1 // Optimize the extrusion simulator to the bones.
2 //#pragma GCC optimize ("O3")
3 //#undef SLIC3R_DEBUG
4 //#define NDEBUG
5 
6 #include <cmath>
7 #include <cassert>
8 
9 #include <boost/geometry.hpp>
10 #include <boost/geometry/geometries/box.hpp>
11 #include <boost/geometry/geometries/point.hpp>
12 #include <boost/geometry/geometries/point_xy.hpp>
13 
14 #include <boost/multi_array.hpp>
15 
16 #include "libslic3r.h"
17 #include "ExtrusionSimulator.hpp"
18 
19 #ifndef M_PI
20 #define M_PI 3.1415926535897932384626433832795
21 #endif
22 
23 namespace Slic3r {
24 
25 // Replacement for a template alias.
26 // Shorthand for the point_xy.
27 template<typename T>
28 struct V2
29 {
30 	typedef boost::geometry::model::d2::point_xy<T> Type;
31 };
32 
33 // Replacement for a template alias.
34 // Shorthand for the point with a cartesian coordinate system.
35 template<typename T>
36 struct V3
37 {
38 	typedef boost::geometry::model::point<T, 3, boost::geometry::cs::cartesian> Type;
39 };
40 
41 // Replacement for a template alias.
42 // Shorthand for the point with a cartesian coordinate system.
43 template<typename T>
44 struct V4
45 {
46 	typedef boost::geometry::model::point<T, 4, boost::geometry::cs::cartesian> Type;
47 };
48 
49 typedef V2<int   >::Type V2i;
50 typedef V2<float >::Type V2f;
51 typedef V2<double>::Type V2d;
52 
53 // Used for an RGB color.
54 typedef V3<unsigned char>::Type V3uc;
55 // Used for an RGBA color.
56 typedef V4<unsigned char>::Type V4uc;
57 
58 typedef boost::geometry::model::box<V2i> B2i;
59 typedef boost::geometry::model::box<V2f> B2f;
60 typedef boost::geometry::model::box<V2d> B2d;
61 
62 typedef boost::multi_array<unsigned char, 2> 	 A2uc;
63 typedef boost::multi_array<int   		, 2> 	 A2i;
64 typedef boost::multi_array<float 		, 2> 	 A2f;
65 typedef boost::multi_array<double		, 2> 	 A2d;
66 
67 template<typename T>
operator +=(boost::geometry::model::d2::point_xy<T> & v1,const boost::geometry::model::d2::point_xy<T> & v2)68 inline void operator+=(
69 	      boost::geometry::model::d2::point_xy<T> &v1,
70 	const boost::geometry::model::d2::point_xy<T> &v2)
71 {
72 	boost::geometry::add_point(v1, v2);
73 }
74 
75 template<typename T>
operator -=(boost::geometry::model::d2::point_xy<T> & v1,const boost::geometry::model::d2::point_xy<T> & v2)76 inline void operator-=(
77 	      boost::geometry::model::d2::point_xy<T> &v1,
78 	const boost::geometry::model::d2::point_xy<T> &v2)
79 {
80 	boost::geometry::subtract_point(v1, v2);
81 }
82 
83 template<typename T>
operator *=(boost::geometry::model::d2::point_xy<T> & v,const T c)84 inline void operator*=(boost::geometry::model::d2::point_xy<T> &v, const T c)
85 {
86 	boost::geometry::multiply_value(v, c);
87 }
88 
89 template<typename T>
operator /=(boost::geometry::model::d2::point_xy<T> & v,const T c)90 inline void operator/=(boost::geometry::model::d2::point_xy<T> &v, const T c)
91 {
92 	boost::geometry::divide_value(v, c);
93 }
94 
95 template<typename T>
operator +(const boost::geometry::model::d2::point_xy<T> & v1,const boost::geometry::model::d2::point_xy<T> & v2)96 inline typename boost::geometry::model::d2::point_xy<T> operator+(
97 	const boost::geometry::model::d2::point_xy<T> &v1,
98 	const boost::geometry::model::d2::point_xy<T> &v2)
99 {
100 	boost::geometry::model::d2::point_xy<T> out(v1);
101 	out += v2;
102 	return out;
103 }
104 
105 template<typename T>
operator -(const boost::geometry::model::d2::point_xy<T> & v1,const boost::geometry::model::d2::point_xy<T> & v2)106 inline boost::geometry::model::d2::point_xy<T> operator-(
107 	const boost::geometry::model::d2::point_xy<T> &v1,
108 	const boost::geometry::model::d2::point_xy<T> &v2)
109 {
110 	boost::geometry::model::d2::point_xy<T> out(v1);
111 	out -= v2;
112 	return out;
113 }
114 
115 template<typename T>
operator *(const boost::geometry::model::d2::point_xy<T> & v,const T c)116 inline boost::geometry::model::d2::point_xy<T> operator*(
117 	const boost::geometry::model::d2::point_xy<T> &v, const T c)
118 {
119 	boost::geometry::model::d2::point_xy<T> out(v);
120 	out *= c;
121 	return out;
122 }
123 
124 template<typename T>
operator *(const T c,const boost::geometry::model::d2::point_xy<T> & v)125 inline typename boost::geometry::model::d2::point_xy<T> operator*(
126 	const T c, const boost::geometry::model::d2::point_xy<T> &v)
127 {
128 	boost::geometry::model::d2::point_xy<T> out(v);
129 	out *= c;
130 	return out;
131 }
132 
133 template<typename T>
operator /(const boost::geometry::model::d2::point_xy<T> & v,const T c)134 inline typename boost::geometry::model::d2::point_xy<T> operator/(
135 	const boost::geometry::model::d2::point_xy<T> &v, const T c)
136 {
137 	boost::geometry::model::d2::point_xy<T> out(v);
138 	out /= c;
139 	return out;
140 }
141 
142 template<typename T>
dot(const boost::geometry::model::d2::point_xy<T> & v1,const boost::geometry::model::d2::point_xy<T> & v2)143 inline T dot(
144 	const boost::geometry::model::d2::point_xy<T> &v1,
145 	const boost::geometry::model::d2::point_xy<T> &v2)
146 {
147 	return boost::geometry::dot_product(v1, v2);
148 }
149 
150 template<typename T>
dot(const boost::geometry::model::d2::point_xy<T> & v)151 inline T dot(const boost::geometry::model::d2::point_xy<T> &v)
152 {
153 	return boost::geometry::dot_product(v, v);
154 }
155 
156 template <typename T>
cross(const boost::geometry::model::d2::point_xy<T> & v1,const boost::geometry::model::d2::point_xy<T> & v2)157 inline T cross(
158 	const boost::geometry::model::d2::point_xy<T> &v1,
159 	const boost::geometry::model::d2::point_xy<T> &v2)
160 {
161 	return v1.x() * v2.y() - v2.x() * v1.y();
162 }
163 
164 // Euclidian measure
165 template<typename T>
l2(const boost::geometry::model::d2::point_xy<T> & v)166 inline T l2(const boost::geometry::model::d2::point_xy<T> &v)
167 {
168 	return std::sqrt(dot(v));
169 }
170 
171 // Euclidian measure
172 template<typename T>
mag(const boost::geometry::model::d2::point_xy<T> & v)173 inline T mag(const boost::geometry::model::d2::point_xy<T> &v)
174 {
175 	return l2(v);
176 }
177 
178 template<typename T>
dist2_to_line(const boost::geometry::model::d2::point_xy<T> & p0,const boost::geometry::model::d2::point_xy<T> & p1,const boost::geometry::model::d2::point_xy<T> & px)179 inline T dist2_to_line(
180 	const boost::geometry::model::d2::point_xy<T> &p0,
181 	const boost::geometry::model::d2::point_xy<T> &p1,
182 	const boost::geometry::model::d2::point_xy<T> &px)
183 {
184 	boost::geometry::model::d2::point_xy<T> v  = p1 - p0;
185 	boost::geometry::model::d2::point_xy<T> vx = px - p0;
186 	T 									    l  = dot(v);
187 	T 									    t  = dot(v, vx);
188 	if (l != T(0) && t > T(0.)) {
189 		t /= l;
190 		vx = px - ((t > T(1.)) ? p1 : (p0 + t * v));
191 	}
192 	return dot(vx);
193 }
194 
195 // Intersect a circle with a line segment.
196 // Returns number of intersection points.
197 template<typename T>
line_circle_intersection(const boost::geometry::model::d2::point_xy<T> & p0,const boost::geometry::model::d2::point_xy<T> & p1,const boost::geometry::model::d2::point_xy<T> & center,const T radius,boost::geometry::model::d2::point_xy<T> intersection[2])198 int line_circle_intersection(
199 	const boost::geometry::model::d2::point_xy<T>	&p0,
200 	const boost::geometry::model::d2::point_xy<T>	&p1,
201 	const boost::geometry::model::d2::point_xy<T>	&center,
202 	const T 										 radius,
203 	boost::geometry::model::d2::point_xy<T>			 intersection[2])
204 {
205 	typedef typename V2<T>::Type V2T;
206 	V2T v  = p1 - p0;
207 	V2T vc = p0 - center;
208 	T   a = dot(v);
209 	T   b = T(2.) * dot(vc, v);
210 	T   c = dot(vc) - radius * radius;
211 	T   d = b * b - T(4.) * a * c;
212 
213 	if (d < T(0))
214 		// The circle misses the ray.
215 		return 0;
216 
217 	int n = 0;
218 	if (d == T(0)) {
219 		// The circle touches the ray at a single tangent point.
220 		T t = - b / (T(2.) * a);
221 		if (t >= T(0.) && t <= T(1.))
222 			intersection[n ++] = p0 + t * v;
223 	} else {
224 		// The circle intersects the ray in two points.
225 		d = sqrt(d);
226 		T t = (- b - d) / (T(2.) * a);
227 		if (t >= T(0.) && t <= T(1.))
228 			intersection[n ++] = p0 + t * v;
229 		t = (- b + d) / (T(2.) * a);
230 		if (t >= T(0.) && t <= T(1.))
231 			intersection[n ++] = p0 + t * v;
232 	}
233 	return n;
234 }
235 
236 // Sutherland–Hodgman clipping of a rectangle against an AABB.
237 // Expects the first 4 points of rect to be filled at the beginning.
238 // The clipping may produce up to 8 points.
239 // Returns the number of resulting points.
240 template<typename T>
clip_rect_by_AABB(boost::geometry::model::d2::point_xy<T> rect[8],const boost::geometry::model::box<boost::geometry::model::d2::point_xy<T>> & aabb)241 int clip_rect_by_AABB(
242 	boost::geometry::model::d2::point_xy<T>			   					         rect[8],
243 	const boost::geometry::model::box<boost::geometry::model::d2::point_xy<T> > &aabb)
244 {
245 	typedef typename V2<T>::Type V2T;
246 	V2T  result[8];
247 	int  nin  = 4;
248 	int  nout = 0;
249 	V2T *in   = rect;
250 	V2T *out  = result;
251 	// Clip left
252 	{
253 		const V2T *S    = in + nin - 1;
254 		T          left = aabb.min_corner().x();
255 		for (int i = 0; i < nin; ++i) {
256 			const V2T &E = in[i];
257 			if (E.x() == left) {
258 				out[nout++] = E;
259 			}
260 			else if (E.x() > left) {
261 				// E is inside the AABB.
262 				if (S->x() < left) {
263 					// S is outside the AABB. Calculate an intersection point.
264 					T t = (left - S->x()) / (E.x() - S->x());
265 					out[nout++] = V2T(left, S->y() + t * (E.y() - S->y()));
266 				}
267 				out[nout++] = E;
268 			}
269 			else if (S->x() > left) {
270 				// S is inside the AABB, E is outside the AABB.
271 				T t = (left - S->x()) / (E.x() - S->x());
272 				out[nout++] = V2T(left, S->y() + t * (E.y() - S->y()));
273 			}
274 			S = &E;
275 		}
276 		assert(nout <= 8);
277 	}
278 	// Clip bottom
279 	{
280 		std::swap(in, out);
281 		nin = nout;
282 		nout = 0;
283 		const V2T *S      = in + nin - 1;
284 		T          bottom = aabb.min_corner().y();
285 		for (int i = 0; i < nin; ++i) {
286 			const V2T &E = in[i];
287 			if (E.y() == bottom) {
288 				out[nout++] = E;
289 			}
290 			else if (E.y() > bottom) {
291 				// E is inside the AABB.
292 				if (S->y() < bottom) {
293 					// S is outside the AABB. Calculate an intersection point.
294 					T t = (bottom - S->y()) / (E.y() - S->y());
295 					out[nout++] = V2T(S->x() + t * (E.x() - S->x()), bottom);
296 				}
297 				out[nout++] = E;
298 			}
299 			else if (S->y() > bottom) {
300 				// S is inside the AABB, E is outside the AABB.
301 				T t = (bottom - S->y()) / (E.y() - S->y());
302 				out[nout++] = V2T(S->x() + t * (E.x() - S->x()), bottom);
303 			}
304 			S = &E;
305 		}
306 		assert(nout <= 8);
307 	}
308 	// Clip right
309 	{
310 		std::swap(in, out);
311 		nin = nout;
312 		nout = 0;
313 		const V2T *S = in + nin - 1;
314 		T right = aabb.max_corner().x();
315 		for (int i = 0; i < nin; ++i) {
316 			const V2T &E = in[i];
317 			if (E.x() == right) {
318 				out[nout++] = E;
319 			}
320 			else if (E.x() < right) {
321 				// E is inside the AABB.
322 				if (S->x() > right) {
323 					// S is outside the AABB. Calculate an intersection point.
324 					T t = (right - S->x()) / (E.x() - S->x());
325 					out[nout++] = V2T(right, S->y() + t * (E.y() - S->y()));
326 				}
327 				out[nout++] = E;
328 			}
329 			else if (S->x() < right) {
330 				// S is inside the AABB, E is outside the AABB.
331 				T t = (right - S->x()) / (E.x() - S->x());
332 				out[nout++] = V2T(right, S->y() + t * (E.y() - S->y()));
333 			}
334 			S = &E;
335 		}
336 		assert(nout <= 8);
337 	}
338 	// Clip top
339 	{
340 		std::swap(in, out);
341 		nin = nout;
342 		nout = 0;
343 		const V2T *S = in + nin - 1;
344 		T top = aabb.max_corner().y();
345 		for (int i = 0; i < nin; ++i) {
346 			const V2T &E = in[i];
347 			if (E.y() == top) {
348 				out[nout++] = E;
349 			}
350 			else if (E.y() < top) {
351 				// E is inside the AABB.
352 				if (S->y() > top) {
353 					// S is outside the AABB. Calculate an intersection point.
354 					T t = (top - S->y()) / (E.y() - S->y());
355 					out[nout++] = V2T(S->x() + t * (E.x() - S->x()), top);
356 				}
357 				out[nout++] = E;
358 			}
359 			else if (S->y() < top) {
360 				// S is inside the AABB, E is outside the AABB.
361 				T t = (top - S->y()) / (E.y() - S->y());
362 				out[nout++] = V2T(S->x() + t * (E.x() - S->x()), top);
363 			}
364 			S = &E;
365 		}
366 		assert(nout <= 8);
367 	}
368 
369 	assert(nout <= 8);
370 	return nout;
371 }
372 
373 // Calculate area of the circle x AABB intersection.
374 // The calculation is approximate in a way, that the circular segment
375 // intersecting the cell is approximated by its chord (a linear segment).
376 template<typename T>
clip_circle_by_AABB(const boost::geometry::model::d2::point_xy<T> & center,const T radius,const boost::geometry::model::box<boost::geometry::model::d2::point_xy<T>> & aabb,boost::geometry::model::d2::point_xy<T> result[8],bool result_arc[8])377 int clip_circle_by_AABB(
378 	const boost::geometry::model::d2::point_xy<T>							    &center,
379 	const T 																	 radius,
380 	const boost::geometry::model::box<boost::geometry::model::d2::point_xy<T> > &aabb,
381 	boost::geometry::model::d2::point_xy<T>			   					         result[8],
382 	bool											   					         result_arc[8])
383 {
384 	typedef typename V2<T>::Type V2T;
385 
386 	V2T rect[4] = {
387 		aabb.min_corner(),
388 		V2T(aabb.max_corner().x(), aabb.min_corner().y()),
389 		aabb.max_corner(),
390 		V2T(aabb.min_corner().x(), aabb.max_corner().y())
391 	};
392 
393 	int  bits_corners = 0;
394 	T    r2 = sqr(radius);
395 	for (int i = 0; i < 4; ++ i, bits_corners <<= 1)
396 		bits_corners |= dot(rect[i] - center) >= r2;
397 	bits_corners >>= 1;
398 
399 	if (bits_corners == 0) {
400 		// all inside
401 		memcpy(result, rect, sizeof(rect));
402 		memset(result_arc, true, 4);
403 		return 4;
404 	}
405 
406 	if (bits_corners == 0x0f)
407 		// all outside
408 		return 0;
409 
410 	// Some corners are outside, some are inside. Trim the rectangle.
411 	int n = 0;
412 	for (int i = 0; i < 4; ++ i) {
413 		bool inside = (bits_corners & 0x08) == 0;
414 		bits_corners <<= 1;
415 		V2T chordal_points[2];
416 		int n_chordal_points = line_circle_intersection(rect[i], rect[(i + 1)%4], center, radius, chordal_points);
417 		if (n_chordal_points == 2) {
418 			result_arc[n] = true;
419 			result[n ++] = chordal_points[0];
420 			result_arc[n] = true;
421 			result[n ++] = chordal_points[1];
422 		} else {
423 			if (inside) {
424 				result_arc[n] = false;
425 				result[n ++] = rect[i];
426 			}
427 			if (n_chordal_points == 1) {
428 				result_arc[n] = false;
429 				result[n ++] = chordal_points[0];
430 			}
431 		}
432 	}
433 	return n;
434 }
435 /*
436 // Calculate area of the circle x AABB intersection.
437 // The calculation is approximate in a way, that the circular segment
438 // intersecting the cell is approximated by its chord (a linear segment).
439 template<typename T>
440 T circle_AABB_intersection_area(
441 	const boost::geometry::model::d2::point_xy<T>							    &center,
442 	const T 																	 radius,
443 	const boost::geometry::model::box<boost::geometry::model::d2::point_xy<T> > &aabb)
444 {
445 	typedef typename V2<T>::Type V2T;
446 	typedef typename boost::geometry::model::box<V2T> B2T;
447 	T radius2 = radius * radius;
448 
449 	bool intersectionLeft   = sqr(aabb.min_corner().x() - center.x()) < radius2;
450 	bool intersectionRight  = sqr(aabb.max_corner().x() - center.x()) < radius2;
451 	bool intersectionBottom = sqr(aabb.min_corner().y() - center.y()) < radius2;
452 	bool intersectionTop    = sqr(aabb.max_corner().y() - center.y()) < radius2;
453 
454 	if (! (intersectionLeft || intersectionRight || intersectionTop || intersectionBottom))
455 		// No intersection between the aabb and the center.
456 		return boost::geometry::point_in_box<V2T, B2T>()::apply(center, aabb) ? 1.f : 0.f;
457 
458 
459 
460 	V2T rect[4] = {
461 		aabb.min_corner(),
462 		V2T(aabb.max_corner().x(), aabb.min_corner().y()),
463 		aabb.max_corner(),
464 		V2T(aabb.min_corner().x(), aabb.max_corner().y())
465 	};
466 
467 	int  bits_corners = 0;
468 	T    r2 = sqr(radius);
469 	for (int i = 0; i < 4; ++ i, bits_corners <<= 1)
470 		bits_corners |= dot(rect[i] - center) >= r2;
471 	bits_corners >>= 1;
472 
473 	if (bits_corners == 0) {
474 		// all inside
475 		memcpy(result, rect, sizeof(rect));
476 		memset(result_arc, true, 4);
477 		return 4;
478 	}
479 
480 	if (bits_corners == 0x0f)
481 		// all outside
482 		return 0;
483 
484 	// Some corners are outside, some are inside. Trim the rectangle.
485 	int n = 0;
486 	for (int i = 0; i < 4; ++ i) {
487 		bool inside = (bits_corners & 0x08) == 0;
488 		bits_corners <<= 1;
489 		V2T chordal_points[2];
490 		int n_chordal_points = line_circle_intersection(rect[i], rect[(i + 1)%4], center, radius, chordal_points);
491 		if (n_chordal_points == 2) {
492 			result_arc[n] = true;
493 			result[n ++] = chordal_points[0];
494 			result_arc[n] = true;
495 			result[n ++] = chordal_points[1];
496 		} else {
497 			if (inside) {
498 				result_arc[n] = false;
499 				result[n ++] = rect[i];
500 			}
501 			if (n_chordal_points == 1) {
502 				result_arc[n] = false;
503 				result[n ++] = chordal_points[0];
504 			}
505 		}
506 	}
507 	return n;
508 }
509 */
510 
511 template<typename T>
polyArea(const boost::geometry::model::d2::point_xy<T> * poly,int n)512 inline T polyArea(const boost::geometry::model::d2::point_xy<T> *poly, int n)
513 {
514 	T area = T(0);
515 	for (int i = 1; i + 1 < n; ++i)
516 		area += cross(poly[i] - poly[0], poly[i + 1] - poly[0]);
517 	return T(0.5) * area;
518 }
519 
520 template<typename T>
polyCentroid(const boost::geometry::model::d2::point_xy<T> * poly,int n)521 boost::geometry::model::d2::point_xy<T> polyCentroid(const boost::geometry::model::d2::point_xy<T> *poly, int n)
522 {
523 	boost::geometry::model::d2::point_xy<T> centroid(T(0), T(0));
524 	for (int i = 0; i < n; ++i)
525 		centroid += poly[i];
526 	return (n == 0) ? centroid : (centroid / float(n));
527 }
528 
gcode_paint_layer(const std::vector<V2f> & polyline,float width,float thickness,A2f & acc)529 void gcode_paint_layer(
530 	const std::vector<V2f> 	&polyline,
531 	float					 width,
532 	float					 thickness,
533 	A2f 					&acc)
534 {
535 	int nc = acc.shape()[1];
536 	int nr = acc.shape()[0];
537 //	printf("gcode_paint_layer %d,%d\n", nc, nr);
538 	for (size_t iLine = 1; iLine != polyline.size(); ++iLine) {
539 		const V2f &p1 = polyline[iLine - 1];
540 		const V2f &p2 = polyline[iLine];
541 		// printf("p1, p2:  %f,%f %f,%f\n", p1.x(), p1.y(), p2.x(), p2.y());
542 		const V2f  dir = p2 - p1;
543 		V2f vperp(- dir.y(), dir.x());
544 		vperp = vperp * 0.5f * width / l2(vperp);
545 		// Rectangle of the extrusion.
546 		V2f rect[4] = { p1 + vperp, p1 - vperp, p2 - vperp, p2 + vperp };
547 		// Bounding box of the extrusion.
548 		B2f bboxLine(rect[0], rect[0]);
549 		boost::geometry::expand(bboxLine, rect[1]);
550 		boost::geometry::expand(bboxLine, rect[2]);
551 		boost::geometry::expand(bboxLine, rect[3]);
552 		B2i bboxLinei(
553 			V2i(clamp(0, nc-1, int(floor(bboxLine.min_corner().x()))),
554 				clamp(0, nr-1, int(floor(bboxLine.min_corner().y())))),
555 			V2i(clamp(0, nc-1, int(ceil (bboxLine.max_corner().x()))),
556 				clamp(0, nr-1, int(ceil (bboxLine.max_corner().y())))));
557 		// printf("bboxLinei %d,%d %d,%d\n", bboxLinei.min_corner().x(), bboxLinei.min_corner().y(), bboxLinei.max_corner().x(), bboxLinei.max_corner().y());
558 #ifdef _DEBUG
559 		float area = polyArea(rect, 4);
560 		assert(area > 0.f);
561 #endif /* _DEBUG */
562 		for (int j = bboxLinei.min_corner().y(); j + 1 < bboxLinei.max_corner().y(); ++ j) {
563 			for (int i = bboxLinei.min_corner().x(); i + 1 < bboxLinei.max_corner().x(); ++i) {
564 				V2f rect2[8];
565 				memcpy(rect2, rect, sizeof(rect));
566 				int n = clip_rect_by_AABB(rect2, B2f(V2f(float(i), float(j)), V2f(float(i + 1), float(j + 1))));
567 				float area = polyArea(rect2, n);
568 				assert(area >= 0.f && area <= 1.000001f);
569 				acc[j][i] += area * thickness;
570 			}
571 		}
572 	}
573 }
574 
gcode_paint_bitmap(const std::vector<V2f> & polyline,float width,A2uc & bitmap,float scale)575 void gcode_paint_bitmap(
576 	const std::vector<V2f> 	&polyline,
577 	float					 width,
578 	A2uc 					&bitmap,
579 	float					 scale)
580 {
581 	int nc = bitmap.shape()[1];
582 	int nr = bitmap.shape()[0];
583 	float r2 = width * width * 0.25f;
584 //	printf("gcode_paint_layer %d,%d\n", nc, nr);
585 	for (size_t iLine = 1; iLine != polyline.size(); ++iLine) {
586 		const V2f &p1 = polyline[iLine - 1];
587 		const V2f &p2 = polyline[iLine];
588 		// printf("p1, p2:  %f,%f %f,%f\n", p1.x(), p1.y(), p2.x(), p2.y());
589 		V2f dir = p2 - p1;
590 		dir = dir * 0.5f * width / l2(dir);
591 		V2f vperp(- dir.y(), dir.x());
592 		// Rectangle of the extrusion.
593 		V2f rect[4] = { (p1 + vperp - dir) * scale, (p1 - vperp - dir) * scale, (p2 - vperp + dir) * scale, (p2 + vperp + dir) * scale };
594 		// Bounding box of the extrusion.
595 		B2f bboxLine(rect[0], rect[0]);
596 		boost::geometry::expand(bboxLine, rect[1]);
597 		boost::geometry::expand(bboxLine, rect[2]);
598 		boost::geometry::expand(bboxLine, rect[3]);
599 		B2i bboxLinei(
600 			V2i(clamp(0, nc-1, int(floor(bboxLine.min_corner().x()))),
601 				clamp(0, nr-1, int(floor(bboxLine.min_corner().y())))),
602 			V2i(clamp(0, nc-1, int(ceil (bboxLine.max_corner().x()))),
603 				clamp(0, nr-1, int(ceil (bboxLine.max_corner().y())))));
604 		// printf("bboxLinei %d,%d %d,%d\n", bboxLinei.min_corner().x(), bboxLinei.min_corner().y(), bboxLinei.max_corner().x(), bboxLinei.max_corner().y());
605 		for (int j = bboxLinei.min_corner().y(); j + 1 < bboxLinei.max_corner().y(); ++ j) {
606 			for (int i = bboxLinei.min_corner().x(); i + 1 < bboxLinei.max_corner().x(); ++i) {
607 				float d2 = dist2_to_line(p1, p2, V2f(float(i) + 0.5f, float(j) + 0.5f) / scale);
608 				if (d2 < r2)
609 					bitmap[j][i] = 1;
610 			}
611 		}
612 	}
613 }
614 
615 struct Cell
616 {
617 	// Cell index in the grid.
618 	V2i   idx;
619 	// Total volume of the material stored in this cell.
620 	float volume;
621 	// Area covered inside this cell, <0,1>.
622 	float area;
623 	// Fraction of the area covered by the print head. <0,1>
624 	float fraction_covered;
625 	// Height of the covered part in excess to the expected layer height.
626 	float excess_height;
627 
operator <Slic3r::Cell628 	bool operator<(const Cell &c2) const {
629 		return this->excess_height < c2.excess_height;
630 	}
631 };
632 
633 struct ExtrusionPoint {
634 	V2f   center;
635 	float radius;
636 	float height;
637 };
638 
639 typedef std::vector<ExtrusionPoint> ExtrusionPoints;
640 
gcode_spread_points(A2f & acc,const A2f & mask,const ExtrusionPoints & points,ExtrusionSimulationType simulationType)641 void gcode_spread_points(
642 	A2f 					&acc,
643 	const A2f				&mask,
644 	const ExtrusionPoints   &points,
645 	ExtrusionSimulationType simulationType)
646 {
647 	int nc = acc.shape()[1];
648 	int nr = acc.shape()[0];
649 
650 	// Maximum radius of the spreading points, to allocate a large enough cell array.
651 	float rmax = 0.f;
652 	for (ExtrusionPoints::const_iterator it = points.begin(); it != points.end(); ++ it)
653 		rmax = std::max(rmax, it->radius);
654 	size_t n_rows_max  = size_t(ceil(rmax * 2.f + 2.f));
655 	size_t n_cells_max = sqr(n_rows_max);
656 	std::vector<std::pair<float, float> > spans;
657 	std::vector<Cell>  cells(n_cells_max, Cell());
658 	std::vector<float> areas_sum(n_cells_max, 0.f);
659 
660 	for (ExtrusionPoints::const_iterator it = points.begin(); it != points.end(); ++ it) {
661 		const V2f  &center = it->center;
662 		const float radius = it->radius;
663 		//const float radius2 = radius * radius;
664 		const float height_target = it->height;
665 		B2f bbox(center - V2f(radius, radius), center + V2f(radius, radius));
666 		B2i bboxi(
667 			V2i(clamp(0, nc-1, int(floor(bbox.min_corner().x()))),
668 				clamp(0, nr-1, int(floor(bbox.min_corner().y())))),
669 			V2i(clamp(0, nc-1, int(ceil (bbox.max_corner().x()))),
670 				clamp(0, nr-1, int(ceil (bbox.max_corner().y())))));
671 		/*
672 		// Fill in the spans, at which the circle intersects the rows.
673 		int row_first = bboxi.min_corner().y();
674 		int row_last  = bboxi.max_corner().y();
675 		for (; row_first <= row_last; ++ row_first) {
676 			float y     = float(j) - center.y();
677 			float discr = radius2 - sqr(y);
678 			if (discr > 0) {
679 				// Circle intersects the row j at 2 points.
680 				float d = sqrt(discr);
681 				spans.push_back(std.pair<float, float>(center.x() - d, center.x() + d)));
682 				break;
683 			}
684 		}
685 		for (int j = row_first + 1; j <= row_last; ++ j) {
686 			float y     = float(j) - center.y();
687 			float discr = radius2 - sqr(y);
688 			if (discr > 0) {
689 				// Circle intersects the row j at 2 points.
690 				float d = sqrt(discr);
691 				spans.push_back(std.pair<float, float>(center.x() - d, center.x() + d)));
692 			} else {
693 				row_last = j - 1;
694 				break;
695 			}
696 		}
697 		*/
698 		float area_total     = 0;
699 		float volume_total   = 0;
700 		float volume_excess  = 0;
701 		float volume_deficit = 0;
702 		size_t n_cells = 0;
703 		float area_circle_total = 0;
704 #if 0
705 		// The intermediate lines.
706 		for (int j = row_first; j < row_last; ++ j) {
707 			const std::pair<float, float> &span1 = spans[j];
708 			const std::pair<float, float> &span2 = spans[j+1];
709 			float l1 = span1.first;
710 			float l2 = span2.first;
711 			float r1 = span1.second;
712 			float r2 = span2.second;
713 			if (l2 < l1)
714 				std::swap(l1, l2);
715 			if (r1 > r2)
716 				std::swap(r1, r2);
717 			int il1 = int(floor(l1));
718 			int il2 = int(ceil(l2));
719 			int ir1 = int(floor(r1));
720 			int ir2 = int(floor(r2));
721 			assert(il2 <= ir1);
722 			for (int i = il1; i < il2; ++ i) {
723 				Cell &cell = cells[n_cells ++];
724 				cell.idx.x(i);
725 				cell.idx.y(j);
726 				cell.area = area;
727 			}
728 			for (int i = il2; i < ir1; ++ i) {
729 				Cell &cell = cells[n_cells ++];
730 				cell.idx.x(i);
731 				cell.idx.y(j);
732 				cell.area = 1.f;
733 			}
734 			for (int i = ir1; i < ir2; ++ i) {
735 				Cell &cell = cells[n_cells ++];
736 				cell.idx.x(i);
737 				cell.idx.y(j);
738 				cell.area = area;
739 			}
740 		}
741 #else
742 		for (int j = bboxi.min_corner().y(); j < bboxi.max_corner().y(); ++ j) {
743 			for (int i = bboxi.min_corner().x(); i < bboxi.max_corner().x(); ++i) {
744 				B2f bb(V2f(float(i), float(j)), V2f(float(i + 1), float(j + 1)));
745 				V2f poly[8];
746 				bool poly_arc[8];
747 				int n = clip_circle_by_AABB(center, radius, bb, poly, poly_arc);
748 				float area = polyArea(poly, n);
749 				assert(area >= 0.f && area <= 1.000001f);
750 				if (area == 0.f)
751 					continue;
752 				Cell &cell = cells[n_cells ++];
753 				cell.idx.x(i);
754 				cell.idx.y(j);
755 				cell.volume  = acc[j][i];
756 				cell.area    = mask[j][i];
757 				assert(cell.area >= 0.f && cell.area <= 1.000001f);
758 				area_circle_total += area;
759 				if (cell.area < area)
760 					cell.area = area;
761 				cell.fraction_covered = clamp(0.f, 1.f, (cell.area > 0) ? (area / cell.area) : 0);
762 				if (cell.fraction_covered == 0) {
763 					-- n_cells;
764 					continue;
765 				}
766 				float cell_height = cell.volume / cell.area;
767 				cell.excess_height = cell_height - height_target;
768 				if (cell.excess_height > 0.f)
769 					volume_excess  += cell.excess_height * cell.area * cell.fraction_covered;
770 				else
771 					volume_deficit -= cell.excess_height * cell.area * cell.fraction_covered;
772 				volume_total += cell.volume * cell.fraction_covered;
773 				area_total   += cell.area * cell.fraction_covered;
774 			}
775 		}
776 #endif
777 //		float area_circle_total2 = float(M_PI) * sqr(radius);
778 //		float area_err = fabs(area_circle_total2 - area_circle_total) / area_circle_total2;
779 //		printf("area_circle_total: %f, %f, %f\n", area_circle_total, area_circle_total2, area_err);
780 		float volume_full = float(M_PI) * sqr(radius) * height_target;
781 //		if (true) {
782 //		printf("volume_total: %f, volume_full: %f, fill factor: %f\n", volume_total, volume_full, 100.f - 100.f * volume_total / volume_full);
783 //		printf("volume_full: %f, volume_excess+deficit: %f, volume_excess: %f, volume_deficit: %f\n", volume_full, volume_excess+volume_deficit, volume_excess, volume_deficit);
784 		if (simulationType == ExtrusionSimulationSpreadFull || volume_total <= volume_full) {
785 			// The volume under the circle is spreaded fully.
786 			float height_avg = volume_total / area_total;
787 			for (size_t i = 0; i < n_cells; ++ i) {
788 				const Cell &cell = cells[i];
789 				acc[cell.idx.y()][cell.idx.x()] = (1.f - cell.fraction_covered) * cell.volume + cell.fraction_covered * cell.area * height_avg;
790 			}
791 		} else if (simulationType == ExtrusionSimulationSpreadExcess) {
792 			// The volume under the circle does not fit.
793 			// 1) Fill the underfilled cells and remove them from the list.
794 			float volume_borrowed_total = 0.;
795 			for (size_t i = 0; i < n_cells;) {
796 				Cell &cell = cells[i];
797 				if (cell.excess_height <= 0) {
798 					// Fill in the part of the cell below the circle.
799 					float volume_borrowed = - cell.excess_height * cell.area * cell.fraction_covered;
800 					assert(volume_borrowed >= 0.f);
801 					acc[cell.idx.y()][cell.idx.x()] = cell.volume + volume_borrowed;
802 					volume_borrowed_total += volume_borrowed;
803 					cell = cells[-- n_cells];
804 				} else
805 					++ i;
806 			}
807 			// 2) Sort the remaining cells by their excess height.
808 			std::sort(cells.begin(), cells.begin() + n_cells);
809 			// 3) Prefix sum the areas per excess height.
810 			// The excess height is discrete with the number of excess cells.
811 			areas_sum[n_cells-1] = cells[n_cells-1].area * cells[n_cells-1].fraction_covered;
812 			for (int i = n_cells - 2; i >= 0; -- i) {
813 				const Cell &cell = cells[i];
814 				areas_sum[i] = areas_sum[i + 1] + cell.area * cell.fraction_covered;
815 			}
816 			// 4) Find the excess height, where the volume_excess is over the volume_borrowed_total.
817 			float volume_current = 0.f;
818 			float excess_height_prev = 0.f;
819 			size_t i_top = n_cells;
820 			for (size_t i = 0; i < n_cells; ++ i) {
821 				const Cell &cell = cells[i];
822 				volume_current += (cell.excess_height - excess_height_prev) * areas_sum[i];
823 				excess_height_prev = cell.excess_height;
824 				if (volume_current > volume_borrowed_total) {
825 					i_top = i;
826 					break;
827 				}
828 			}
829 			// 5) Remove material from the cells with deficit.
830 			// First remove all the excess material from the cells, where the deficit is low.
831 			for (size_t i = 0; i < i_top; ++ i) {
832 				const Cell &cell = cells[i];
833 				float volume_removed = cell.excess_height * cell.area * cell.fraction_covered;
834 				acc[cell.idx.y()][cell.idx.x()] = cell.volume - volume_removed;
835 				volume_borrowed_total -= volume_removed;
836 			}
837 			// Second remove some excess material from the cells, where the deficit is high.
838 			if (i_top < n_cells) {
839 				float height_diff = volume_borrowed_total / areas_sum[i_top];
840 				for (size_t i = i_top; i < n_cells; ++ i) {
841 					const Cell &cell = cells[i];
842 					acc[cell.idx.y()][cell.idx.x()] = cell.volume - height_diff * cell.area * cell.fraction_covered;
843 				}
844 			}
845 		}
846 	}
847 }
848 
CreatePowerColorGradient24bit()849 inline std::vector<V3uc> CreatePowerColorGradient24bit()
850 {
851 	int i;
852 	int iColor = 0;
853 	std::vector<V3uc> out(6 * 255 + 1, V3uc(0, 0, 0));
854 	for (i = 0; i < 256; ++i)
855 		out[iColor++] = V3uc(0, 0, i);
856 	for (i = 1; i < 256; ++i)
857 		out[iColor++] = V3uc(0, i, 255);
858 	for (i = 1; i < 256; ++i)
859 		out[iColor++] = V3uc(0, 255, 256 - i);
860 	for (i = 1; i < 256; ++i)
861 		out[iColor++] = V3uc(i, 255, 0);
862 	for (i = 1; i < 256; ++i)
863 		out[iColor++] = V3uc(255, 256 - i, 0);
864 	for (i = 1; i < 256; ++i)
865 		out[iColor++] = V3uc(255, 0, i);
866 	return out;
867 }
868 
869 class ExtrusionSimulatorImpl {
870 public:
871 	std::vector<unsigned char>  image_data;
872 	A2f							accumulator;
873 	A2uc						bitmap;
874 	unsigned int 				bitmap_oversampled;
875 	ExtrusionPoints 			extrusion_points;
876 	// RGB gradient to color map the fullness of an accumulator bucket into the output image.
877 	std::vector<boost::geometry::model::point<unsigned char, 3, boost::geometry::cs::cartesian> > color_gradient;
878 };
879 
ExtrusionSimulator()880 ExtrusionSimulator::ExtrusionSimulator() :
881 	pimpl(new ExtrusionSimulatorImpl)
882 {
883 	pimpl->color_gradient = CreatePowerColorGradient24bit();
884 	pimpl->bitmap_oversampled = 4;
885 }
886 
~ExtrusionSimulator()887 ExtrusionSimulator::~ExtrusionSimulator()
888 {
889 	delete pimpl;
890 	pimpl = NULL;
891 }
892 
set_image_size(const Point & image_size)893 void ExtrusionSimulator::set_image_size(const Point &image_size)
894 {
895 	// printf("ExtrusionSimulator::set_image_size()\n");
896 	if (this->image_size.x() == image_size.x() &&
897 		this->image_size.y() == image_size.y())
898 		return;
899 
900 	// printf("Setting image size: %d, %d\n", image_size.x, image_size.y);
901 	this->image_size = image_size;
902 	// Allocate the image data in an RGBA format.
903 	// printf("Allocating image data, size %d\n", image_size.x * image_size.y * 4);
904 	pimpl->image_data.assign(image_size.x() * image_size.y() * 4, 0);
905 	// printf("Allocating image data, allocated\n");
906 
907 	//FIXME fill the image with red vertical lines.
908 	for (size_t r = 0; r < size_t(image_size.y()); ++ r) {
909 		for (size_t c = 0; c < size_t(image_size.x()); c += 2) {
910 			// Color red
911 			pimpl->image_data[r * image_size.x() * 4 + c * 4] = 255;
912 			// Opacity full
913 			pimpl->image_data[r * image_size.x() * 4 + c * 4 + 3] = 255;
914 		}
915 	}
916 	// printf("Allocating image data, set\n");
917 }
918 
set_viewport(const BoundingBox & viewport)919 void ExtrusionSimulator::set_viewport(const BoundingBox &viewport)
920 {
921 	// printf("ExtrusionSimulator::set_viewport(%d, %d, %d, %d)\n", viewport.min.x, viewport.min.y, viewport.max.x, viewport.max.y);
922 	if (this->viewport != viewport) {
923 		this->viewport = viewport;
924 		Point sz = viewport.size();
925 		pimpl->accumulator.resize(boost::extents[sz.y()][sz.x()]);
926 		pimpl->bitmap.resize(boost::extents[sz.y()*pimpl->bitmap_oversampled][sz.x()*pimpl->bitmap_oversampled]);
927 		// printf("Accumulator size: %d, %d\n", sz.y, sz.x);
928 	}
929 }
930 
set_bounding_box(const BoundingBox & bbox)931 void ExtrusionSimulator::set_bounding_box(const BoundingBox &bbox)
932 {
933 	this->bbox = bbox;
934 }
935 
image_ptr() const936 const void* ExtrusionSimulator::image_ptr() const
937 {
938 	return (pimpl->image_data.empty()) ? NULL : (void*)&pimpl->image_data.front();
939 }
940 
reset_accumulator()941 void ExtrusionSimulator::reset_accumulator()
942 {
943 	// printf("ExtrusionSimulator::reset_accumulator()\n");
944 	Point sz = viewport.size();
945 	// printf("Reset accumulator, Accumulator size: %d, %d\n", sz.y, sz.x);
946 	memset(&pimpl->accumulator[0][0], 0, sizeof(float) * sz.x() * sz.y());
947 	memset(&pimpl->bitmap[0][0], 0, sz.x() * sz.y() * pimpl->bitmap_oversampled * pimpl->bitmap_oversampled);
948 	pimpl->extrusion_points.clear();
949 	// printf("Reset accumulator, done.\n");
950 }
951 
extrude_to_accumulator(const ExtrusionPath & path,const Point & shift,ExtrusionSimulationType simulationType)952 void ExtrusionSimulator::extrude_to_accumulator(const ExtrusionPath &path, const Point &shift, ExtrusionSimulationType simulationType)
953 {
954 	// printf("Extruding a path. Nr points: %d, width: %f, height: %f\r\n", path.polyline.points.size(), path.width, path.height);
955 	// Convert the path to V2f points, shift and scale them to the viewport.
956 	std::vector<V2f> polyline;
957 	polyline.reserve(path.polyline.points.size());
958 	float scalex  = float(viewport.size().x()) / float(bbox.size().x());
959 	float scaley  = float(viewport.size().y()) / float(bbox.size().y());
960 	float w = scale_(path.width) * scalex;
961 	//float h = scale_(path.height) * scalex;
962 	w = scale_(path.mm3_per_mm / path.height) * scalex;
963 	// printf("scalex: %f, scaley: %f\n", scalex, scaley);
964 	// printf("bbox: %d,%d %d,%d\n", bbox.min.x(), bbox.min.y, bbox.max.x(), bbox.max.y);
965 	for (Points::const_iterator it = path.polyline.points.begin(); it != path.polyline.points.end(); ++ it) {
966 		// printf("point %d,%d\n", it->x+shift.x(), it->y+shift.y);
967 		ExtrusionPoint ept;
968 		ept.center = V2f(float((*it)(0)+shift.x()-bbox.min.x()) * scalex, float((*it)(1)+shift.y()-bbox.min.y()) * scaley);
969 		ept.radius = w/2.f;
970 		ept.height = 0.5f;
971 		polyline.push_back(ept.center);
972 		pimpl->extrusion_points.push_back(ept);
973 	}
974 	// Extrude the polyline into an accumulator.
975 	// printf("width scaled: %f, height scaled: %f\n", w, h);
976 	gcode_paint_layer(polyline, w, 0.5f, pimpl->accumulator);
977 
978  	if (simulationType > ExtrusionSimulationDontSpread)
979 		gcode_paint_bitmap(polyline, w, pimpl->bitmap, pimpl->bitmap_oversampled);
980     // double path.mm3_per_mm;  // mm^3 of plastic per mm of linear head motion
981     // float path.width;
982     // float path.height;
983 }
984 
evaluate_accumulator(ExtrusionSimulationType simulationType)985 void ExtrusionSimulator::evaluate_accumulator(ExtrusionSimulationType simulationType)
986 {
987 	// printf("ExtrusionSimulator::evaluate_accumulator()\n");
988 	Point sz = viewport.size();
989 
990 	if (simulationType > ExtrusionSimulationDontSpread) {
991 		// Average the cells of a bitmap into a lower resolution floating point mask.
992 		A2f mask(boost::extents[sz.y()][sz.x()]);
993 		for (int r = 0; r < sz.y(); ++r) {
994 			for (int c = 0; c < sz.x(); ++c) {
995 				float p = 0;
996 				for (unsigned int j = 0; j < pimpl->bitmap_oversampled; ++ j) {
997 					for (unsigned int i = 0; i < pimpl->bitmap_oversampled; ++ i) {
998 						if (pimpl->bitmap[r * pimpl->bitmap_oversampled + j][c * pimpl->bitmap_oversampled + i])
999 							p += 1.f;
1000 					}
1001 				}
1002 				p /= float(pimpl->bitmap_oversampled * pimpl->bitmap_oversampled * 2);
1003 				mask[r][c] = p;
1004 			}
1005 		}
1006 
1007 		// Spread the excess of the material.
1008 		gcode_spread_points(pimpl->accumulator, mask, pimpl->extrusion_points, simulationType);
1009 	}
1010 
1011 	// Color map the accumulator.
1012 	for (int r = 0; r < sz.y(); ++r) {
1013 		unsigned char *ptr = &pimpl->image_data[(image_size.x() * (viewport.min.y() + r) + viewport.min.x()) * 4];
1014 		for (int c = 0; c < sz.x(); ++c) {
1015 			#if 1
1016 			float p   = pimpl->accumulator[r][c];
1017 			#else
1018 			float p = mask[r][c];
1019 			#endif
1020 			int   idx = int(floor(p * float(pimpl->color_gradient.size()) + 0.5f));
1021 			V3uc  clr = pimpl->color_gradient[clamp(0, int(pimpl->color_gradient.size()-1), idx)];
1022 			*ptr ++ = clr.get<0>();
1023 			*ptr ++ = clr.get<1>();
1024 			*ptr ++ = clr.get<2>();
1025 			*ptr ++ = (idx == 0) ? 0 : 255;
1026 		}
1027 	}
1028 }
1029 
1030 } // namespace Slic3r
1031