1 /*
2  * Copyright (C) 2010 Google Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1.  Redistributions of source code must retain the above copyright
9  *     notice, this list of conditions and the following disclaimer.
10  * 2.  Redistributions in binary form must reproduce the above copyright
11  *     notice, this list of conditions and the following disclaimer in the
12  *     documentation and/or other materials provided with the distribution.
13  * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
14  *     its contributors may be used to endorse or promote products derived
15  *     from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
18  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
20  * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
21  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
23  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include "config.h"
30 
31 #if ENABLE(WEB_AUDIO)
32 
33 #include "Biquad.h"
34 
35 #include <algorithm>
36 #include <stdio.h>
37 #include <wtf/MathExtras.h>
38 
39 #if OS(DARWIN)
40 #include <Accelerate/Accelerate.h>
41 #endif
42 
43 namespace WebCore {
44 
45 const int kBufferSize = 1024;
46 
Biquad()47 Biquad::Biquad()
48 {
49 #if OS(DARWIN)
50     // Allocate two samples more for filter history
51     m_inputBuffer.resize(kBufferSize + 2);
52     m_outputBuffer.resize(kBufferSize + 2);
53 #endif
54 
55     // Initialize as pass-thru (straight-wire, no filter effect)
56     m_a0 = 1.0;
57     m_a1 = 0.0;
58     m_a2 = 0.0;
59     m_b1 = 0.0;
60     m_b2 = 0.0;
61 
62     m_g = 1.0;
63 
64     reset(); // clear filter memory
65 }
66 
process(const float * sourceP,float * destP,size_t framesToProcess)67 void Biquad::process(const float* sourceP, float* destP, size_t framesToProcess)
68 {
69 #if OS(DARWIN)
70     // Use vecLib if available
71     processFast(sourceP, destP, framesToProcess);
72 #else
73     int n = framesToProcess;
74 
75     // Create local copies of member variables
76     double x1 = m_x1;
77     double x2 = m_x2;
78     double y1 = m_y1;
79     double y2 = m_y2;
80 
81     double a0 = m_a0;
82     double a1 = m_a1;
83     double a2 = m_a2;
84     double b1 = m_b1;
85     double b2 = m_b2;
86 
87     while (n--) {
88         // FIXME: this can be optimized by pipelining the multiply adds...
89         float x = *sourceP++;
90         float y = a0*x + a1*x1 + a2*x2 - b1*y1 - b2*y2;
91 
92         y *= m_g;
93 
94         *destP++ = y;
95 
96         // Update state variables
97         x2 = x1;
98         x1 = x;
99         y2 = y1;
100         y1 = y;
101     }
102 
103     // Local variables back to member
104     m_x1 = x1;
105     m_x2 = x2;
106     m_y1 = y1;
107     m_y2 = y2;
108 
109     m_a0 = a0;
110     m_a1 = a1;
111     m_a2 = a2;
112     m_b1 = b1;
113     m_b2 = b2;
114 #endif
115 }
116 
117 #if OS(DARWIN)
118 
119 // Here we have optimized version using Accelerate.framework
120 
processFast(const float * sourceP,float * destP,size_t framesToProcess)121 void Biquad::processFast(const float* sourceP, float* destP, size_t framesToProcess)
122 {
123     // Filter coefficients
124     double B[5];
125     B[0] = m_a0;
126     B[1] = m_a1;
127     B[2] = m_a2;
128     B[3] = m_b1;
129     B[4] = m_b2;
130 
131     double* inputP = m_inputBuffer.data();
132     double* outputP = m_outputBuffer.data();
133 
134     double* input2P = inputP + 2;
135     double* output2P = outputP + 2;
136 
137     // Break up processing into smaller slices (kBufferSize) if necessary.
138 
139     int n = framesToProcess;
140 
141     while (n > 0) {
142         int framesThisTime = n < kBufferSize ? n : kBufferSize;
143 
144         // Copy input to input buffer
145         for (int i = 0; i < framesThisTime; ++i)
146             input2P[i] = *sourceP++;
147 
148         processSliceFast(inputP, outputP, B, framesThisTime);
149 
150         // Copy output buffer to output (converts float -> double).
151         for (int i = 0; i < framesThisTime; ++i)
152             *destP++ = static_cast<float>(output2P[i]);
153 
154         n -= framesThisTime;
155     }
156 }
157 
processSliceFast(double * sourceP,double * destP,double * coefficientsP,size_t framesToProcess)158 void Biquad::processSliceFast(double* sourceP, double* destP, double* coefficientsP, size_t framesToProcess)
159 {
160     // Use double-precision for filter stability
161     vDSP_deq22D(sourceP, 1, coefficientsP, destP, 1, framesToProcess);
162 
163     // Save history.  Note that sourceP and destP reference m_inputBuffer and m_outputBuffer respectively.
164     // These buffers are allocated (in the constructor) with space for two extra samples so it's OK to access
165     // array values two beyond framesToProcess.
166     sourceP[0] = sourceP[framesToProcess - 2 + 2];
167     sourceP[1] = sourceP[framesToProcess - 1 + 2];
168     destP[0] = destP[framesToProcess - 2 + 2];
169     destP[1] = destP[framesToProcess - 1 + 2];
170 }
171 
172 #endif // OS(DARWIN)
173 
174 
reset()175 void Biquad::reset()
176 {
177     m_x1 = m_x2 = m_y1 = m_y2 = 0.0;
178 
179 #if OS(DARWIN)
180     // Two extra samples for filter history
181     double* inputP = m_inputBuffer.data();
182     inputP[0] = 0.0;
183     inputP[1] = 0.0;
184 
185     double* outputP = m_outputBuffer.data();
186     outputP[0] = 0.0;
187     outputP[1] = 0.0;
188 #endif
189 }
190 
setLowpassParams(double cutoff,double resonance)191 void Biquad::setLowpassParams(double cutoff, double resonance)
192 {
193     resonance = std::max(0.0, resonance); // can't go negative
194 
195     double g = pow(10.0, 0.05 * resonance);
196     double d = sqrt((4.0 - sqrt(16.0 - 16.0 / (g * g))) / 2.0);
197 
198     // Compute biquad coefficients for lopass filter
199     double theta = piDouble * cutoff;
200     double sn = 0.5 * d * sin(theta);
201     double beta = 0.5 * (1.0 - sn) / (1.0 + sn);
202     double gamma = (0.5 + beta) * cos(theta);
203     double alpha = 0.25 * (0.5 + beta - gamma);
204 
205     m_a0 = 2.0 * alpha;
206     m_a1 = 2.0 * 2.0*alpha;
207     m_a2 = 2.0 * alpha;
208     m_b1 = 2.0 * -gamma;
209     m_b2 = 2.0 * beta;
210 }
211 
setHighpassParams(double cutoff,double resonance)212 void Biquad::setHighpassParams(double cutoff, double resonance)
213 {
214     resonance = std::max(0.0, resonance); // can't go negative
215 
216     double g = pow(10.0, 0.05 * resonance);
217     double d = sqrt((4.0 - sqrt(16.0 - 16.0 / (g * g))) / 2.0);
218 
219     // Compute biquad coefficients for highpass filter
220     double theta = piDouble * cutoff;
221     double sn = 0.5 * d * sin(theta);
222     double beta = 0.5 * (1.0 - sn) / (1.0 + sn);
223     double gamma = (0.5 + beta) * cos(theta);
224     double alpha = 0.25 * (0.5 + beta + gamma);
225 
226     m_a0 = 2.0 * alpha;
227     m_a1 = 2.0 * -2.0*alpha;
228     m_a2 = 2.0 * alpha;
229     m_b1 = 2.0 * -gamma;
230     m_b2 = 2.0 * beta;
231 }
232 
setLowShelfParams(double cutoff,double dbGain)233 void Biquad::setLowShelfParams(double cutoff, double dbGain)
234 {
235     double theta = piDouble * cutoff;
236 
237     double A = pow(10.0, dbGain / 40.0);
238     double S = 1.0; // filter slope (1.0 is max value)
239     double alpha = 0.5 * sin(theta) * sqrt((A + 1.0 / A) * (1.0 / S - 1.0) + 2.0);
240 
241     double k = cos(theta);
242     double k2 = 2.0 * sqrt(A) * alpha;
243 
244     double b0 = A * ((A + 1.0) - (A - 1.0) * k + k2);
245     double b1 = 2.0 * A * ((A - 1.0) - (A + 1.0) * k);
246     double b2 = A * ((A + 1.0) - (A - 1.0) * k - k2);
247     double a0 = (A + 1.0) + (A - 1.0) * k + k2;
248     double a1 = -2.0 * ((A - 1.0) + (A + 1.0) * k);
249     double a2 = (A + 1.0) + (A - 1.0) * k - k2;
250 
251     double a0Inverse = 1.0 / a0;
252 
253     m_a0 = b0 * a0Inverse;
254     m_a1 = b1 * a0Inverse;
255     m_a2 = b2 * a0Inverse;
256     m_b1 = a1 * a0Inverse;
257     m_b2 = a2 * a0Inverse;
258 }
259 
setZeroPolePairs(const Complex & zero,const Complex & pole)260 void Biquad::setZeroPolePairs(const Complex &zero, const Complex &pole)
261 {
262     m_a0 = 1.0;
263     m_a1 = -2.0 * zero.real();
264 
265     double zeroMag = abs(zero);
266     m_a2 = zeroMag * zeroMag;
267 
268     m_b1 = -2.0 * pole.real();
269 
270     double poleMag = abs(pole);
271     m_b2 = poleMag * poleMag;
272 }
273 
setAllpassPole(const Complex & pole)274 void Biquad::setAllpassPole(const Complex &pole)
275 {
276     Complex zero = Complex(1.0, 0.0) / pole;
277     setZeroPolePairs(zero, pole);
278 }
279 
280 } // namespace WebCore
281 
282 #endif // ENABLE(WEB_AUDIO)
283