1 //
2 // Copyright 2011-2014 Ettus Research LLC
3 // Copyright 2018 Ettus Research, a National Instruments Company
4 //
5 // SPDX-License-Identifier: GPL-3.0-or-later
6 //
7 
8 #include <uhd/exception.hpp>
9 #include <uhd/types/dict.hpp>
10 #include <uhd/utils/log.hpp>
11 #include <uhd/utils/math.hpp>
12 #include <uhd/utils/safe_call.hpp>
13 #include <uhdlib/usrp/cores/dsp_core_utils.hpp>
14 #include <uhdlib/usrp/cores/rx_dsp_core_3000.hpp>
15 #include <boost/assign/list_of.hpp>
16 #include <boost/math/special_functions/round.hpp>
17 #include <algorithm>
18 #include <cmath>
19 #include <functional>
20 
21 #define REG_DSP_RX_FREQ _dsp_base + 0
22 #define REG_DSP_RX_SCALE_IQ _dsp_base + 4
23 #define REG_DSP_RX_DECIM _dsp_base + 8
24 #define REG_DSP_RX_MUX _dsp_base + 12
25 #define REG_DSP_RX_COEFFS _dsp_base + 16
26 // FIXME: Add code to support REG_DSP_RX_COEFFS
27 
28 #define FLAG_DSP_RX_MUX_SWAP_IQ (1 << 0)
29 #define FLAG_DSP_RX_MUX_REAL_MODE (1 << 1)
30 #define FLAG_DSP_RX_MUX_INVERT_Q (1 << 2)
31 #define FLAG_DSP_RX_MUX_INVERT_I (1 << 3)
32 
33 template <class T>
ceil_log2(T num)34 T ceil_log2(T num)
35 {
36     return std::ceil(std::log(num) / std::log(T(2)));
37 }
38 
39 using namespace uhd;
40 
41 const double rx_dsp_core_3000::DEFAULT_CORDIC_FREQ = 0.0;
42 const double rx_dsp_core_3000::DEFAULT_RATE        = 1e6;
43 
~rx_dsp_core_3000(void)44 rx_dsp_core_3000::~rx_dsp_core_3000(void)
45 {
46     /* NOP */
47 }
48 
49 class rx_dsp_core_3000_impl : public rx_dsp_core_3000
50 {
51 public:
rx_dsp_core_3000_impl(wb_iface::sptr iface,const size_t dsp_base,const bool is_b200)52     rx_dsp_core_3000_impl(wb_iface::sptr iface, const size_t dsp_base, const bool is_b200)
53         : _iface(iface), _dsp_base(dsp_base), _is_b200(is_b200)
54     {
55     }
56 
~rx_dsp_core_3000_impl(void)57     ~rx_dsp_core_3000_impl(void)
58     {
59         UHD_SAFE_CALL(; // NOP
60         )
61     }
62 
set_mux(const uhd::usrp::fe_connection_t & fe_conn)63     void set_mux(const uhd::usrp::fe_connection_t& fe_conn)
64     {
65         uint32_t reg_val = 0;
66         switch (fe_conn.get_sampling_mode()) {
67             case uhd::usrp::fe_connection_t::REAL:
68             case uhd::usrp::fe_connection_t::HETERODYNE:
69                 reg_val = FLAG_DSP_RX_MUX_REAL_MODE;
70                 break;
71             default:
72                 reg_val = 0;
73                 break;
74         }
75 
76         if (fe_conn.is_iq_swapped())
77             reg_val |= FLAG_DSP_RX_MUX_SWAP_IQ;
78         if (fe_conn.is_i_inverted())
79             reg_val |= FLAG_DSP_RX_MUX_INVERT_I;
80         if (fe_conn.is_q_inverted())
81             reg_val |= FLAG_DSP_RX_MUX_INVERT_Q;
82 
83         _iface->poke32(REG_DSP_RX_MUX, reg_val);
84 
85         if (fe_conn.get_sampling_mode() == uhd::usrp::fe_connection_t::HETERODYNE) {
86             // 1. Remember the sign of the IF frequency.
87             //   It will be discarded in the next step
88             int if_freq_sign = boost::math::sign(fe_conn.get_if_freq());
89             // 2. Map IF frequency to the range [0, _tick_rate)
90             double if_freq = std::abs(std::fmod(fe_conn.get_if_freq(), _tick_rate));
91             // 3. Map IF frequency to the range [-_tick_rate/2, _tick_rate/2)
92             //   This is the aliased frequency
93             if (if_freq > (_tick_rate / 2.0)) {
94                 if_freq -= _tick_rate;
95             }
96             // 4. Set DSP offset to spin the signal in the opposite
97             //   direction as the aliased frequency
98             _dsp_freq_offset = if_freq * (-if_freq_sign);
99         } else {
100             _dsp_freq_offset = 0.0;
101         }
102     }
103 
set_tick_rate(const double rate)104     void set_tick_rate(const double rate)
105     {
106         _tick_rate = rate;
107         set_freq(_current_freq);
108     }
109 
set_link_rate(const double rate)110     void set_link_rate(const double rate)
111     {
112         //_link_rate = rate/sizeof(uint32_t); //in samps/s
113         _link_rate = rate / sizeof(uint16_t); // in samps/s (allows for 8sc)
114     }
115 
get_host_rates(void)116     uhd::meta_range_t get_host_rates(void)
117     {
118         meta_range_t range;
119         if (!_is_b200) {
120             for (int rate = 1024; rate > 512; rate -= 8) {
121                 range.push_back(range_t(_tick_rate / rate));
122             }
123         }
124         for (int rate = 512; rate > 256; rate -= 4) {
125             range.push_back(range_t(_tick_rate / rate));
126         }
127         for (int rate = 256; rate > 128; rate -= 2) {
128             range.push_back(range_t(_tick_rate / rate));
129         }
130         for (int rate = 128; rate >= int(std::ceil(_tick_rate / _link_rate)); rate -= 1) {
131             range.push_back(range_t(_tick_rate / rate));
132         }
133         return range;
134     }
135 
set_host_rate(const double rate)136     double set_host_rate(const double rate)
137     {
138         const size_t decim_rate =
139             boost::math::iround(_tick_rate / this->get_host_rates().clip(rate, true));
140         size_t decim = decim_rate;
141 
142         // determine which half-band filters are activated
143         int hb0 = 0, hb1 = 0, hb2 = 0, hb_enable = 0;
144         if (decim % 2 == 0) {
145             hb0 = 1;
146             decim /= 2;
147         }
148         if (decim % 2 == 0) {
149             hb1 = 1;
150             decim /= 2;
151         }
152         // the third half-band is not supported by the B200
153         if (decim % 2 == 0 && !_is_b200) {
154             hb2 = 1;
155             decim /= 2;
156         }
157 
158         if (_is_b200) {
159             _iface->poke32(REG_DSP_RX_DECIM,
160                 (hb0 << 9) /*small HB */ | (hb1 << 8) /*large HB*/ | (decim & 0xff));
161 
162             if (decim > 1 and hb0 == 0 and hb1 == 0) {
163                 UHD_LOGGER_WARNING("CORES")
164                     << boost::format(
165                            "The requested decimation is odd; the user should expect CIC "
166                            "rolloff.\n"
167                            "Select an even decimation to ensure that a halfband filter "
168                            "is enabled.\n"
169                            "decimation = dsp_rate/samp_rate -> %d = (%f MHz)/(%f MHz)\n")
170                            % decim_rate % (_tick_rate / 1e6) % (rate / 1e6);
171             }
172         } else {
173             // Encode Halfband config for setting register programming.
174             if (hb2) { // Implies HB1 and HB0 also asserted
175                 hb_enable = 3;
176             } else if (hb1) { // Implies HB0 is also asserted
177                 hb_enable = 2;
178             } else if (hb0) {
179                 hb_enable = 1;
180             } else {
181                 hb_enable = 0;
182             }
183             _iface->poke32(REG_DSP_RX_DECIM, (hb_enable << 8) | (decim & 0xff));
184 
185             if (decim > 1 and hb0 == 0 and hb1 == 0 and hb2 == 0) {
186                 UHD_LOGGER_WARNING("CORES")
187                     << boost::format(
188                            "The requested decimation is odd; the user should expect "
189                            "passband CIC rolloff.\n"
190                            "Select an even decimation to ensure that a halfband filter "
191                            "is enabled.\n"
192                            "Decimations factorable by 4 will enable 2 halfbands, those "
193                            "factorable by 8 will enable 3 halfbands.\n"
194                            "decimation = dsp_rate/samp_rate -> %d = (%f MHz)/(%f MHz)\n")
195                            % decim_rate % (_tick_rate / 1e6) % (rate / 1e6);
196             }
197         }
198 
199         // Caclulate algorithmic gain of CIC for a given decimation.
200         // For Ettus CIC R=decim, M=1, N=4. Gain = (R * M) ^ N
201         const double rate_pow = std::pow(double(decim & 0xff), 4);
202         // Calculate compensation gain values for algorithmic gain of CORDIC and CIC
203         // taking into account gain compensation blocks already hardcoded in place in DDC
204         // (that provide simple 1/2^n gain compensation). CORDIC algorithmic gain limits
205         // asymptotically around 1.647 after many iterations.
206         //
207         // The polar rotation of [I,Q] = [1,1] by Pi/8 also yields max magnitude of
208         // SQRT(2) (~1.4142) however input to the CORDIC thats outside the unit circle can
209         // only be sourced from a saturated RF frontend. To provide additional dynamic
210         // range head room accordingly using scale factor applied at egress from DDC would
211         // cost us small signal performance, thus we do no provide compensation gain for a
212         // saturated front end and allow the signal to clip in the H/W as needed. If we
213         // wished to avoid the signal clipping in these circumstances then adjust code to
214         // read: _scaling_adjustment = std::pow(2,
215         // ceil_log2(rate_pow))/(1.648*rate_pow*1.415);
216         _scaling_adjustment = std::pow(2, ceil_log2(rate_pow)) / (1.648 * rate_pow);
217 
218         this->update_scalar();
219 
220         return _tick_rate / decim_rate;
221     }
222 
223     // Calculate compensation gain values for algorithmic gain of CORDIC and CIC taking
224     // into account gain compensation blocks already hardcoded in place in DDC (that
225     // provide simple 1/2^n gain compensation). Further more factor in OTW format which
226     // adds further gain factor to weight output samples correctly.
update_scalar(void)227     void update_scalar(void)
228     {
229         const double target_scalar =
230             (1 << (_is_b200 ? 16 : 15)) * _scaling_adjustment / _dsp_extra_scaling;
231         const int32_t actual_scalar = boost::math::iround(target_scalar);
232         // Calculate the error introduced by using integer representation for the scalar,
233         // can be corrected in host later.
234         _fxpt_scalar_correction = target_scalar / actual_scalar;
235         // Write DDC with scaling correction for CIC and CORDIC that maximizes dynamic
236         // range in 32/16/12/8bits.
237         _iface->poke32(REG_DSP_RX_SCALE_IQ, actual_scalar);
238     }
239 
get_scaling_adjustment(void)240     double get_scaling_adjustment(void)
241     {
242         return _fxpt_scalar_correction * _host_extra_scaling / 32767.;
243     }
244 
set_freq(const double requested_freq)245     double set_freq(const double requested_freq)
246     {
247         double actual_freq;
248         int32_t freq_word;
249         get_freq_and_freq_word(
250             requested_freq + _dsp_freq_offset, _tick_rate, actual_freq, freq_word);
251         _iface->poke32(REG_DSP_RX_FREQ, uint32_t(freq_word));
252         _current_freq = actual_freq;
253         return actual_freq;
254     }
255 
get_freq(void)256     double get_freq(void)
257     {
258         return _current_freq;
259     }
260 
get_freq_range(void)261     uhd::meta_range_t get_freq_range(void)
262     {
263         // Too keep the DSP range symmetric about 0, we use abs(_dsp_freq_offset)
264         const double offset = std::abs<double>(_dsp_freq_offset);
265         return uhd::meta_range_t(-(_tick_rate - offset) / 2,
266             +(_tick_rate - offset) / 2,
267             _tick_rate / std::pow(2.0, 32));
268     }
269 
setup(const uhd::stream_args_t & stream_args)270     void setup(const uhd::stream_args_t& stream_args)
271     {
272         if (stream_args.otw_format == "sc16") {
273             _dsp_extra_scaling  = 1.0;
274             _host_extra_scaling = 1.0;
275         } else if (stream_args.otw_format == "sc8") {
276             double peak         = stream_args.args.cast<double>("peak", 1.0);
277             peak                = std::max(peak, 1.0 / 256);
278             _host_extra_scaling = peak * 256;
279             _dsp_extra_scaling  = peak;
280         } else if (stream_args.otw_format == "sc12") {
281             double peak         = stream_args.args.cast<double>("peak", 1.0);
282             peak                = std::max(peak, 1.0 / 16);
283             _host_extra_scaling = peak * 16;
284             _dsp_extra_scaling  = peak;
285         } else if (stream_args.otw_format == "fc32") {
286             _host_extra_scaling = 1.0;
287             _dsp_extra_scaling  = 1.0;
288         } else
289             throw uhd::value_error(
290                 "USRP RX cannot handle requested wire format: " + stream_args.otw_format);
291 
292         _host_extra_scaling *= stream_args.args.cast<double>("fullscale", 1.0);
293 
294         this->update_scalar();
295     }
296 
populate_subtree(property_tree::sptr subtree)297     void populate_subtree(property_tree::sptr subtree)
298     {
299         subtree->create<meta_range_t>("rate/range")
300             .set_publisher(std::bind(&rx_dsp_core_3000::get_host_rates, this));
301         subtree->create<double>("rate/value")
302             .set(DEFAULT_RATE)
303             .set_coercer(
304                 std::bind(&rx_dsp_core_3000::set_host_rate, this, std::placeholders::_1));
305         subtree->create<double>("freq/value")
306             .set(DEFAULT_CORDIC_FREQ)
307             .set_coercer(
308                 std::bind(&rx_dsp_core_3000::set_freq, this, std::placeholders::_1))
309             .set_publisher([this]() { return this->get_freq(); });
310         subtree->create<meta_range_t>("freq/range")
311             .set_publisher(std::bind(&rx_dsp_core_3000::get_freq_range, this));
312     }
313 
314 private:
315     wb_iface::sptr _iface;
316     const size_t _dsp_base;
317     const bool _is_b200; // TODO: Obsolete this when we switch to the new DDC on the B200
318 
319     double _dsp_freq_offset        = 0.0;
320     double _tick_rate              = 1.0;
321     double _link_rate              = 0.0;
322     double _scaling_adjustment     = 1.0;
323     double _dsp_extra_scaling      = 1.0;
324     double _host_extra_scaling     = 0.0;
325     double _fxpt_scalar_correction = 0.0;
326     double _current_freq           = 0.0;
327 };
328 
make(wb_iface::sptr iface,const size_t dsp_base,const bool is_b200)329 rx_dsp_core_3000::sptr rx_dsp_core_3000::make(
330     wb_iface::sptr iface, const size_t dsp_base, const bool is_b200 /* = false */)
331 {
332     return sptr(new rx_dsp_core_3000_impl(iface, dsp_base, is_b200));
333 }
334