke and
32    Jeeves (ACM 8:212-229). This program is further revised according to
33    Johnson's implementation at Netlib (opt/hooke.c).
34 
35    Hooke-Jeeves algorithm is very simple and it works quite well on a
36    few examples. However, it might fail to converge due to its heuristic
37    nature. A possible improvement, as is suggested by Johnson, may be to
38    choose a small r at the beginning to quickly approach to the minimum
39    and a large r at later step to hit the minimum.
40  */
41 
42 #include <stdlib.h>
43 #include <string.h>
44 #include <math.h>
45 #include "kmin.h"
46 
__kmin_hj_aux(kmin_f func,int n,double * x1,void * data,double fx1,double * dx,int * n_calls)47 static double __kmin_hj_aux(kmin_f func, int n, double *x1, void *data, double fx1, double *dx, int *n_calls)
48 {
49 	int k, j = *n_calls;
50 	double ftmp;
51 	for (k = 0; k != n; ++k) {
52 		x1[k] += dx[k];
53 		ftmp = func(n, x1, data); ++j;
54 		if (ftmp < fx1) fx1 = ftmp;
55 		else { /* search the opposite direction */
56 			dx[k] = 0.0 - dx[k];
57 			x1[k] += dx[k] + dx[k];
58 			ftmp = func(n, x1, data); ++j;
59 			if (ftmp < fx1) fx1 = ftmp;
60 			else x1[k] -= dx[k]; /* back to the original x[k] */
61 		}
62 	}
63 	*n_calls = j;
64 	return fx1; /* here: fx1=f(n,x1) */
65 }
66 
kmin_hj(kmin_f func,int n,double * x,void * data,double r,double eps,int max_calls)67 double kmin_hj(kmin_f func, int n, double *x, void *data, double r, double eps, int max_calls)
68 {
69 	double fx, fx1, *x1, *dx, radius;
70 	int k, n_calls = 0;
71 	x1 = (double*)calloc(n, sizeof(double));
72 	dx = (double*)calloc(n, sizeof(double));
73 	for (k = 0; k != n; ++k) { /* initial directions, based on MGJ */
74 		dx[k] = fabs(x[k]) * r;
75 		if (dx[k] == 0) dx[k] = r;
76 	}
77 	radius = r;
78 	fx1 = fx = func(n, x, data); ++n_calls;
79 	for (;;) {
80 		memcpy(x1, x, n * sizeof(double)); /* x1 = x */
81 		fx1 = __kmin_hj_aux(func, n, x1, data, fx, dx, &n_calls);
82 		while (fx1 < fx) {
83 			for (k = 0; k != n; ++k) {
84 				double t = x[k];
85 				dx[k] = x1[k] > x[k]? fabs(dx[k]) : 0.0 - fabs(dx[k]);
86 				x[k] = x1[k];
87 				x1[k] = x1[k] + x1[k] - t;
88 			}
89 			fx = fx1;
90 			if (n_calls >= max_calls) break;
91 			fx1 = func(n, x1, data); ++n_calls;
92 			fx1 = __kmin_hj_aux(func, n, x1, data, fx1, dx, &n_calls);
93 			if (fx1 >= fx) break;
94 			for (k = 0; k != n; ++k)
95 				if (fabs(x1[k] - x[k]) > .5 * fabs(dx[k])) break;
96 			if (k == n) break;
97 		}
98 		if (radius >= eps) {
99 			if (n_calls >= max_calls) break;
100 			radius *= r;
101 			for (k = 0; k != n; ++k) dx[k] *= r;
102 		} else break; /* converge */
103 	}
104 	free(x1); free(dx);
105 	return fx1;
106 }
107 
108 // I copied this function somewhere several years ago with some of my modifications, but I forgot the source.
kmin_brent(kmin1_f func,double a,double b,void * data,double tol,double * xmin)109 double kmin_brent(kmin1_f func, double a, double b, void *data, double tol, double *xmin)
110 {
111 	double bound, u, r, q, fu, tmp, fa, fb, fc, c;
112 	const double gold1 = 1.6180339887;
113 	const double gold2 = 0.3819660113;
114 	const double tiny = 1e-20;
115 	const int max_iter = 100;
116 
117 	double e, d, w, v, mid, tol1, tol2, p, eold, fv, fw;
118 	int iter;
119 
120 	fa = func(a, data); fb = func(b, data);
121 	if (fb > fa) { // swap, such that f(a) > f(b)
122 		tmp = a; a = b; b = tmp;
123 		tmp = fa; fa = fb; fb = tmp;
124 	}
125 	c = b + gold1 * (b - a), fc = func(c, data); // golden section extrapolation
126 	while (fb > fc) {
127 		bound = b + 100.0 * (c - b); // the farthest point where we want to go
128 		r = (b - a) * (fb - fc);
129 		q = (b - c) * (fb - fa);
130 		if (fabs(q - r) < tiny) { // avoid 0 denominator
131 			tmp = q > r? tiny : 0.0 - tiny;
132 		} else tmp = q - r;
133 		u = b - ((b - c) * q - (b - a) * r) / (2.0 * tmp); // u is the parabolic extrapolation point
134 		if ((b > u && u > c) || (b < u && u < c)) { // u lies between b and c
135 			fu = func(u, data);
136 			if (fu < fc) { // (b,u,c) bracket the minimum
137 				a = b; b = u; fa = fb; fb = fu;
138 				break;
139 			} else if (fu > fb) { // (a,b,u) bracket the minimum
140 				c = u; fc = fu;
141 				break;
142 			}
143 			u = c + gold1 * (c - b); fu = func(u, data); // golden section extrapolation
144 		} else if ((c > u && u > bound) || (c < u && u < bound)) { // u lies between c and bound
145 			fu = func(u, data);
146 			if (fu < fc) { // fb > fc > fu
147 				b = c; c = u; u = c + gold1 * (c - b);
148 				fb = fc; fc = fu; fu = func(u, data);
149 			} else { // (b,c,u) bracket the minimum
150 				a = b; b = c; c = u;
151 				fa = fb; fb = fc; fc = fu;
152 				break;
153 			}
154 		} else if ((u > bound && bound > c) || (u < bound && bound < c)) { // u goes beyond the bound
155 			u = bound; fu = func(u, data);
156 		} else { // u goes the other way around, use golden section extrapolation
157 			u = c + gold1 * (c - b); fu = func(u, data);
158 		}
159 		a = b; b = c; c = u;
160 		fa = fb; fb = fc; fc = fu;
161 	}
162 	if (a > c) u = a, a = c, c = u; // swap
163 
164 	// now, a<b<c, fa>fb and fb<fc, move on to Brent's algorithm
165 	e = d = 0.0;
166 	w = v = b; fv = fw = fb;
167 	for (iter = 0; iter != max_iter; ++iter) {
168 		mid = 0.5 * (a + c);
169 		tol2 = 2.0 * (tol1 = tol * fabs(b) + tiny);
170 		if (fabs(b - mid) <= (tol2 - 0.5 * (c - a))) {
171 			*xmin = b; return fb; // found
172 		}
173 		if (fabs(e) > tol1) {
174 			// related to parabolic interpolation
175 			r = (b - w) * (fb - fv);
176 			q = (b - v) * (fb - fw);
177 			p = (b - v) * q - (b - w) * r;
178 			q = 2.0 * (q - r);
179 			if (q > 0.0) p = 0.0 - p;
180 			else q = 0.0 - q;
181 			eold = e; e = d;
182 			if (fabs(p) >= fabs(0.5 * q * eold) || p <= q * (a - b) || p >= q * (c - b)) {
183 				d = gold2 * (e = (b >= mid ? a - b : c - b));
184 			} else {
185 				d = p / q; u = b + d; // actual parabolic interpolation happens here
186 				if (u - a < tol2 || c - u < tol2)
187 					d = (mid > b)? tol1 : 0.0 - tol1;
188 			}
189 		} else d = gold2 * (e = (b >= mid ? a - b : c - b)); // golden section interpolation
190 		u = fabs(d) >= tol1 ? b + d : b + (d > 0.0? tol1 : -tol1);
191 		fu = func(u, data);
192 		if (fu <= fb) { // u is the minimum point so far
193 			if (u >= b) a = b;
194 			else c = b;
195 			v = w; w = b; b = u; fv = fw; fw = fb; fb = fu;
196 		} else { // adjust (a,c) and (u,v,w)
197 			if (u < b) a = u;
198 			else c = u;
199 			if (fu <= fw || w == b) {
200 				v = w; w = u;
201 				fv = fw; fw = fu;
202 			} else if (fu <= fv || v == b || v == w) {
203 				v = u; fv = fu;
204 			}
205 		}
206 	}
207 	*xmin = b;
208 	return fb;
209 }
210