1 //  Copyright (c) 2013, Facebook, Inc.  All rights reserved.
2 //  This source code is licensed under both the GPLv2 (found in the
3 //  COPYING file in the root directory) and Apache 2.0 License
4 //  (found in the LICENSE.Apache file in the root directory).
5 //
6 #ifndef ROCKSDB_LITE
7 
8 #ifndef GFLAGS
9 #include <cstdio>
main()10 int main() { fprintf(stderr, "Please install gflags to run tools\n"); }
11 #else
12 #include <atomic>
13 #include <functional>
14 #include <memory>
15 #include <sstream>
16 #include <unordered_map>
17 
18 #include "rocksdb/env.h"
19 
20 #include "utilities/persistent_cache/block_cache_tier.h"
21 #include "utilities/persistent_cache/persistent_cache_tier.h"
22 #include "utilities/persistent_cache/volatile_tier_impl.h"
23 
24 #include "monitoring/histogram.h"
25 #include "port/port.h"
26 #include "table/block_based/block_builder.h"
27 #include "util/gflags_compat.h"
28 #include "util/mutexlock.h"
29 #include "util/stop_watch.h"
30 
31 DEFINE_int32(nsec, 10, "nsec");
32 DEFINE_int32(nthread_write, 1, "Insert threads");
33 DEFINE_int32(nthread_read, 1, "Lookup threads");
34 DEFINE_string(path, "/tmp/microbench/blkcache", "Path for cachefile");
35 DEFINE_string(log_path, "/tmp/log", "Path for the log file");
36 DEFINE_uint64(cache_size, std::numeric_limits<uint64_t>::max(), "Cache size");
37 DEFINE_int32(iosize, 4 * 1024, "Read IO size");
38 DEFINE_int32(writer_iosize, 4 * 1024, "File writer IO size");
39 DEFINE_int32(writer_qdepth, 1, "File writer qdepth");
40 DEFINE_bool(enable_pipelined_writes, false, "Enable async writes");
41 DEFINE_string(cache_type, "block_cache",
42               "Cache type. (block_cache, volatile, tiered)");
43 DEFINE_bool(benchmark, false, "Benchmark mode");
44 DEFINE_int32(volatile_cache_pct, 10, "Percentage of cache in memory tier.");
45 
46 namespace ROCKSDB_NAMESPACE {
47 
NewVolatileCache()48 std::unique_ptr<PersistentCacheTier> NewVolatileCache() {
49   assert(FLAGS_cache_size != std::numeric_limits<uint64_t>::max());
50   std::unique_ptr<PersistentCacheTier> pcache(
51       new VolatileCacheTier(FLAGS_cache_size));
52   return pcache;
53 }
54 
NewBlockCache()55 std::unique_ptr<PersistentCacheTier> NewBlockCache() {
56   std::shared_ptr<Logger> log;
57   if (!Env::Default()->NewLogger(FLAGS_log_path, &log).ok()) {
58     fprintf(stderr, "Error creating log %s \n", FLAGS_log_path.c_str());
59     return nullptr;
60   }
61 
62   PersistentCacheConfig opt(Env::Default(), FLAGS_path, FLAGS_cache_size, log);
63   opt.writer_dispatch_size = FLAGS_writer_iosize;
64   opt.writer_qdepth = FLAGS_writer_qdepth;
65   opt.pipeline_writes = FLAGS_enable_pipelined_writes;
66   opt.max_write_pipeline_backlog_size = std::numeric_limits<uint64_t>::max();
67   std::unique_ptr<PersistentCacheTier> cache(new BlockCacheTier(opt));
68   Status status = cache->Open();
69   return cache;
70 }
71 
72 // create a new cache tier
73 // construct a tiered RAM+Block cache
NewTieredCache(const size_t mem_size,const PersistentCacheConfig & opt)74 std::unique_ptr<PersistentTieredCache> NewTieredCache(
75     const size_t mem_size, const PersistentCacheConfig& opt) {
76   std::unique_ptr<PersistentTieredCache> tcache(new PersistentTieredCache());
77   // create primary tier
78   assert(mem_size);
79   auto pcache =
80       std::shared_ptr<PersistentCacheTier>(new VolatileCacheTier(mem_size));
81   tcache->AddTier(pcache);
82   // create secondary tier
83   auto scache = std::shared_ptr<PersistentCacheTier>(new BlockCacheTier(opt));
84   tcache->AddTier(scache);
85 
86   Status s = tcache->Open();
87   assert(s.ok());
88   return tcache;
89 }
90 
NewTieredCache()91 std::unique_ptr<PersistentTieredCache> NewTieredCache() {
92   std::shared_ptr<Logger> log;
93   if (!Env::Default()->NewLogger(FLAGS_log_path, &log).ok()) {
94     fprintf(stderr, "Error creating log %s \n", FLAGS_log_path.c_str());
95     abort();
96   }
97 
98   auto pct = FLAGS_volatile_cache_pct / static_cast<double>(100);
99   PersistentCacheConfig opt(Env::Default(), FLAGS_path,
100                             (1 - pct) * FLAGS_cache_size, log);
101   opt.writer_dispatch_size = FLAGS_writer_iosize;
102   opt.writer_qdepth = FLAGS_writer_qdepth;
103   opt.pipeline_writes = FLAGS_enable_pipelined_writes;
104   opt.max_write_pipeline_backlog_size = std::numeric_limits<uint64_t>::max();
105   return NewTieredCache(FLAGS_cache_size * pct, opt);
106 }
107 
108 //
109 // Benchmark driver
110 //
111 class CacheTierBenchmark {
112  public:
CacheTierBenchmark(std::shared_ptr<PersistentCacheTier> && cache)113   explicit CacheTierBenchmark(std::shared_ptr<PersistentCacheTier>&& cache)
114       : cache_(cache) {
115     if (FLAGS_nthread_read) {
116       fprintf(stdout, "Pre-populating\n");
117       Prepop();
118       fprintf(stdout, "Pre-population completed\n");
119     }
120 
121     stats_.Clear();
122 
123     // Start IO threads
124     std::list<port::Thread> threads;
125     Spawn(FLAGS_nthread_write, &threads,
126           std::bind(&CacheTierBenchmark::Write, this));
127     Spawn(FLAGS_nthread_read, &threads,
128           std::bind(&CacheTierBenchmark::Read, this));
129 
130     // Wait till FLAGS_nsec and then signal to quit
131     StopWatchNano t(Env::Default(), /*auto_start=*/true);
132     size_t sec = t.ElapsedNanos() / 1000000000ULL;
133     while (!quit_) {
134       sec = t.ElapsedNanos() / 1000000000ULL;
135       quit_ = sec > size_t(FLAGS_nsec);
136       /* sleep override */ sleep(1);
137     }
138 
139     // Wait for threads to exit
140     Join(&threads);
141     // Print stats
142     PrintStats(sec);
143     // Close the cache
144     cache_->TEST_Flush();
145     cache_->Close();
146   }
147 
148  private:
PrintStats(const size_t sec)149   void PrintStats(const size_t sec) {
150     std::ostringstream msg;
151     msg << "Test stats" << std::endl
152         << "* Elapsed: " << sec << " s" << std::endl
153         << "* Write Latency:" << std::endl
154         << stats_.write_latency_.ToString() << std::endl
155         << "* Read Latency:" << std::endl
156         << stats_.read_latency_.ToString() << std::endl
157         << "* Bytes written:" << std::endl
158         << stats_.bytes_written_.ToString() << std::endl
159         << "* Bytes read:" << std::endl
160         << stats_.bytes_read_.ToString() << std::endl
161         << "Cache stats:" << std::endl
162         << cache_->PrintStats() << std::endl;
163     fprintf(stderr, "%s\n", msg.str().c_str());
164   }
165 
166   //
167   // Insert implementation and corresponding helper functions
168   //
Prepop()169   void Prepop() {
170     for (uint64_t i = 0; i < 1024 * 1024; ++i) {
171       InsertKey(i);
172       insert_key_limit_++;
173       read_key_limit_++;
174     }
175 
176     // Wait until data is flushed
177     cache_->TEST_Flush();
178     // warmup the cache
179     for (uint64_t i = 0; i < 1024 * 1024; ReadKey(i++)) {
180     }
181   }
182 
Write()183   void Write() {
184     while (!quit_) {
185       InsertKey(insert_key_limit_++);
186     }
187   }
188 
InsertKey(const uint64_t key)189   void InsertKey(const uint64_t key) {
190     // construct key
191     uint64_t k[3];
192     Slice block_key = FillKey(k, key);
193 
194     // construct value
195     auto block = NewBlock(key);
196 
197     // insert
198     StopWatchNano timer(Env::Default(), /*auto_start=*/true);
199     while (true) {
200       Status status = cache_->Insert(block_key, block.get(), FLAGS_iosize);
201       if (status.ok()) {
202         break;
203       }
204 
205       // transient error is possible if we run without pipelining
206       assert(!FLAGS_enable_pipelined_writes);
207     }
208 
209     // adjust stats
210     const size_t elapsed_micro = timer.ElapsedNanos() / 1000;
211     stats_.write_latency_.Add(elapsed_micro);
212     stats_.bytes_written_.Add(FLAGS_iosize);
213   }
214 
215   //
216   // Read implementation
217   //
Read()218   void Read() {
219     while (!quit_) {
220       ReadKey(random() % read_key_limit_);
221     }
222   }
223 
ReadKey(const uint64_t val)224   void ReadKey(const uint64_t val) {
225     // construct key
226     uint64_t k[3];
227     Slice key = FillKey(k, val);
228 
229     // Lookup in cache
230     StopWatchNano timer(Env::Default(), /*auto_start=*/true);
231     std::unique_ptr<char[]> block;
232     size_t size;
233     Status status = cache_->Lookup(key, &block, &size);
234     if (!status.ok()) {
235       fprintf(stderr, "%s\n", status.ToString().c_str());
236     }
237     assert(status.ok());
238     assert(size == (size_t) FLAGS_iosize);
239 
240     // adjust stats
241     const size_t elapsed_micro = timer.ElapsedNanos() / 1000;
242     stats_.read_latency_.Add(elapsed_micro);
243     stats_.bytes_read_.Add(FLAGS_iosize);
244 
245     // verify content
246     if (!FLAGS_benchmark) {
247       auto expected_block = NewBlock(val);
248       assert(memcmp(block.get(), expected_block.get(), FLAGS_iosize) == 0);
249     }
250   }
251 
252   // create data for a key by filling with a certain pattern
NewBlock(const uint64_t val)253   std::unique_ptr<char[]> NewBlock(const uint64_t val) {
254     std::unique_ptr<char[]> data(new char[FLAGS_iosize]);
255     memset(data.get(), val % 255, FLAGS_iosize);
256     return data;
257   }
258 
259   // spawn threads
Spawn(const size_t n,std::list<port::Thread> * threads,const std::function<void ()> & fn)260   void Spawn(const size_t n, std::list<port::Thread>* threads,
261              const std::function<void()>& fn) {
262     for (size_t i = 0; i < n; ++i) {
263       threads->emplace_back(fn);
264     }
265   }
266 
267   // join threads
Join(std::list<port::Thread> * threads)268   void Join(std::list<port::Thread>* threads) {
269     for (auto& th : *threads) {
270       th.join();
271     }
272   }
273 
274   // construct key
FillKey(uint64_t (& k)[3],const uint64_t val)275   Slice FillKey(uint64_t (&k)[3], const uint64_t val) {
276     k[0] = k[1] = 0;
277     k[2] = val;
278     void* p = static_cast<void*>(&k);
279     return Slice(static_cast<char*>(p), sizeof(k));
280   }
281 
282   // benchmark stats
283   struct Stats {
ClearROCKSDB_NAMESPACE::CacheTierBenchmark::Stats284     void Clear() {
285       bytes_written_.Clear();
286       bytes_read_.Clear();
287       read_latency_.Clear();
288       write_latency_.Clear();
289     }
290 
291     HistogramImpl bytes_written_;
292     HistogramImpl bytes_read_;
293     HistogramImpl read_latency_;
294     HistogramImpl write_latency_;
295   };
296 
297   std::shared_ptr<PersistentCacheTier> cache_;  // cache implementation
298   std::atomic<uint64_t> insert_key_limit_{0};   // data inserted upto
299   std::atomic<uint64_t> read_key_limit_{0};     // data can be read safely upto
300   bool quit_ = false;                           // Quit thread ?
301   mutable Stats stats_;                         // Stats
302 };
303 
304 }  // namespace ROCKSDB_NAMESPACE
305 
306 //
307 // main
308 //
main(int argc,char ** argv)309 int main(int argc, char** argv) {
310   GFLAGS_NAMESPACE::SetUsageMessage(std::string("\nUSAGE:\n") +
311                                     std::string(argv[0]) + " [OPTIONS]...");
312   GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, false);
313 
314   std::ostringstream msg;
315   msg << "Config" << std::endl
316       << "======" << std::endl
317       << "* nsec=" << FLAGS_nsec << std::endl
318       << "* nthread_write=" << FLAGS_nthread_write << std::endl
319       << "* path=" << FLAGS_path << std::endl
320       << "* cache_size=" << FLAGS_cache_size << std::endl
321       << "* iosize=" << FLAGS_iosize << std::endl
322       << "* writer_iosize=" << FLAGS_writer_iosize << std::endl
323       << "* writer_qdepth=" << FLAGS_writer_qdepth << std::endl
324       << "* enable_pipelined_writes=" << FLAGS_enable_pipelined_writes
325       << std::endl
326       << "* cache_type=" << FLAGS_cache_type << std::endl
327       << "* benchmark=" << FLAGS_benchmark << std::endl
328       << "* volatile_cache_pct=" << FLAGS_volatile_cache_pct << std::endl;
329 
330   fprintf(stderr, "%s\n", msg.str().c_str());
331 
332   std::shared_ptr<ROCKSDB_NAMESPACE::PersistentCacheTier> cache;
333   if (FLAGS_cache_type == "block_cache") {
334     fprintf(stderr, "Using block cache implementation\n");
335     cache = ROCKSDB_NAMESPACE::NewBlockCache();
336   } else if (FLAGS_cache_type == "volatile") {
337     fprintf(stderr, "Using volatile cache implementation\n");
338     cache = ROCKSDB_NAMESPACE::NewVolatileCache();
339   } else if (FLAGS_cache_type == "tiered") {
340     fprintf(stderr, "Using tiered cache implementation\n");
341     cache = ROCKSDB_NAMESPACE::NewTieredCache();
342   } else {
343     fprintf(stderr, "Unknown option for cache\n");
344   }
345 
346   assert(cache);
347   if (!cache) {
348     fprintf(stderr, "Error creating cache\n");
349     abort();
350   }
351 
352   std::unique_ptr<ROCKSDB_NAMESPACE::CacheTierBenchmark> benchmark(
353       new ROCKSDB_NAMESPACE::CacheTierBenchmark(std::move(cache)));
354 
355   return 0;
356 }
357 #endif  // #ifndef GFLAGS
358 #else
main(int,char **)359 int main(int, char**) { return 0; }
360 #endif
361