1// Go support for Protocol Buffers - Google's data interchange format
2//
3// Copyright 2010 The Go Authors.  All rights reserved.
4// https://github.com/golang/protobuf
5//
6// Redistribution and use in source and binary forms, with or without
7// modification, are permitted provided that the following conditions are
8// met:
9//
10//     * Redistributions of source code must retain the above copyright
11// notice, this list of conditions and the following disclaimer.
12//     * Redistributions in binary form must reproduce the above
13// copyright notice, this list of conditions and the following disclaimer
14// in the documentation and/or other materials provided with the
15// distribution.
16//     * Neither the name of Google Inc. nor the names of its
17// contributors may be used to endorse or promote products derived from
18// this software without specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
32/*
33Package proto converts data structures to and from the wire format of
34protocol buffers.  It works in concert with the Go source code generated
35for .proto files by the protocol compiler.
36
37A summary of the properties of the protocol buffer interface
38for a protocol buffer variable v:
39
40  - Names are turned from camel_case to CamelCase for export.
41  - There are no methods on v to set fields; just treat
42	them as structure fields.
43  - There are getters that return a field's value if set,
44	and return the field's default value if unset.
45	The getters work even if the receiver is a nil message.
46  - The zero value for a struct is its correct initialization state.
47	All desired fields must be set before marshaling.
48  - A Reset() method will restore a protobuf struct to its zero state.
49  - Non-repeated fields are pointers to the values; nil means unset.
50	That is, optional or required field int32 f becomes F *int32.
51  - Repeated fields are slices.
52  - Helper functions are available to aid the setting of fields.
53	msg.Foo = proto.String("hello") // set field
54  - Constants are defined to hold the default values of all fields that
55	have them.  They have the form Default_StructName_FieldName.
56	Because the getter methods handle defaulted values,
57	direct use of these constants should be rare.
58  - Enums are given type names and maps from names to values.
59	Enum values are prefixed by the enclosing message's name, or by the
60	enum's type name if it is a top-level enum. Enum types have a String
61	method, and a Enum method to assist in message construction.
62  - Nested messages, groups and enums have type names prefixed with the name of
63	the surrounding message type.
64  - Extensions are given descriptor names that start with E_,
65	followed by an underscore-delimited list of the nested messages
66	that contain it (if any) followed by the CamelCased name of the
67	extension field itself.  HasExtension, ClearExtension, GetExtension
68	and SetExtension are functions for manipulating extensions.
69  - Oneof field sets are given a single field in their message,
70	with distinguished wrapper types for each possible field value.
71  - Marshal and Unmarshal are functions to encode and decode the wire format.
72
73When the .proto file specifies `syntax="proto3"`, there are some differences:
74
75  - Non-repeated fields of non-message type are values instead of pointers.
76  - Enum types do not get an Enum method.
77
78The simplest way to describe this is to see an example.
79Given file test.proto, containing
80
81	package example;
82
83	enum FOO { X = 17; }
84
85	message Test {
86	  required string label = 1;
87	  optional int32 type = 2 [default=77];
88	  repeated int64 reps = 3;
89	  optional group OptionalGroup = 4 {
90	    required string RequiredField = 5;
91	  }
92	  oneof union {
93	    int32 number = 6;
94	    string name = 7;
95	  }
96	}
97
98The resulting file, test.pb.go, is:
99
100	package example
101
102	import proto "github.com/gogo/protobuf/proto"
103	import math "math"
104
105	type FOO int32
106	const (
107		FOO_X FOO = 17
108	)
109	var FOO_name = map[int32]string{
110		17: "X",
111	}
112	var FOO_value = map[string]int32{
113		"X": 17,
114	}
115
116	func (x FOO) Enum() *FOO {
117		p := new(FOO)
118		*p = x
119		return p
120	}
121	func (x FOO) String() string {
122		return proto.EnumName(FOO_name, int32(x))
123	}
124	func (x *FOO) UnmarshalJSON(data []byte) error {
125		value, err := proto.UnmarshalJSONEnum(FOO_value, data)
126		if err != nil {
127			return err
128		}
129		*x = FOO(value)
130		return nil
131	}
132
133	type Test struct {
134		Label         *string             `protobuf:"bytes,1,req,name=label" json:"label,omitempty"`
135		Type          *int32              `protobuf:"varint,2,opt,name=type,def=77" json:"type,omitempty"`
136		Reps          []int64             `protobuf:"varint,3,rep,name=reps" json:"reps,omitempty"`
137		Optionalgroup *Test_OptionalGroup `protobuf:"group,4,opt,name=OptionalGroup" json:"optionalgroup,omitempty"`
138		// Types that are valid to be assigned to Union:
139		//	*Test_Number
140		//	*Test_Name
141		Union            isTest_Union `protobuf_oneof:"union"`
142		XXX_unrecognized []byte       `json:"-"`
143	}
144	func (m *Test) Reset()         { *m = Test{} }
145	func (m *Test) String() string { return proto.CompactTextString(m) }
146	func (*Test) ProtoMessage() {}
147
148	type isTest_Union interface {
149		isTest_Union()
150	}
151
152	type Test_Number struct {
153		Number int32 `protobuf:"varint,6,opt,name=number"`
154	}
155	type Test_Name struct {
156		Name string `protobuf:"bytes,7,opt,name=name"`
157	}
158
159	func (*Test_Number) isTest_Union() {}
160	func (*Test_Name) isTest_Union()   {}
161
162	func (m *Test) GetUnion() isTest_Union {
163		if m != nil {
164			return m.Union
165		}
166		return nil
167	}
168	const Default_Test_Type int32 = 77
169
170	func (m *Test) GetLabel() string {
171		if m != nil && m.Label != nil {
172			return *m.Label
173		}
174		return ""
175	}
176
177	func (m *Test) GetType() int32 {
178		if m != nil && m.Type != nil {
179			return *m.Type
180		}
181		return Default_Test_Type
182	}
183
184	func (m *Test) GetOptionalgroup() *Test_OptionalGroup {
185		if m != nil {
186			return m.Optionalgroup
187		}
188		return nil
189	}
190
191	type Test_OptionalGroup struct {
192		RequiredField *string `protobuf:"bytes,5,req" json:"RequiredField,omitempty"`
193	}
194	func (m *Test_OptionalGroup) Reset()         { *m = Test_OptionalGroup{} }
195	func (m *Test_OptionalGroup) String() string { return proto.CompactTextString(m) }
196
197	func (m *Test_OptionalGroup) GetRequiredField() string {
198		if m != nil && m.RequiredField != nil {
199			return *m.RequiredField
200		}
201		return ""
202	}
203
204	func (m *Test) GetNumber() int32 {
205		if x, ok := m.GetUnion().(*Test_Number); ok {
206			return x.Number
207		}
208		return 0
209	}
210
211	func (m *Test) GetName() string {
212		if x, ok := m.GetUnion().(*Test_Name); ok {
213			return x.Name
214		}
215		return ""
216	}
217
218	func init() {
219		proto.RegisterEnum("example.FOO", FOO_name, FOO_value)
220	}
221
222To create and play with a Test object:
223
224	package main
225
226	import (
227		"log"
228
229		"github.com/gogo/protobuf/proto"
230		pb "./example.pb"
231	)
232
233	func main() {
234		test := &pb.Test{
235			Label: proto.String("hello"),
236			Type:  proto.Int32(17),
237			Reps:  []int64{1, 2, 3},
238			Optionalgroup: &pb.Test_OptionalGroup{
239				RequiredField: proto.String("good bye"),
240			},
241			Union: &pb.Test_Name{"fred"},
242		}
243		data, err := proto.Marshal(test)
244		if err != nil {
245			log.Fatal("marshaling error: ", err)
246		}
247		newTest := &pb.Test{}
248		err = proto.Unmarshal(data, newTest)
249		if err != nil {
250			log.Fatal("unmarshaling error: ", err)
251		}
252		// Now test and newTest contain the same data.
253		if test.GetLabel() != newTest.GetLabel() {
254			log.Fatalf("data mismatch %q != %q", test.GetLabel(), newTest.GetLabel())
255		}
256		// Use a type switch to determine which oneof was set.
257		switch u := test.Union.(type) {
258		case *pb.Test_Number: // u.Number contains the number.
259		case *pb.Test_Name: // u.Name contains the string.
260		}
261		// etc.
262	}
263*/
264package proto
265
266import (
267	"encoding/json"
268	"errors"
269	"fmt"
270	"log"
271	"reflect"
272	"sort"
273	"strconv"
274	"sync"
275)
276
277var errInvalidUTF8 = errors.New("proto: invalid UTF-8 string")
278
279// Message is implemented by generated protocol buffer messages.
280type Message interface {
281	Reset()
282	String() string
283	ProtoMessage()
284}
285
286// Stats records allocation details about the protocol buffer encoders
287// and decoders.  Useful for tuning the library itself.
288type Stats struct {
289	Emalloc uint64 // mallocs in encode
290	Dmalloc uint64 // mallocs in decode
291	Encode  uint64 // number of encodes
292	Decode  uint64 // number of decodes
293	Chit    uint64 // number of cache hits
294	Cmiss   uint64 // number of cache misses
295	Size    uint64 // number of sizes
296}
297
298// Set to true to enable stats collection.
299const collectStats = false
300
301var stats Stats
302
303// GetStats returns a copy of the global Stats structure.
304func GetStats() Stats { return stats }
305
306// A Buffer is a buffer manager for marshaling and unmarshaling
307// protocol buffers.  It may be reused between invocations to
308// reduce memory usage.  It is not necessary to use a Buffer;
309// the global functions Marshal and Unmarshal create a
310// temporary Buffer and are fine for most applications.
311type Buffer struct {
312	buf   []byte // encode/decode byte stream
313	index int    // read point
314
315	deterministic bool
316}
317
318// NewBuffer allocates a new Buffer and initializes its internal data to
319// the contents of the argument slice.
320func NewBuffer(e []byte) *Buffer {
321	return &Buffer{buf: e}
322}
323
324// Reset resets the Buffer, ready for marshaling a new protocol buffer.
325func (p *Buffer) Reset() {
326	p.buf = p.buf[0:0] // for reading/writing
327	p.index = 0        // for reading
328}
329
330// SetBuf replaces the internal buffer with the slice,
331// ready for unmarshaling the contents of the slice.
332func (p *Buffer) SetBuf(s []byte) {
333	p.buf = s
334	p.index = 0
335}
336
337// Bytes returns the contents of the Buffer.
338func (p *Buffer) Bytes() []byte { return p.buf }
339
340// SetDeterministic sets whether to use deterministic serialization.
341//
342// Deterministic serialization guarantees that for a given binary, equal
343// messages will always be serialized to the same bytes. This implies:
344//
345//   - Repeated serialization of a message will return the same bytes.
346//   - Different processes of the same binary (which may be executing on
347//     different machines) will serialize equal messages to the same bytes.
348//
349// Note that the deterministic serialization is NOT canonical across
350// languages. It is not guaranteed to remain stable over time. It is unstable
351// across different builds with schema changes due to unknown fields.
352// Users who need canonical serialization (e.g., persistent storage in a
353// canonical form, fingerprinting, etc.) should define their own
354// canonicalization specification and implement their own serializer rather
355// than relying on this API.
356//
357// If deterministic serialization is requested, map entries will be sorted
358// by keys in lexographical order. This is an implementation detail and
359// subject to change.
360func (p *Buffer) SetDeterministic(deterministic bool) {
361	p.deterministic = deterministic
362}
363
364/*
365 * Helper routines for simplifying the creation of optional fields of basic type.
366 */
367
368// Bool is a helper routine that allocates a new bool value
369// to store v and returns a pointer to it.
370func Bool(v bool) *bool {
371	return &v
372}
373
374// Int32 is a helper routine that allocates a new int32 value
375// to store v and returns a pointer to it.
376func Int32(v int32) *int32 {
377	return &v
378}
379
380// Int is a helper routine that allocates a new int32 value
381// to store v and returns a pointer to it, but unlike Int32
382// its argument value is an int.
383func Int(v int) *int32 {
384	p := new(int32)
385	*p = int32(v)
386	return p
387}
388
389// Int64 is a helper routine that allocates a new int64 value
390// to store v and returns a pointer to it.
391func Int64(v int64) *int64 {
392	return &v
393}
394
395// Float32 is a helper routine that allocates a new float32 value
396// to store v and returns a pointer to it.
397func Float32(v float32) *float32 {
398	return &v
399}
400
401// Float64 is a helper routine that allocates a new float64 value
402// to store v and returns a pointer to it.
403func Float64(v float64) *float64 {
404	return &v
405}
406
407// Uint32 is a helper routine that allocates a new uint32 value
408// to store v and returns a pointer to it.
409func Uint32(v uint32) *uint32 {
410	return &v
411}
412
413// Uint64 is a helper routine that allocates a new uint64 value
414// to store v and returns a pointer to it.
415func Uint64(v uint64) *uint64 {
416	return &v
417}
418
419// String is a helper routine that allocates a new string value
420// to store v and returns a pointer to it.
421func String(v string) *string {
422	return &v
423}
424
425// EnumName is a helper function to simplify printing protocol buffer enums
426// by name.  Given an enum map and a value, it returns a useful string.
427func EnumName(m map[int32]string, v int32) string {
428	s, ok := m[v]
429	if ok {
430		return s
431	}
432	return strconv.Itoa(int(v))
433}
434
435// UnmarshalJSONEnum is a helper function to simplify recovering enum int values
436// from their JSON-encoded representation. Given a map from the enum's symbolic
437// names to its int values, and a byte buffer containing the JSON-encoded
438// value, it returns an int32 that can be cast to the enum type by the caller.
439//
440// The function can deal with both JSON representations, numeric and symbolic.
441func UnmarshalJSONEnum(m map[string]int32, data []byte, enumName string) (int32, error) {
442	if data[0] == '"' {
443		// New style: enums are strings.
444		var repr string
445		if err := json.Unmarshal(data, &repr); err != nil {
446			return -1, err
447		}
448		val, ok := m[repr]
449		if !ok {
450			return 0, fmt.Errorf("unrecognized enum %s value %q", enumName, repr)
451		}
452		return val, nil
453	}
454	// Old style: enums are ints.
455	var val int32
456	if err := json.Unmarshal(data, &val); err != nil {
457		return 0, fmt.Errorf("cannot unmarshal %#q into enum %s", data, enumName)
458	}
459	return val, nil
460}
461
462// DebugPrint dumps the encoded data in b in a debugging format with a header
463// including the string s. Used in testing but made available for general debugging.
464func (p *Buffer) DebugPrint(s string, b []byte) {
465	var u uint64
466
467	obuf := p.buf
468	sindex := p.index
469	p.buf = b
470	p.index = 0
471	depth := 0
472
473	fmt.Printf("\n--- %s ---\n", s)
474
475out:
476	for {
477		for i := 0; i < depth; i++ {
478			fmt.Print("  ")
479		}
480
481		index := p.index
482		if index == len(p.buf) {
483			break
484		}
485
486		op, err := p.DecodeVarint()
487		if err != nil {
488			fmt.Printf("%3d: fetching op err %v\n", index, err)
489			break out
490		}
491		tag := op >> 3
492		wire := op & 7
493
494		switch wire {
495		default:
496			fmt.Printf("%3d: t=%3d unknown wire=%d\n",
497				index, tag, wire)
498			break out
499
500		case WireBytes:
501			var r []byte
502
503			r, err = p.DecodeRawBytes(false)
504			if err != nil {
505				break out
506			}
507			fmt.Printf("%3d: t=%3d bytes [%d]", index, tag, len(r))
508			if len(r) <= 6 {
509				for i := 0; i < len(r); i++ {
510					fmt.Printf(" %.2x", r[i])
511				}
512			} else {
513				for i := 0; i < 3; i++ {
514					fmt.Printf(" %.2x", r[i])
515				}
516				fmt.Printf(" ..")
517				for i := len(r) - 3; i < len(r); i++ {
518					fmt.Printf(" %.2x", r[i])
519				}
520			}
521			fmt.Printf("\n")
522
523		case WireFixed32:
524			u, err = p.DecodeFixed32()
525			if err != nil {
526				fmt.Printf("%3d: t=%3d fix32 err %v\n", index, tag, err)
527				break out
528			}
529			fmt.Printf("%3d: t=%3d fix32 %d\n", index, tag, u)
530
531		case WireFixed64:
532			u, err = p.DecodeFixed64()
533			if err != nil {
534				fmt.Printf("%3d: t=%3d fix64 err %v\n", index, tag, err)
535				break out
536			}
537			fmt.Printf("%3d: t=%3d fix64 %d\n", index, tag, u)
538
539		case WireVarint:
540			u, err = p.DecodeVarint()
541			if err != nil {
542				fmt.Printf("%3d: t=%3d varint err %v\n", index, tag, err)
543				break out
544			}
545			fmt.Printf("%3d: t=%3d varint %d\n", index, tag, u)
546
547		case WireStartGroup:
548			fmt.Printf("%3d: t=%3d start\n", index, tag)
549			depth++
550
551		case WireEndGroup:
552			depth--
553			fmt.Printf("%3d: t=%3d end\n", index, tag)
554		}
555	}
556
557	if depth != 0 {
558		fmt.Printf("%3d: start-end not balanced %d\n", p.index, depth)
559	}
560	fmt.Printf("\n")
561
562	p.buf = obuf
563	p.index = sindex
564}
565
566// SetDefaults sets unset protocol buffer fields to their default values.
567// It only modifies fields that are both unset and have defined defaults.
568// It recursively sets default values in any non-nil sub-messages.
569func SetDefaults(pb Message) {
570	setDefaults(reflect.ValueOf(pb), true, false)
571}
572
573// v is a pointer to a struct.
574func setDefaults(v reflect.Value, recur, zeros bool) {
575	v = v.Elem()
576
577	defaultMu.RLock()
578	dm, ok := defaults[v.Type()]
579	defaultMu.RUnlock()
580	if !ok {
581		dm = buildDefaultMessage(v.Type())
582		defaultMu.Lock()
583		defaults[v.Type()] = dm
584		defaultMu.Unlock()
585	}
586
587	for _, sf := range dm.scalars {
588		f := v.Field(sf.index)
589		if !f.IsNil() {
590			// field already set
591			continue
592		}
593		dv := sf.value
594		if dv == nil && !zeros {
595			// no explicit default, and don't want to set zeros
596			continue
597		}
598		fptr := f.Addr().Interface() // **T
599		// TODO: Consider batching the allocations we do here.
600		switch sf.kind {
601		case reflect.Bool:
602			b := new(bool)
603			if dv != nil {
604				*b = dv.(bool)
605			}
606			*(fptr.(**bool)) = b
607		case reflect.Float32:
608			f := new(float32)
609			if dv != nil {
610				*f = dv.(float32)
611			}
612			*(fptr.(**float32)) = f
613		case reflect.Float64:
614			f := new(float64)
615			if dv != nil {
616				*f = dv.(float64)
617			}
618			*(fptr.(**float64)) = f
619		case reflect.Int32:
620			// might be an enum
621			if ft := f.Type(); ft != int32PtrType {
622				// enum
623				f.Set(reflect.New(ft.Elem()))
624				if dv != nil {
625					f.Elem().SetInt(int64(dv.(int32)))
626				}
627			} else {
628				// int32 field
629				i := new(int32)
630				if dv != nil {
631					*i = dv.(int32)
632				}
633				*(fptr.(**int32)) = i
634			}
635		case reflect.Int64:
636			i := new(int64)
637			if dv != nil {
638				*i = dv.(int64)
639			}
640			*(fptr.(**int64)) = i
641		case reflect.String:
642			s := new(string)
643			if dv != nil {
644				*s = dv.(string)
645			}
646			*(fptr.(**string)) = s
647		case reflect.Uint8:
648			// exceptional case: []byte
649			var b []byte
650			if dv != nil {
651				db := dv.([]byte)
652				b = make([]byte, len(db))
653				copy(b, db)
654			} else {
655				b = []byte{}
656			}
657			*(fptr.(*[]byte)) = b
658		case reflect.Uint32:
659			u := new(uint32)
660			if dv != nil {
661				*u = dv.(uint32)
662			}
663			*(fptr.(**uint32)) = u
664		case reflect.Uint64:
665			u := new(uint64)
666			if dv != nil {
667				*u = dv.(uint64)
668			}
669			*(fptr.(**uint64)) = u
670		default:
671			log.Printf("proto: can't set default for field %v (sf.kind=%v)", f, sf.kind)
672		}
673	}
674
675	for _, ni := range dm.nested {
676		f := v.Field(ni)
677		// f is *T or []*T or map[T]*T
678		switch f.Kind() {
679		case reflect.Ptr:
680			if f.IsNil() {
681				continue
682			}
683			setDefaults(f, recur, zeros)
684
685		case reflect.Slice:
686			for i := 0; i < f.Len(); i++ {
687				e := f.Index(i)
688				if e.IsNil() {
689					continue
690				}
691				setDefaults(e, recur, zeros)
692			}
693
694		case reflect.Map:
695			for _, k := range f.MapKeys() {
696				e := f.MapIndex(k)
697				if e.IsNil() {
698					continue
699				}
700				setDefaults(e, recur, zeros)
701			}
702		}
703	}
704}
705
706var (
707	// defaults maps a protocol buffer struct type to a slice of the fields,
708	// with its scalar fields set to their proto-declared non-zero default values.
709	defaultMu sync.RWMutex
710	defaults  = make(map[reflect.Type]defaultMessage)
711
712	int32PtrType = reflect.TypeOf((*int32)(nil))
713)
714
715// defaultMessage represents information about the default values of a message.
716type defaultMessage struct {
717	scalars []scalarField
718	nested  []int // struct field index of nested messages
719}
720
721type scalarField struct {
722	index int          // struct field index
723	kind  reflect.Kind // element type (the T in *T or []T)
724	value interface{}  // the proto-declared default value, or nil
725}
726
727// t is a struct type.
728func buildDefaultMessage(t reflect.Type) (dm defaultMessage) {
729	sprop := GetProperties(t)
730	for _, prop := range sprop.Prop {
731		fi, ok := sprop.decoderTags.get(prop.Tag)
732		if !ok {
733			// XXX_unrecognized
734			continue
735		}
736		ft := t.Field(fi).Type
737
738		sf, nested, err := fieldDefault(ft, prop)
739		switch {
740		case err != nil:
741			log.Print(err)
742		case nested:
743			dm.nested = append(dm.nested, fi)
744		case sf != nil:
745			sf.index = fi
746			dm.scalars = append(dm.scalars, *sf)
747		}
748	}
749
750	return dm
751}
752
753// fieldDefault returns the scalarField for field type ft.
754// sf will be nil if the field can not have a default.
755// nestedMessage will be true if this is a nested message.
756// Note that sf.index is not set on return.
757func fieldDefault(ft reflect.Type, prop *Properties) (sf *scalarField, nestedMessage bool, err error) {
758	var canHaveDefault bool
759	switch ft.Kind() {
760	case reflect.Ptr:
761		if ft.Elem().Kind() == reflect.Struct {
762			nestedMessage = true
763		} else {
764			canHaveDefault = true // proto2 scalar field
765		}
766
767	case reflect.Slice:
768		switch ft.Elem().Kind() {
769		case reflect.Ptr:
770			nestedMessage = true // repeated message
771		case reflect.Uint8:
772			canHaveDefault = true // bytes field
773		}
774
775	case reflect.Map:
776		if ft.Elem().Kind() == reflect.Ptr {
777			nestedMessage = true // map with message values
778		}
779	}
780
781	if !canHaveDefault {
782		if nestedMessage {
783			return nil, true, nil
784		}
785		return nil, false, nil
786	}
787
788	// We now know that ft is a pointer or slice.
789	sf = &scalarField{kind: ft.Elem().Kind()}
790
791	// scalar fields without defaults
792	if !prop.HasDefault {
793		return sf, false, nil
794	}
795
796	// a scalar field: either *T or []byte
797	switch ft.Elem().Kind() {
798	case reflect.Bool:
799		x, err := strconv.ParseBool(prop.Default)
800		if err != nil {
801			return nil, false, fmt.Errorf("proto: bad default bool %q: %v", prop.Default, err)
802		}
803		sf.value = x
804	case reflect.Float32:
805		x, err := strconv.ParseFloat(prop.Default, 32)
806		if err != nil {
807			return nil, false, fmt.Errorf("proto: bad default float32 %q: %v", prop.Default, err)
808		}
809		sf.value = float32(x)
810	case reflect.Float64:
811		x, err := strconv.ParseFloat(prop.Default, 64)
812		if err != nil {
813			return nil, false, fmt.Errorf("proto: bad default float64 %q: %v", prop.Default, err)
814		}
815		sf.value = x
816	case reflect.Int32:
817		x, err := strconv.ParseInt(prop.Default, 10, 32)
818		if err != nil {
819			return nil, false, fmt.Errorf("proto: bad default int32 %q: %v", prop.Default, err)
820		}
821		sf.value = int32(x)
822	case reflect.Int64:
823		x, err := strconv.ParseInt(prop.Default, 10, 64)
824		if err != nil {
825			return nil, false, fmt.Errorf("proto: bad default int64 %q: %v", prop.Default, err)
826		}
827		sf.value = x
828	case reflect.String:
829		sf.value = prop.Default
830	case reflect.Uint8:
831		// []byte (not *uint8)
832		sf.value = []byte(prop.Default)
833	case reflect.Uint32:
834		x, err := strconv.ParseUint(prop.Default, 10, 32)
835		if err != nil {
836			return nil, false, fmt.Errorf("proto: bad default uint32 %q: %v", prop.Default, err)
837		}
838		sf.value = uint32(x)
839	case reflect.Uint64:
840		x, err := strconv.ParseUint(prop.Default, 10, 64)
841		if err != nil {
842			return nil, false, fmt.Errorf("proto: bad default uint64 %q: %v", prop.Default, err)
843		}
844		sf.value = x
845	default:
846		return nil, false, fmt.Errorf("proto: unhandled def kind %v", ft.Elem().Kind())
847	}
848
849	return sf, false, nil
850}
851
852// mapKeys returns a sort.Interface to be used for sorting the map keys.
853// Map fields may have key types of non-float scalars, strings and enums.
854func mapKeys(vs []reflect.Value) sort.Interface {
855	s := mapKeySorter{vs: vs}
856
857	// Type specialization per https://developers.google.com/protocol-buffers/docs/proto#maps.
858	if len(vs) == 0 {
859		return s
860	}
861	switch vs[0].Kind() {
862	case reflect.Int32, reflect.Int64:
863		s.less = func(a, b reflect.Value) bool { return a.Int() < b.Int() }
864	case reflect.Uint32, reflect.Uint64:
865		s.less = func(a, b reflect.Value) bool { return a.Uint() < b.Uint() }
866	case reflect.Bool:
867		s.less = func(a, b reflect.Value) bool { return !a.Bool() && b.Bool() } // false < true
868	case reflect.String:
869		s.less = func(a, b reflect.Value) bool { return a.String() < b.String() }
870	default:
871		panic(fmt.Sprintf("unsupported map key type: %v", vs[0].Kind()))
872	}
873
874	return s
875}
876
877type mapKeySorter struct {
878	vs   []reflect.Value
879	less func(a, b reflect.Value) bool
880}
881
882func (s mapKeySorter) Len() int      { return len(s.vs) }
883func (s mapKeySorter) Swap(i, j int) { s.vs[i], s.vs[j] = s.vs[j], s.vs[i] }
884func (s mapKeySorter) Less(i, j int) bool {
885	return s.less(s.vs[i], s.vs[j])
886}
887
888// isProto3Zero reports whether v is a zero proto3 value.
889func isProto3Zero(v reflect.Value) bool {
890	switch v.Kind() {
891	case reflect.Bool:
892		return !v.Bool()
893	case reflect.Int32, reflect.Int64:
894		return v.Int() == 0
895	case reflect.Uint32, reflect.Uint64:
896		return v.Uint() == 0
897	case reflect.Float32, reflect.Float64:
898		return v.Float() == 0
899	case reflect.String:
900		return v.String() == ""
901	}
902	return false
903}
904
905// ProtoPackageIsVersion2 is referenced from generated protocol buffer files
906// to assert that that code is compatible with this version of the proto package.
907const GoGoProtoPackageIsVersion2 = true
908
909// ProtoPackageIsVersion1 is referenced from generated protocol buffer files
910// to assert that that code is compatible with this version of the proto package.
911const GoGoProtoPackageIsVersion1 = true
912
913// InternalMessageInfo is a type used internally by generated .pb.go files.
914// This type is not intended to be used by non-generated code.
915// This type is not subject to any compatibility guarantee.
916type InternalMessageInfo struct {
917	marshal   *marshalInfo
918	unmarshal *unmarshalInfo
919	merge     *mergeInfo
920	discard   *discardInfo
921}
922