1// Copyright 2011 The Snappy-Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package snappy
6
7import (
8	"encoding/binary"
9	"errors"
10	"io"
11)
12
13// Encode returns the encoded form of src. The returned slice may be a sub-
14// slice of dst if dst was large enough to hold the entire encoded block.
15// Otherwise, a newly allocated slice will be returned.
16//
17// The dst and src must not overlap. It is valid to pass a nil dst.
18func Encode(dst, src []byte) []byte {
19	if n := MaxEncodedLen(len(src)); n < 0 {
20		panic(ErrTooLarge)
21	} else if len(dst) < n {
22		dst = make([]byte, n)
23	}
24
25	// The block starts with the varint-encoded length of the decompressed bytes.
26	d := binary.PutUvarint(dst, uint64(len(src)))
27
28	for len(src) > 0 {
29		p := src
30		src = nil
31		if len(p) > maxBlockSize {
32			p, src = p[:maxBlockSize], p[maxBlockSize:]
33		}
34		if len(p) < minNonLiteralBlockSize {
35			d += emitLiteral(dst[d:], p)
36		} else {
37			d += encodeBlock(dst[d:], p)
38		}
39	}
40	return dst[:d]
41}
42
43// inputMargin is the minimum number of extra input bytes to keep, inside
44// encodeBlock's inner loop. On some architectures, this margin lets us
45// implement a fast path for emitLiteral, where the copy of short (<= 16 byte)
46// literals can be implemented as a single load to and store from a 16-byte
47// register. That literal's actual length can be as short as 1 byte, so this
48// can copy up to 15 bytes too much, but that's OK as subsequent iterations of
49// the encoding loop will fix up the copy overrun, and this inputMargin ensures
50// that we don't overrun the dst and src buffers.
51const inputMargin = 16 - 1
52
53// minNonLiteralBlockSize is the minimum size of the input to encodeBlock that
54// could be encoded with a copy tag. This is the minimum with respect to the
55// algorithm used by encodeBlock, not a minimum enforced by the file format.
56//
57// The encoded output must start with at least a 1 byte literal, as there are
58// no previous bytes to copy. A minimal (1 byte) copy after that, generated
59// from an emitCopy call in encodeBlock's main loop, would require at least
60// another inputMargin bytes, for the reason above: we want any emitLiteral
61// calls inside encodeBlock's main loop to use the fast path if possible, which
62// requires being able to overrun by inputMargin bytes. Thus,
63// minNonLiteralBlockSize equals 1 + 1 + inputMargin.
64//
65// The C++ code doesn't use this exact threshold, but it could, as discussed at
66// https://groups.google.com/d/topic/snappy-compression/oGbhsdIJSJ8/discussion
67// The difference between Go (2+inputMargin) and C++ (inputMargin) is purely an
68// optimization. It should not affect the encoded form. This is tested by
69// TestSameEncodingAsCppShortCopies.
70const minNonLiteralBlockSize = 1 + 1 + inputMargin
71
72// MaxEncodedLen returns the maximum length of a snappy block, given its
73// uncompressed length.
74//
75// It will return a negative value if srcLen is too large to encode.
76func MaxEncodedLen(srcLen int) int {
77	n := uint64(srcLen)
78	if n > 0xffffffff {
79		return -1
80	}
81	// Compressed data can be defined as:
82	//    compressed := item* literal*
83	//    item       := literal* copy
84	//
85	// The trailing literal sequence has a space blowup of at most 62/60
86	// since a literal of length 60 needs one tag byte + one extra byte
87	// for length information.
88	//
89	// Item blowup is trickier to measure. Suppose the "copy" op copies
90	// 4 bytes of data. Because of a special check in the encoding code,
91	// we produce a 4-byte copy only if the offset is < 65536. Therefore
92	// the copy op takes 3 bytes to encode, and this type of item leads
93	// to at most the 62/60 blowup for representing literals.
94	//
95	// Suppose the "copy" op copies 5 bytes of data. If the offset is big
96	// enough, it will take 5 bytes to encode the copy op. Therefore the
97	// worst case here is a one-byte literal followed by a five-byte copy.
98	// That is, 6 bytes of input turn into 7 bytes of "compressed" data.
99	//
100	// This last factor dominates the blowup, so the final estimate is:
101	n = 32 + n + n/6
102	if n > 0xffffffff {
103		return -1
104	}
105	return int(n)
106}
107
108var errClosed = errors.New("snappy: Writer is closed")
109
110// NewWriter returns a new Writer that compresses to w.
111//
112// The Writer returned does not buffer writes. There is no need to Flush or
113// Close such a Writer.
114//
115// Deprecated: the Writer returned is not suitable for many small writes, only
116// for few large writes. Use NewBufferedWriter instead, which is efficient
117// regardless of the frequency and shape of the writes, and remember to Close
118// that Writer when done.
119func NewWriter(w io.Writer) *Writer {
120	return &Writer{
121		w:    w,
122		obuf: make([]byte, obufLen),
123	}
124}
125
126// NewBufferedWriter returns a new Writer that compresses to w, using the
127// framing format described at
128// https://github.com/google/snappy/blob/master/framing_format.txt
129//
130// The Writer returned buffers writes. Users must call Close to guarantee all
131// data has been forwarded to the underlying io.Writer. They may also call
132// Flush zero or more times before calling Close.
133func NewBufferedWriter(w io.Writer) *Writer {
134	return &Writer{
135		w:    w,
136		ibuf: make([]byte, 0, maxBlockSize),
137		obuf: make([]byte, obufLen),
138	}
139}
140
141// Writer is an io.Writer that can write Snappy-compressed bytes.
142type Writer struct {
143	w   io.Writer
144	err error
145
146	// ibuf is a buffer for the incoming (uncompressed) bytes.
147	//
148	// Its use is optional. For backwards compatibility, Writers created by the
149	// NewWriter function have ibuf == nil, do not buffer incoming bytes, and
150	// therefore do not need to be Flush'ed or Close'd.
151	ibuf []byte
152
153	// obuf is a buffer for the outgoing (compressed) bytes.
154	obuf []byte
155
156	// wroteStreamHeader is whether we have written the stream header.
157	wroteStreamHeader bool
158}
159
160// Reset discards the writer's state and switches the Snappy writer to write to
161// w. This permits reusing a Writer rather than allocating a new one.
162func (w *Writer) Reset(writer io.Writer) {
163	w.w = writer
164	w.err = nil
165	if w.ibuf != nil {
166		w.ibuf = w.ibuf[:0]
167	}
168	w.wroteStreamHeader = false
169}
170
171// Write satisfies the io.Writer interface.
172func (w *Writer) Write(p []byte) (nRet int, errRet error) {
173	if w.ibuf == nil {
174		// Do not buffer incoming bytes. This does not perform or compress well
175		// if the caller of Writer.Write writes many small slices. This
176		// behavior is therefore deprecated, but still supported for backwards
177		// compatibility with code that doesn't explicitly Flush or Close.
178		return w.write(p)
179	}
180
181	// The remainder of this method is based on bufio.Writer.Write from the
182	// standard library.
183
184	for len(p) > (cap(w.ibuf)-len(w.ibuf)) && w.err == nil {
185		var n int
186		if len(w.ibuf) == 0 {
187			// Large write, empty buffer.
188			// Write directly from p to avoid copy.
189			n, _ = w.write(p)
190		} else {
191			n = copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
192			w.ibuf = w.ibuf[:len(w.ibuf)+n]
193			w.Flush()
194		}
195		nRet += n
196		p = p[n:]
197	}
198	if w.err != nil {
199		return nRet, w.err
200	}
201	n := copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
202	w.ibuf = w.ibuf[:len(w.ibuf)+n]
203	nRet += n
204	return nRet, nil
205}
206
207func (w *Writer) write(p []byte) (nRet int, errRet error) {
208	if w.err != nil {
209		return 0, w.err
210	}
211	for len(p) > 0 {
212		obufStart := len(magicChunk)
213		if !w.wroteStreamHeader {
214			w.wroteStreamHeader = true
215			copy(w.obuf, magicChunk)
216			obufStart = 0
217		}
218
219		var uncompressed []byte
220		if len(p) > maxBlockSize {
221			uncompressed, p = p[:maxBlockSize], p[maxBlockSize:]
222		} else {
223			uncompressed, p = p, nil
224		}
225		checksum := crc(uncompressed)
226
227		// Compress the buffer, discarding the result if the improvement
228		// isn't at least 12.5%.
229		compressed := Encode(w.obuf[obufHeaderLen:], uncompressed)
230		chunkType := uint8(chunkTypeCompressedData)
231		chunkLen := 4 + len(compressed)
232		obufEnd := obufHeaderLen + len(compressed)
233		if len(compressed) >= len(uncompressed)-len(uncompressed)/8 {
234			chunkType = chunkTypeUncompressedData
235			chunkLen = 4 + len(uncompressed)
236			obufEnd = obufHeaderLen
237		}
238
239		// Fill in the per-chunk header that comes before the body.
240		w.obuf[len(magicChunk)+0] = chunkType
241		w.obuf[len(magicChunk)+1] = uint8(chunkLen >> 0)
242		w.obuf[len(magicChunk)+2] = uint8(chunkLen >> 8)
243		w.obuf[len(magicChunk)+3] = uint8(chunkLen >> 16)
244		w.obuf[len(magicChunk)+4] = uint8(checksum >> 0)
245		w.obuf[len(magicChunk)+5] = uint8(checksum >> 8)
246		w.obuf[len(magicChunk)+6] = uint8(checksum >> 16)
247		w.obuf[len(magicChunk)+7] = uint8(checksum >> 24)
248
249		if _, err := w.w.Write(w.obuf[obufStart:obufEnd]); err != nil {
250			w.err = err
251			return nRet, err
252		}
253		if chunkType == chunkTypeUncompressedData {
254			if _, err := w.w.Write(uncompressed); err != nil {
255				w.err = err
256				return nRet, err
257			}
258		}
259		nRet += len(uncompressed)
260	}
261	return nRet, nil
262}
263
264// Flush flushes the Writer to its underlying io.Writer.
265func (w *Writer) Flush() error {
266	if w.err != nil {
267		return w.err
268	}
269	if len(w.ibuf) == 0 {
270		return nil
271	}
272	w.write(w.ibuf)
273	w.ibuf = w.ibuf[:0]
274	return w.err
275}
276
277// Close calls Flush and then closes the Writer.
278func (w *Writer) Close() error {
279	w.Flush()
280	ret := w.err
281	if w.err == nil {
282		w.err = errClosed
283	}
284	return ret
285}
286