1 // Copyright 2015, ARM Limited
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 #include "jit/arm64/vixl/Instructions-vixl.h"
28 
29 #include "jit/arm64/vixl/Assembler-vixl.h"
30 
31 namespace vixl {
32 
33 
34 // Floating-point infinity values.
35 const float16 kFP16PositiveInfinity = 0x7c00;
36 const float16 kFP16NegativeInfinity = 0xfc00;
37 const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
38 const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
39 const double kFP64PositiveInfinity =
40     rawbits_to_double(UINT64_C(0x7ff0000000000000));
41 const double kFP64NegativeInfinity =
42     rawbits_to_double(UINT64_C(0xfff0000000000000));
43 
44 
45 // The default NaN values (for FPCR.DN=1).
46 const double kFP64DefaultNaN = rawbits_to_double(UINT64_C(0x7ff8000000000000));
47 const float kFP32DefaultNaN = rawbits_to_float(0x7fc00000);
48 const float16 kFP16DefaultNaN = 0x7e00;
49 
50 
RotateRight(uint64_t value,unsigned int rotate,unsigned int width)51 static uint64_t RotateRight(uint64_t value,
52                             unsigned int rotate,
53                             unsigned int width) {
54   VIXL_ASSERT(width <= 64);
55   rotate &= 63;
56   return ((value & ((UINT64_C(1) << rotate) - 1)) <<
57           (width - rotate)) | (value >> rotate);
58 }
59 
60 
RepeatBitsAcrossReg(unsigned reg_size,uint64_t value,unsigned width)61 static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
62                                     uint64_t value,
63                                     unsigned width) {
64   VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
65               (width == 32));
66   VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
67   uint64_t result = value & ((UINT64_C(1) << width) - 1);
68   for (unsigned i = width; i < reg_size; i *= 2) {
69     result |= (result << i);
70   }
71   return result;
72 }
73 
74 
IsLoad() const75 bool Instruction::IsLoad() const {
76   if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
77     return false;
78   }
79 
80   if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
81     return Mask(LoadStorePairLBit) != 0;
82   } else {
83     LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
84     switch (op) {
85       case LDRB_w:
86       case LDRH_w:
87       case LDR_w:
88       case LDR_x:
89       case LDRSB_w:
90       case LDRSB_x:
91       case LDRSH_w:
92       case LDRSH_x:
93       case LDRSW_x:
94       case LDR_b:
95       case LDR_h:
96       case LDR_s:
97       case LDR_d:
98       case LDR_q: return true;
99       default: return false;
100     }
101   }
102 }
103 
104 
IsStore() const105 bool Instruction::IsStore() const {
106   if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
107     return false;
108   }
109 
110   if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
111     return Mask(LoadStorePairLBit) == 0;
112   } else {
113     LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
114     switch (op) {
115       case STRB_w:
116       case STRH_w:
117       case STR_w:
118       case STR_x:
119       case STR_b:
120       case STR_h:
121       case STR_s:
122       case STR_d:
123       case STR_q: return true;
124       default: return false;
125     }
126   }
127 }
128 
129 
130 // Logical immediates can't encode zero, so a return value of zero is used to
131 // indicate a failure case. Specifically, where the constraints on imm_s are
132 // not met.
ImmLogical() const133 uint64_t Instruction::ImmLogical() const {
134   unsigned reg_size = SixtyFourBits() ? kXRegSize : kWRegSize;
135   int32_t n = BitN();
136   int32_t imm_s = ImmSetBits();
137   int32_t imm_r = ImmRotate();
138 
139   // An integer is constructed from the n, imm_s and imm_r bits according to
140   // the following table:
141   //
142   //  N   imms    immr    size        S             R
143   //  1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
144   //  0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
145   //  0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
146   //  0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
147   //  0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
148   //  0  11110s  xxxxxr     2    UInt(s)       UInt(r)
149   // (s bits must not be all set)
150   //
151   // A pattern is constructed of size bits, where the least significant S+1
152   // bits are set. The pattern is rotated right by R, and repeated across a
153   // 32 or 64-bit value, depending on destination register width.
154   //
155 
156   if (n == 1) {
157     if (imm_s == 0x3f) {
158       return 0;
159     }
160     uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
161     return RotateRight(bits, imm_r, 64);
162   } else {
163     if ((imm_s >> 1) == 0x1f) {
164       return 0;
165     }
166     for (int width = 0x20; width >= 0x2; width >>= 1) {
167       if ((imm_s & width) == 0) {
168         int mask = width - 1;
169         if ((imm_s & mask) == mask) {
170           return 0;
171         }
172         uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
173         return RepeatBitsAcrossReg(reg_size,
174                                    RotateRight(bits, imm_r & mask, width),
175                                    width);
176       }
177     }
178   }
179   VIXL_UNREACHABLE();
180   return 0;
181 }
182 
183 
ImmNEONabcdefgh() const184 uint32_t Instruction::ImmNEONabcdefgh() const {
185   return ImmNEONabc() << 5 | ImmNEONdefgh();
186 }
187 
188 
Imm8ToFP32(uint32_t imm8)189 float Instruction::Imm8ToFP32(uint32_t imm8) {
190   //   Imm8: abcdefgh (8 bits)
191   // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
192   // where B is b ^ 1
193   uint32_t bits = imm8;
194   uint32_t bit7 = (bits >> 7) & 0x1;
195   uint32_t bit6 = (bits >> 6) & 0x1;
196   uint32_t bit5_to_0 = bits & 0x3f;
197   uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
198 
199   return rawbits_to_float(result);
200 }
201 
202 
ImmFP32() const203 float Instruction::ImmFP32() const {
204   return Imm8ToFP32(ImmFP());
205 }
206 
207 
Imm8ToFP64(uint32_t imm8)208 double Instruction::Imm8ToFP64(uint32_t imm8) {
209   //   Imm8: abcdefgh (8 bits)
210   // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
211   //         0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
212   // where B is b ^ 1
213   uint32_t bits = imm8;
214   uint64_t bit7 = (bits >> 7) & 0x1;
215   uint64_t bit6 = (bits >> 6) & 0x1;
216   uint64_t bit5_to_0 = bits & 0x3f;
217   uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
218 
219   return rawbits_to_double(result);
220 }
221 
222 
ImmFP64() const223 double Instruction::ImmFP64() const {
224   return Imm8ToFP64(ImmFP());
225 }
226 
227 
ImmNEONFP32() const228 float Instruction::ImmNEONFP32() const {
229   return Imm8ToFP32(ImmNEONabcdefgh());
230 }
231 
232 
ImmNEONFP64() const233 double Instruction::ImmNEONFP64() const {
234   return Imm8ToFP64(ImmNEONabcdefgh());
235 }
236 
237 
CalcLSDataSize(LoadStoreOp op)238 unsigned CalcLSDataSize(LoadStoreOp op) {
239   VIXL_ASSERT((LSSize_offset + LSSize_width) == (kInstructionSize * 8));
240   unsigned size = static_cast<Instr>(op) >> LSSize_offset;
241   if ((op & LSVector_mask) != 0) {
242     // Vector register memory operations encode the access size in the "size"
243     // and "opc" fields.
244     if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) {
245       size = kQRegSizeInBytesLog2;
246     }
247   }
248   return size;
249 }
250 
251 
CalcLSPairDataSize(LoadStorePairOp op)252 unsigned CalcLSPairDataSize(LoadStorePairOp op) {
253   VIXL_STATIC_ASSERT(kXRegSizeInBytes == kDRegSizeInBytes);
254   VIXL_STATIC_ASSERT(kWRegSizeInBytes == kSRegSizeInBytes);
255   switch (op) {
256     case STP_q:
257     case LDP_q: return kQRegSizeInBytesLog2;
258     case STP_x:
259     case LDP_x:
260     case STP_d:
261     case LDP_d: return kXRegSizeInBytesLog2;
262     default: return kWRegSizeInBytesLog2;
263   }
264 }
265 
266 
ImmBranchRangeBitwidth(ImmBranchType branch_type)267 int Instruction::ImmBranchRangeBitwidth(ImmBranchType branch_type) {
268   switch (branch_type) {
269     case UncondBranchType:
270       return ImmUncondBranch_width;
271     case CondBranchType:
272       return ImmCondBranch_width;
273     case CompareBranchType:
274       return ImmCmpBranch_width;
275     case TestBranchType:
276       return ImmTestBranch_width;
277     default:
278       VIXL_UNREACHABLE();
279       return 0;
280   }
281 }
282 
283 
ImmBranchForwardRange(ImmBranchType branch_type)284 int32_t Instruction::ImmBranchForwardRange(ImmBranchType branch_type) {
285   int32_t encoded_max = 1 << (ImmBranchRangeBitwidth(branch_type) - 1);
286   return encoded_max * kInstructionSize;
287 }
288 
289 
IsValidImmPCOffset(ImmBranchType branch_type,int64_t offset)290 bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
291                                      int64_t offset) {
292   return is_intn(ImmBranchRangeBitwidth(branch_type), offset);
293 }
294 
ImmBranchTypeToRange(ImmBranchType branch_type)295 ImmBranchRangeType Instruction::ImmBranchTypeToRange(ImmBranchType branch_type)
296 {
297   switch (branch_type) {
298     case UncondBranchType:
299       return UncondBranchRangeType;
300     case CondBranchType:
301     case CompareBranchType:
302       return CondBranchRangeType;
303     case TestBranchType:
304       return TestBranchRangeType;
305     default:
306       return UnknownBranchRangeType;
307   }
308 }
309 
ImmBranchMaxForwardOffset(ImmBranchRangeType range_type)310 int32_t Instruction::ImmBranchMaxForwardOffset(ImmBranchRangeType range_type)
311 {
312   // Branches encode a pc-relative two's complement number of 32-bit
313   // instructions. Compute the number of bytes corresponding to the largest
314   // positive number of instructions that can be encoded.
315   switch(range_type) {
316     case TestBranchRangeType:
317       return ((1 << ImmTestBranch_width) - 1) / 2 * kInstructionSize;
318     case CondBranchRangeType:
319       return ((1 << ImmCondBranch_width) - 1) / 2 * kInstructionSize;
320     case UncondBranchRangeType:
321       return ((1 << ImmUncondBranch_width) - 1) / 2 * kInstructionSize;
322     default:
323       VIXL_UNREACHABLE();
324       return 0;
325   }
326 }
327 
ImmBranchMinBackwardOffset(ImmBranchRangeType range_type)328 int32_t Instruction::ImmBranchMinBackwardOffset(ImmBranchRangeType range_type)
329 {
330   switch(range_type) {
331     case TestBranchRangeType:
332       return -int32_t(1 << ImmTestBranch_width) / 2 * kInstructionSize;
333     case CondBranchRangeType:
334       return -int32_t(1 << ImmCondBranch_width) / 2 * kInstructionSize;
335     case UncondBranchRangeType:
336       return -int32_t(1 << ImmUncondBranch_width) / 2 * kInstructionSize;
337     default:
338       VIXL_UNREACHABLE();
339       return 0;
340   }
341 }
342 
ImmPCOffsetTarget() const343 const Instruction* Instruction::ImmPCOffsetTarget() const {
344   const Instruction * base = this;
345   ptrdiff_t offset;
346   if (IsPCRelAddressing()) {
347     // ADR and ADRP.
348     offset = ImmPCRel();
349     if (Mask(PCRelAddressingMask) == ADRP) {
350       base = AlignDown(base, kPageSize);
351       offset *= kPageSize;
352     } else {
353       VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
354     }
355   } else {
356     // All PC-relative branches.
357     VIXL_ASSERT(BranchType() != UnknownBranchType);
358     // Relative branch offsets are instruction-size-aligned.
359     offset = ImmBranch() << kInstructionSizeLog2;
360   }
361   return base + offset;
362 }
363 
364 
ImmBranch() const365 int Instruction::ImmBranch() const {
366   switch (BranchType()) {
367     case CondBranchType: return ImmCondBranch();
368     case UncondBranchType: return ImmUncondBranch();
369     case CompareBranchType: return ImmCmpBranch();
370     case TestBranchType: return ImmTestBranch();
371     default: VIXL_UNREACHABLE();
372   }
373   return 0;
374 }
375 
376 
SetImmPCOffsetTarget(const Instruction * target)377 void Instruction::SetImmPCOffsetTarget(const Instruction* target) {
378   if (IsPCRelAddressing()) {
379     SetPCRelImmTarget(target);
380   } else {
381     SetBranchImmTarget(target);
382   }
383 }
384 
385 
SetPCRelImmTarget(const Instruction * target)386 void Instruction::SetPCRelImmTarget(const Instruction* target) {
387   ptrdiff_t imm21;
388   if ((Mask(PCRelAddressingMask) == ADR)) {
389     imm21 = target - this;
390   } else {
391     VIXL_ASSERT(Mask(PCRelAddressingMask) == ADRP);
392     uintptr_t this_page = reinterpret_cast<uintptr_t>(this) / kPageSize;
393     uintptr_t target_page = reinterpret_cast<uintptr_t>(target) / kPageSize;
394     imm21 = target_page - this_page;
395   }
396   Instr imm = Assembler::ImmPCRelAddress(static_cast<int32_t>(imm21));
397 
398   SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
399 }
400 
401 
SetBranchImmTarget(const Instruction * target)402 void Instruction::SetBranchImmTarget(const Instruction* target) {
403   VIXL_ASSERT(((target - this) & 3) == 0);
404   Instr branch_imm = 0;
405   uint32_t imm_mask = 0;
406   int offset = static_cast<int>((target - this) >> kInstructionSizeLog2);
407   switch (BranchType()) {
408     case CondBranchType: {
409       branch_imm = Assembler::ImmCondBranch(offset);
410       imm_mask = ImmCondBranch_mask;
411       break;
412     }
413     case UncondBranchType: {
414       branch_imm = Assembler::ImmUncondBranch(offset);
415       imm_mask = ImmUncondBranch_mask;
416       break;
417     }
418     case CompareBranchType: {
419       branch_imm = Assembler::ImmCmpBranch(offset);
420       imm_mask = ImmCmpBranch_mask;
421       break;
422     }
423     case TestBranchType: {
424       branch_imm = Assembler::ImmTestBranch(offset);
425       imm_mask = ImmTestBranch_mask;
426       break;
427     }
428     default: VIXL_UNREACHABLE();
429   }
430   SetInstructionBits(Mask(~imm_mask) | branch_imm);
431 }
432 
433 
SetImmLLiteral(const Instruction * source)434 void Instruction::SetImmLLiteral(const Instruction* source) {
435   VIXL_ASSERT(IsWordAligned(source));
436   ptrdiff_t offset = (source - this) >> kLiteralEntrySizeLog2;
437   Instr imm = Assembler::ImmLLiteral(static_cast<int>(offset));
438   Instr mask = ImmLLiteral_mask;
439 
440   SetInstructionBits(Mask(~mask) | imm);
441 }
442 
443 
VectorFormatHalfWidth(const VectorFormat vform)444 VectorFormat VectorFormatHalfWidth(const VectorFormat vform) {
445   VIXL_ASSERT(vform == kFormat8H || vform == kFormat4S || vform == kFormat2D ||
446               vform == kFormatH || vform == kFormatS || vform == kFormatD);
447   switch (vform) {
448     case kFormat8H: return kFormat8B;
449     case kFormat4S: return kFormat4H;
450     case kFormat2D: return kFormat2S;
451     case kFormatH:  return kFormatB;
452     case kFormatS:  return kFormatH;
453     case kFormatD:  return kFormatS;
454     default: VIXL_UNREACHABLE(); return kFormatUndefined;
455   }
456 }
457 
458 
VectorFormatDoubleWidth(const VectorFormat vform)459 VectorFormat VectorFormatDoubleWidth(const VectorFormat vform) {
460   VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S ||
461               vform == kFormatB || vform == kFormatH || vform == kFormatS);
462   switch (vform) {
463     case kFormat8B: return kFormat8H;
464     case kFormat4H: return kFormat4S;
465     case kFormat2S: return kFormat2D;
466     case kFormatB:  return kFormatH;
467     case kFormatH:  return kFormatS;
468     case kFormatS:  return kFormatD;
469     default: VIXL_UNREACHABLE(); return kFormatUndefined;
470   }
471 }
472 
473 
VectorFormatFillQ(const VectorFormat vform)474 VectorFormat VectorFormatFillQ(const VectorFormat vform) {
475   switch (vform) {
476     case kFormatB:
477     case kFormat8B:
478     case kFormat16B: return kFormat16B;
479     case kFormatH:
480     case kFormat4H:
481     case kFormat8H:  return kFormat8H;
482     case kFormatS:
483     case kFormat2S:
484     case kFormat4S:  return kFormat4S;
485     case kFormatD:
486     case kFormat1D:
487     case kFormat2D:  return kFormat2D;
488     default: VIXL_UNREACHABLE(); return kFormatUndefined;
489   }
490 }
491 
VectorFormatHalfWidthDoubleLanes(const VectorFormat vform)492 VectorFormat VectorFormatHalfWidthDoubleLanes(const VectorFormat vform) {
493   switch (vform) {
494     case kFormat4H: return kFormat8B;
495     case kFormat8H: return kFormat16B;
496     case kFormat2S: return kFormat4H;
497     case kFormat4S: return kFormat8H;
498     case kFormat1D: return kFormat2S;
499     case kFormat2D: return kFormat4S;
500     default: VIXL_UNREACHABLE(); return kFormatUndefined;
501   }
502 }
503 
VectorFormatDoubleLanes(const VectorFormat vform)504 VectorFormat VectorFormatDoubleLanes(const VectorFormat vform) {
505   VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S);
506   switch (vform) {
507     case kFormat8B: return kFormat16B;
508     case kFormat4H: return kFormat8H;
509     case kFormat2S: return kFormat4S;
510     default: VIXL_UNREACHABLE(); return kFormatUndefined;
511   }
512 }
513 
514 
VectorFormatHalfLanes(const VectorFormat vform)515 VectorFormat VectorFormatHalfLanes(const VectorFormat vform) {
516   VIXL_ASSERT(vform == kFormat16B || vform == kFormat8H || vform == kFormat4S);
517   switch (vform) {
518     case kFormat16B: return kFormat8B;
519     case kFormat8H: return kFormat4H;
520     case kFormat4S: return kFormat2S;
521     default: VIXL_UNREACHABLE(); return kFormatUndefined;
522   }
523 }
524 
525 
ScalarFormatFromLaneSize(int laneSize)526 VectorFormat ScalarFormatFromLaneSize(int laneSize) {
527   switch (laneSize) {
528     case 8:  return kFormatB;
529     case 16: return kFormatH;
530     case 32: return kFormatS;
531     case 64: return kFormatD;
532     default: VIXL_UNREACHABLE(); return kFormatUndefined;
533   }
534 }
535 
536 
RegisterSizeInBitsFromFormat(VectorFormat vform)537 unsigned RegisterSizeInBitsFromFormat(VectorFormat vform) {
538   VIXL_ASSERT(vform != kFormatUndefined);
539   switch (vform) {
540     case kFormatB: return kBRegSize;
541     case kFormatH: return kHRegSize;
542     case kFormatS: return kSRegSize;
543     case kFormatD: return kDRegSize;
544     case kFormat8B:
545     case kFormat4H:
546     case kFormat2S:
547     case kFormat1D: return kDRegSize;
548     default: return kQRegSize;
549   }
550 }
551 
552 
RegisterSizeInBytesFromFormat(VectorFormat vform)553 unsigned RegisterSizeInBytesFromFormat(VectorFormat vform) {
554   return RegisterSizeInBitsFromFormat(vform) / 8;
555 }
556 
557 
LaneSizeInBitsFromFormat(VectorFormat vform)558 unsigned LaneSizeInBitsFromFormat(VectorFormat vform) {
559   VIXL_ASSERT(vform != kFormatUndefined);
560   switch (vform) {
561     case kFormatB:
562     case kFormat8B:
563     case kFormat16B: return 8;
564     case kFormatH:
565     case kFormat4H:
566     case kFormat8H: return 16;
567     case kFormatS:
568     case kFormat2S:
569     case kFormat4S: return 32;
570     case kFormatD:
571     case kFormat1D:
572     case kFormat2D: return 64;
573     default: VIXL_UNREACHABLE(); return 0;
574   }
575 }
576 
577 
LaneSizeInBytesFromFormat(VectorFormat vform)578 int LaneSizeInBytesFromFormat(VectorFormat vform) {
579   return LaneSizeInBitsFromFormat(vform) / 8;
580 }
581 
582 
LaneSizeInBytesLog2FromFormat(VectorFormat vform)583 int LaneSizeInBytesLog2FromFormat(VectorFormat vform) {
584   VIXL_ASSERT(vform != kFormatUndefined);
585   switch (vform) {
586     case kFormatB:
587     case kFormat8B:
588     case kFormat16B: return 0;
589     case kFormatH:
590     case kFormat4H:
591     case kFormat8H: return 1;
592     case kFormatS:
593     case kFormat2S:
594     case kFormat4S: return 2;
595     case kFormatD:
596     case kFormat1D:
597     case kFormat2D: return 3;
598     default: VIXL_UNREACHABLE(); return 0;
599   }
600 }
601 
602 
LaneCountFromFormat(VectorFormat vform)603 int LaneCountFromFormat(VectorFormat vform) {
604   VIXL_ASSERT(vform != kFormatUndefined);
605   switch (vform) {
606     case kFormat16B: return 16;
607     case kFormat8B:
608     case kFormat8H: return 8;
609     case kFormat4H:
610     case kFormat4S: return 4;
611     case kFormat2S:
612     case kFormat2D: return 2;
613     case kFormat1D:
614     case kFormatB:
615     case kFormatH:
616     case kFormatS:
617     case kFormatD: return 1;
618     default: VIXL_UNREACHABLE(); return 0;
619   }
620 }
621 
622 
MaxLaneCountFromFormat(VectorFormat vform)623 int MaxLaneCountFromFormat(VectorFormat vform) {
624   VIXL_ASSERT(vform != kFormatUndefined);
625   switch (vform) {
626     case kFormatB:
627     case kFormat8B:
628     case kFormat16B: return 16;
629     case kFormatH:
630     case kFormat4H:
631     case kFormat8H: return 8;
632     case kFormatS:
633     case kFormat2S:
634     case kFormat4S: return 4;
635     case kFormatD:
636     case kFormat1D:
637     case kFormat2D: return 2;
638     default: VIXL_UNREACHABLE(); return 0;
639   }
640 }
641 
642 
643 // Does 'vform' indicate a vector format or a scalar format?
IsVectorFormat(VectorFormat vform)644 bool IsVectorFormat(VectorFormat vform) {
645   VIXL_ASSERT(vform != kFormatUndefined);
646   switch (vform) {
647     case kFormatB:
648     case kFormatH:
649     case kFormatS:
650     case kFormatD: return false;
651     default: return true;
652   }
653 }
654 
655 
MaxIntFromFormat(VectorFormat vform)656 int64_t MaxIntFromFormat(VectorFormat vform) {
657   return INT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
658 }
659 
660 
MinIntFromFormat(VectorFormat vform)661 int64_t MinIntFromFormat(VectorFormat vform) {
662   return INT64_MIN >> (64 - LaneSizeInBitsFromFormat(vform));
663 }
664 
665 
MaxUintFromFormat(VectorFormat vform)666 uint64_t MaxUintFromFormat(VectorFormat vform) {
667   return UINT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
668 }
669 }  // namespace vixl
670 
671