1 /*
2 ** 2006 September 30
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Implementation of the full-text-search tokenizer that implements
13 ** a Porter stemmer.
14 */
15 
16 /*
17 ** The code in this file is only compiled if:
18 **
19 **     * The FTS2 module is being built as an extension
20 **       (in which case SQLITE_CORE is not defined), or
21 **
22 **     * The FTS2 module is being built into the core of
23 **       SQLite (in which case SQLITE_ENABLE_FTS2 is defined).
24 */
25 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)
26 
27 
28 #include <assert.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <string.h>
32 
33 #include "fts2_tokenizer.h"
34 
35 /*
36 ** Class derived from sqlite3_tokenizer
37 */
38 typedef struct porter_tokenizer {
39   sqlite3_tokenizer base;      /* Base class */
40 } porter_tokenizer;
41 
42 /*
43 ** Class derived from sqlit3_tokenizer_cursor
44 */
45 typedef struct porter_tokenizer_cursor {
46   sqlite3_tokenizer_cursor base;
47   const char *zInput;          /* input we are tokenizing */
48   int nInput;                  /* size of the input */
49   int iOffset;                 /* current position in zInput */
50   int iToken;                  /* index of next token to be returned */
51   char *zToken;                /* storage for current token */
52   int nAllocated;              /* space allocated to zToken buffer */
53 } porter_tokenizer_cursor;
54 
55 
56 /* Forward declaration */
57 static const sqlite3_tokenizer_module porterTokenizerModule;
58 
59 
60 /*
61 ** Create a new tokenizer instance.
62 */
porterCreate(int argc,const char * const * argv,sqlite3_tokenizer ** ppTokenizer)63 static int porterCreate(
64   int argc, const char * const *argv,
65   sqlite3_tokenizer **ppTokenizer
66 ){
67   porter_tokenizer *t;
68   t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t));
69   if( t==NULL ) return SQLITE_NOMEM;
70   memset(t, 0, sizeof(*t));
71   *ppTokenizer = &t->base;
72   return SQLITE_OK;
73 }
74 
75 /*
76 ** Destroy a tokenizer
77 */
porterDestroy(sqlite3_tokenizer * pTokenizer)78 static int porterDestroy(sqlite3_tokenizer *pTokenizer){
79   sqlite3_free(pTokenizer);
80   return SQLITE_OK;
81 }
82 
83 /*
84 ** Prepare to begin tokenizing a particular string.  The input
85 ** string to be tokenized is zInput[0..nInput-1].  A cursor
86 ** used to incrementally tokenize this string is returned in
87 ** *ppCursor.
88 */
porterOpen(sqlite3_tokenizer * pTokenizer,const char * zInput,int nInput,sqlite3_tokenizer_cursor ** ppCursor)89 static int porterOpen(
90   sqlite3_tokenizer *pTokenizer,         /* The tokenizer */
91   const char *zInput, int nInput,        /* String to be tokenized */
92   sqlite3_tokenizer_cursor **ppCursor    /* OUT: Tokenization cursor */
93 ){
94   porter_tokenizer_cursor *c;
95 
96   c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
97   if( c==NULL ) return SQLITE_NOMEM;
98 
99   c->zInput = zInput;
100   if( zInput==0 ){
101     c->nInput = 0;
102   }else if( nInput<0 ){
103     c->nInput = (int)strlen(zInput);
104   }else{
105     c->nInput = nInput;
106   }
107   c->iOffset = 0;                 /* start tokenizing at the beginning */
108   c->iToken = 0;
109   c->zToken = NULL;               /* no space allocated, yet. */
110   c->nAllocated = 0;
111 
112   *ppCursor = &c->base;
113   return SQLITE_OK;
114 }
115 
116 /*
117 ** Close a tokenization cursor previously opened by a call to
118 ** porterOpen() above.
119 */
porterClose(sqlite3_tokenizer_cursor * pCursor)120 static int porterClose(sqlite3_tokenizer_cursor *pCursor){
121   porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
122   sqlite3_free(c->zToken);
123   sqlite3_free(c);
124   return SQLITE_OK;
125 }
126 /*
127 ** Vowel or consonant
128 */
129 static const char cType[] = {
130    0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
131    1, 1, 1, 2, 1
132 };
133 
134 /*
135 ** isConsonant() and isVowel() determine if their first character in
136 ** the string they point to is a consonant or a vowel, according
137 ** to Porter ruls.
138 **
139 ** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
140 ** 'Y' is a consonant unless it follows another consonant,
141 ** in which case it is a vowel.
142 **
143 ** In these routine, the letters are in reverse order.  So the 'y' rule
144 ** is that 'y' is a consonant unless it is followed by another
145 ** consonent.
146 */
147 static int isVowel(const char*);
isConsonant(const char * z)148 static int isConsonant(const char *z){
149   int j;
150   char x = *z;
151   if( x==0 ) return 0;
152   assert( x>='a' && x<='z' );
153   j = cType[x-'a'];
154   if( j<2 ) return j;
155   return z[1]==0 || isVowel(z + 1);
156 }
isVowel(const char * z)157 static int isVowel(const char *z){
158   int j;
159   char x = *z;
160   if( x==0 ) return 0;
161   assert( x>='a' && x<='z' );
162   j = cType[x-'a'];
163   if( j<2 ) return 1-j;
164   return isConsonant(z + 1);
165 }
166 
167 /*
168 ** Let any sequence of one or more vowels be represented by V and let
169 ** C be sequence of one or more consonants.  Then every word can be
170 ** represented as:
171 **
172 **           [C] (VC){m} [V]
173 **
174 ** In prose:  A word is an optional consonant followed by zero or
175 ** vowel-consonant pairs followed by an optional vowel.  "m" is the
176 ** number of vowel consonant pairs.  This routine computes the value
177 ** of m for the first i bytes of a word.
178 **
179 ** Return true if the m-value for z is 1 or more.  In other words,
180 ** return true if z contains at least one vowel that is followed
181 ** by a consonant.
182 **
183 ** In this routine z[] is in reverse order.  So we are really looking
184 ** for an instance of of a consonant followed by a vowel.
185 */
m_gt_0(const char * z)186 static int m_gt_0(const char *z){
187   while( isVowel(z) ){ z++; }
188   if( *z==0 ) return 0;
189   while( isConsonant(z) ){ z++; }
190   return *z!=0;
191 }
192 
193 /* Like mgt0 above except we are looking for a value of m which is
194 ** exactly 1
195 */
m_eq_1(const char * z)196 static int m_eq_1(const char *z){
197   while( isVowel(z) ){ z++; }
198   if( *z==0 ) return 0;
199   while( isConsonant(z) ){ z++; }
200   if( *z==0 ) return 0;
201   while( isVowel(z) ){ z++; }
202   if( *z==0 ) return 1;
203   while( isConsonant(z) ){ z++; }
204   return *z==0;
205 }
206 
207 /* Like mgt0 above except we are looking for a value of m>1 instead
208 ** or m>0
209 */
m_gt_1(const char * z)210 static int m_gt_1(const char *z){
211   while( isVowel(z) ){ z++; }
212   if( *z==0 ) return 0;
213   while( isConsonant(z) ){ z++; }
214   if( *z==0 ) return 0;
215   while( isVowel(z) ){ z++; }
216   if( *z==0 ) return 0;
217   while( isConsonant(z) ){ z++; }
218   return *z!=0;
219 }
220 
221 /*
222 ** Return TRUE if there is a vowel anywhere within z[0..n-1]
223 */
hasVowel(const char * z)224 static int hasVowel(const char *z){
225   while( isConsonant(z) ){ z++; }
226   return *z!=0;
227 }
228 
229 /*
230 ** Return TRUE if the word ends in a double consonant.
231 **
232 ** The text is reversed here. So we are really looking at
233 ** the first two characters of z[].
234 */
doubleConsonant(const char * z)235 static int doubleConsonant(const char *z){
236   return isConsonant(z) && z[0]==z[1] && isConsonant(z+1);
237 }
238 
239 /*
240 ** Return TRUE if the word ends with three letters which
241 ** are consonant-vowel-consonent and where the final consonant
242 ** is not 'w', 'x', or 'y'.
243 **
244 ** The word is reversed here.  So we are really checking the
245 ** first three letters and the first one cannot be in [wxy].
246 */
star_oh(const char * z)247 static int star_oh(const char *z){
248   return
249     z[0]!=0 && isConsonant(z) &&
250     z[0]!='w' && z[0]!='x' && z[0]!='y' &&
251     z[1]!=0 && isVowel(z+1) &&
252     z[2]!=0 && isConsonant(z+2);
253 }
254 
255 /*
256 ** If the word ends with zFrom and xCond() is true for the stem
257 ** of the word that preceeds the zFrom ending, then change the
258 ** ending to zTo.
259 **
260 ** The input word *pz and zFrom are both in reverse order.  zTo
261 ** is in normal order.
262 **
263 ** Return TRUE if zFrom matches.  Return FALSE if zFrom does not
264 ** match.  Not that TRUE is returned even if xCond() fails and
265 ** no substitution occurs.
266 */
stem(char ** pz,const char * zFrom,const char * zTo,int (* xCond)(const char *))267 static int stem(
268   char **pz,             /* The word being stemmed (Reversed) */
269   const char *zFrom,     /* If the ending matches this... (Reversed) */
270   const char *zTo,       /* ... change the ending to this (not reversed) */
271   int (*xCond)(const char*)   /* Condition that must be true */
272 ){
273   char *z = *pz;
274   while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
275   if( *zFrom!=0 ) return 0;
276   if( xCond && !xCond(z) ) return 1;
277   while( *zTo ){
278     *(--z) = *(zTo++);
279   }
280   *pz = z;
281   return 1;
282 }
283 
284 /*
285 ** This is the fallback stemmer used when the porter stemmer is
286 ** inappropriate.  The input word is copied into the output with
287 ** US-ASCII case folding.  If the input word is too long (more
288 ** than 20 bytes if it contains no digits or more than 6 bytes if
289 ** it contains digits) then word is truncated to 20 or 6 bytes
290 ** by taking 10 or 3 bytes from the beginning and end.
291 */
copy_stemmer(const char * zIn,int nIn,char * zOut,int * pnOut)292 static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
293   int i, mx, j;
294   int hasDigit = 0;
295   for(i=0; i<nIn; i++){
296     int c = zIn[i];
297     if( c>='A' && c<='Z' ){
298       zOut[i] = c - 'A' + 'a';
299     }else{
300       if( c>='0' && c<='9' ) hasDigit = 1;
301       zOut[i] = c;
302     }
303   }
304   mx = hasDigit ? 3 : 10;
305   if( nIn>mx*2 ){
306     for(j=mx, i=nIn-mx; i<nIn; i++, j++){
307       zOut[j] = zOut[i];
308     }
309     i = j;
310   }
311   zOut[i] = 0;
312   *pnOut = i;
313 }
314 
315 
316 /*
317 ** Stem the input word zIn[0..nIn-1].  Store the output in zOut.
318 ** zOut is at least big enough to hold nIn bytes.  Write the actual
319 ** size of the output word (exclusive of the '\0' terminator) into *pnOut.
320 **
321 ** Any upper-case characters in the US-ASCII character set ([A-Z])
322 ** are converted to lower case.  Upper-case UTF characters are
323 ** unchanged.
324 **
325 ** Words that are longer than about 20 bytes are stemmed by retaining
326 ** a few bytes from the beginning and the end of the word.  If the
327 ** word contains digits, 3 bytes are taken from the beginning and
328 ** 3 bytes from the end.  For long words without digits, 10 bytes
329 ** are taken from each end.  US-ASCII case folding still applies.
330 **
331 ** If the input word contains not digits but does characters not
332 ** in [a-zA-Z] then no stemming is attempted and this routine just
333 ** copies the input into the input into the output with US-ASCII
334 ** case folding.
335 **
336 ** Stemming never increases the length of the word.  So there is
337 ** no chance of overflowing the zOut buffer.
338 */
porter_stemmer(const char * zIn,int nIn,char * zOut,int * pnOut)339 static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
340   int i, j, c;
341   char zReverse[28];
342   char *z, *z2;
343   if( nIn<3 || nIn>=sizeof(zReverse)-7 ){
344     /* The word is too big or too small for the porter stemmer.
345     ** Fallback to the copy stemmer */
346     copy_stemmer(zIn, nIn, zOut, pnOut);
347     return;
348   }
349   for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
350     c = zIn[i];
351     if( c>='A' && c<='Z' ){
352       zReverse[j] = c + 'a' - 'A';
353     }else if( c>='a' && c<='z' ){
354       zReverse[j] = c;
355     }else{
356       /* The use of a character not in [a-zA-Z] means that we fallback
357       ** to the copy stemmer */
358       copy_stemmer(zIn, nIn, zOut, pnOut);
359       return;
360     }
361   }
362   memset(&zReverse[sizeof(zReverse)-5], 0, 5);
363   z = &zReverse[j+1];
364 
365 
366   /* Step 1a */
367   if( z[0]=='s' ){
368     if(
369      !stem(&z, "sess", "ss", 0) &&
370      !stem(&z, "sei", "i", 0)  &&
371      !stem(&z, "ss", "ss", 0)
372     ){
373       z++;
374     }
375   }
376 
377   /* Step 1b */
378   z2 = z;
379   if( stem(&z, "dee", "ee", m_gt_0) ){
380     /* Do nothing.  The work was all in the test */
381   }else if(
382      (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
383       && z!=z2
384   ){
385      if( stem(&z, "ta", "ate", 0) ||
386          stem(&z, "lb", "ble", 0) ||
387          stem(&z, "zi", "ize", 0) ){
388        /* Do nothing.  The work was all in the test */
389      }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
390        z++;
391      }else if( m_eq_1(z) && star_oh(z) ){
392        *(--z) = 'e';
393      }
394   }
395 
396   /* Step 1c */
397   if( z[0]=='y' && hasVowel(z+1) ){
398     z[0] = 'i';
399   }
400 
401   /* Step 2 */
402   switch( z[1] ){
403    case 'a':
404      stem(&z, "lanoita", "ate", m_gt_0) ||
405      stem(&z, "lanoit", "tion", m_gt_0);
406      break;
407    case 'c':
408      stem(&z, "icne", "ence", m_gt_0) ||
409      stem(&z, "icna", "ance", m_gt_0);
410      break;
411    case 'e':
412      stem(&z, "rezi", "ize", m_gt_0);
413      break;
414    case 'g':
415      stem(&z, "igol", "log", m_gt_0);
416      break;
417    case 'l':
418      stem(&z, "ilb", "ble", m_gt_0) ||
419      stem(&z, "illa", "al", m_gt_0) ||
420      stem(&z, "iltne", "ent", m_gt_0) ||
421      stem(&z, "ile", "e", m_gt_0) ||
422      stem(&z, "ilsuo", "ous", m_gt_0);
423      break;
424    case 'o':
425      stem(&z, "noitazi", "ize", m_gt_0) ||
426      stem(&z, "noita", "ate", m_gt_0) ||
427      stem(&z, "rota", "ate", m_gt_0);
428      break;
429    case 's':
430      stem(&z, "msila", "al", m_gt_0) ||
431      stem(&z, "ssenevi", "ive", m_gt_0) ||
432      stem(&z, "ssenluf", "ful", m_gt_0) ||
433      stem(&z, "ssensuo", "ous", m_gt_0);
434      break;
435    case 't':
436      stem(&z, "itila", "al", m_gt_0) ||
437      stem(&z, "itivi", "ive", m_gt_0) ||
438      stem(&z, "itilib", "ble", m_gt_0);
439      break;
440   }
441 
442   /* Step 3 */
443   switch( z[0] ){
444    case 'e':
445      stem(&z, "etaci", "ic", m_gt_0) ||
446      stem(&z, "evita", "", m_gt_0)   ||
447      stem(&z, "ezila", "al", m_gt_0);
448      break;
449    case 'i':
450      stem(&z, "itici", "ic", m_gt_0);
451      break;
452    case 'l':
453      stem(&z, "laci", "ic", m_gt_0) ||
454      stem(&z, "luf", "", m_gt_0);
455      break;
456    case 's':
457      stem(&z, "ssen", "", m_gt_0);
458      break;
459   }
460 
461   /* Step 4 */
462   switch( z[1] ){
463    case 'a':
464      if( z[0]=='l' && m_gt_1(z+2) ){
465        z += 2;
466      }
467      break;
468    case 'c':
469      if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e')  && m_gt_1(z+4)  ){
470        z += 4;
471      }
472      break;
473    case 'e':
474      if( z[0]=='r' && m_gt_1(z+2) ){
475        z += 2;
476      }
477      break;
478    case 'i':
479      if( z[0]=='c' && m_gt_1(z+2) ){
480        z += 2;
481      }
482      break;
483    case 'l':
484      if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
485        z += 4;
486      }
487      break;
488    case 'n':
489      if( z[0]=='t' ){
490        if( z[2]=='a' ){
491          if( m_gt_1(z+3) ){
492            z += 3;
493          }
494        }else if( z[2]=='e' ){
495          stem(&z, "tneme", "", m_gt_1) ||
496          stem(&z, "tnem", "", m_gt_1) ||
497          stem(&z, "tne", "", m_gt_1);
498        }
499      }
500      break;
501    case 'o':
502      if( z[0]=='u' ){
503        if( m_gt_1(z+2) ){
504          z += 2;
505        }
506      }else if( z[3]=='s' || z[3]=='t' ){
507        stem(&z, "noi", "", m_gt_1);
508      }
509      break;
510    case 's':
511      if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
512        z += 3;
513      }
514      break;
515    case 't':
516      stem(&z, "eta", "", m_gt_1) ||
517      stem(&z, "iti", "", m_gt_1);
518      break;
519    case 'u':
520      if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
521        z += 3;
522      }
523      break;
524    case 'v':
525    case 'z':
526      if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
527        z += 3;
528      }
529      break;
530   }
531 
532   /* Step 5a */
533   if( z[0]=='e' ){
534     if( m_gt_1(z+1) ){
535       z++;
536     }else if( m_eq_1(z+1) && !star_oh(z+1) ){
537       z++;
538     }
539   }
540 
541   /* Step 5b */
542   if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
543     z++;
544   }
545 
546   /* z[] is now the stemmed word in reverse order.  Flip it back
547   ** around into forward order and return.
548   */
549   *pnOut = i = strlen(z);
550   zOut[i] = 0;
551   while( *z ){
552     zOut[--i] = *(z++);
553   }
554 }
555 
556 /*
557 ** Characters that can be part of a token.  We assume any character
558 ** whose value is greater than 0x80 (any UTF character) can be
559 ** part of a token.  In other words, delimiters all must have
560 ** values of 0x7f or lower.
561 */
562 static const char porterIdChar[] = {
563 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
564     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,  /* 3x */
565     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 4x */
566     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,  /* 5x */
567     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 6x */
568     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,  /* 7x */
569 };
570 #define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30]))
571 
572 /*
573 ** Extract the next token from a tokenization cursor.  The cursor must
574 ** have been opened by a prior call to porterOpen().
575 */
porterNext(sqlite3_tokenizer_cursor * pCursor,const char ** pzToken,int * pnBytes,int * piStartOffset,int * piEndOffset,int * piPosition)576 static int porterNext(
577   sqlite3_tokenizer_cursor *pCursor,  /* Cursor returned by porterOpen */
578   const char **pzToken,               /* OUT: *pzToken is the token text */
579   int *pnBytes,                       /* OUT: Number of bytes in token */
580   int *piStartOffset,                 /* OUT: Starting offset of token */
581   int *piEndOffset,                   /* OUT: Ending offset of token */
582   int *piPosition                     /* OUT: Position integer of token */
583 ){
584   porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
585   const char *z = c->zInput;
586 
587   while( c->iOffset<c->nInput ){
588     int iStartOffset, ch;
589 
590     /* Scan past delimiter characters */
591     while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
592       c->iOffset++;
593     }
594 
595     /* Count non-delimiter characters. */
596     iStartOffset = c->iOffset;
597     while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
598       c->iOffset++;
599     }
600 
601     if( c->iOffset>iStartOffset ){
602       int n = c->iOffset-iStartOffset;
603       if( n>c->nAllocated ){
604         c->nAllocated = n+20;
605         c->zToken = sqlite3_realloc(c->zToken, c->nAllocated);
606         if( c->zToken==NULL ) return SQLITE_NOMEM;
607       }
608       porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
609       *pzToken = c->zToken;
610       *piStartOffset = iStartOffset;
611       *piEndOffset = c->iOffset;
612       *piPosition = c->iToken++;
613       return SQLITE_OK;
614     }
615   }
616   return SQLITE_DONE;
617 }
618 
619 /*
620 ** The set of routines that implement the porter-stemmer tokenizer
621 */
622 static const sqlite3_tokenizer_module porterTokenizerModule = {
623   0,
624   porterCreate,
625   porterDestroy,
626   porterOpen,
627   porterClose,
628   porterNext,
629 };
630 
631 /*
632 ** Allocate a new porter tokenizer.  Return a pointer to the new
633 ** tokenizer in *ppModule
634 */
sqlite3Fts2PorterTokenizerModule(sqlite3_tokenizer_module const ** ppModule)635 void sqlite3Fts2PorterTokenizerModule(
636   sqlite3_tokenizer_module const**ppModule
637 ){
638   *ppModule = &porterTokenizerModule;
639 }
640 
641 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */
642