1// Copyright 2017, The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE.md file.
4
5// Package cmp determines equality of values.
6//
7// This package is intended to be a more powerful and safer alternative to
8// reflect.DeepEqual for comparing whether two values are semantically equal.
9//
10// The primary features of cmp are:
11//
12// • When the default behavior of equality does not suit the needs of the test,
13// custom equality functions can override the equality operation.
14// For example, an equality function may report floats as equal so long as they
15// are within some tolerance of each other.
16//
17// • Types that have an Equal method may use that method to determine equality.
18// This allows package authors to determine the equality operation for the types
19// that they define.
20//
21// • If no custom equality functions are used and no Equal method is defined,
22// equality is determined by recursively comparing the primitive kinds on both
23// values, much like reflect.DeepEqual. Unlike reflect.DeepEqual, unexported
24// fields are not compared by default; they result in panics unless suppressed
25// by using an Ignore option (see cmpopts.IgnoreUnexported) or explicitly compared
26// using the AllowUnexported option.
27package cmp
28
29import (
30	"fmt"
31	"reflect"
32	"strings"
33
34	"github.com/google/go-cmp/cmp/internal/diff"
35	"github.com/google/go-cmp/cmp/internal/flags"
36	"github.com/google/go-cmp/cmp/internal/function"
37	"github.com/google/go-cmp/cmp/internal/value"
38)
39
40// Equal reports whether x and y are equal by recursively applying the
41// following rules in the given order to x and y and all of their sub-values:
42//
43// • Let S be the set of all Ignore, Transformer, and Comparer options that
44// remain after applying all path filters, value filters, and type filters.
45// If at least one Ignore exists in S, then the comparison is ignored.
46// If the number of Transformer and Comparer options in S is greater than one,
47// then Equal panics because it is ambiguous which option to use.
48// If S contains a single Transformer, then use that to transform the current
49// values and recursively call Equal on the output values.
50// If S contains a single Comparer, then use that to compare the current values.
51// Otherwise, evaluation proceeds to the next rule.
52//
53// • If the values have an Equal method of the form "(T) Equal(T) bool" or
54// "(T) Equal(I) bool" where T is assignable to I, then use the result of
55// x.Equal(y) even if x or y is nil. Otherwise, no such method exists and
56// evaluation proceeds to the next rule.
57//
58// • Lastly, try to compare x and y based on their basic kinds.
59// Simple kinds like booleans, integers, floats, complex numbers, strings, and
60// channels are compared using the equivalent of the == operator in Go.
61// Functions are only equal if they are both nil, otherwise they are unequal.
62//
63// Structs are equal if recursively calling Equal on all fields report equal.
64// If a struct contains unexported fields, Equal panics unless an Ignore option
65// (e.g., cmpopts.IgnoreUnexported) ignores that field or the AllowUnexported
66// option explicitly permits comparing the unexported field.
67//
68// Slices are equal if they are both nil or both non-nil, where recursively
69// calling Equal on all non-ignored slice or array elements report equal.
70// Empty non-nil slices and nil slices are not equal; to equate empty slices,
71// consider using cmpopts.EquateEmpty.
72//
73// Maps are equal if they are both nil or both non-nil, where recursively
74// calling Equal on all non-ignored map entries report equal.
75// Map keys are equal according to the == operator.
76// To use custom comparisons for map keys, consider using cmpopts.SortMaps.
77// Empty non-nil maps and nil maps are not equal; to equate empty maps,
78// consider using cmpopts.EquateEmpty.
79//
80// Pointers and interfaces are equal if they are both nil or both non-nil,
81// where they have the same underlying concrete type and recursively
82// calling Equal on the underlying values reports equal.
83func Equal(x, y interface{}, opts ...Option) bool {
84	vx := reflect.ValueOf(x)
85	vy := reflect.ValueOf(y)
86
87	// If the inputs are different types, auto-wrap them in an empty interface
88	// so that they have the same parent type.
89	var t reflect.Type
90	if !vx.IsValid() || !vy.IsValid() || vx.Type() != vy.Type() {
91		t = reflect.TypeOf((*interface{})(nil)).Elem()
92		if vx.IsValid() {
93			vvx := reflect.New(t).Elem()
94			vvx.Set(vx)
95			vx = vvx
96		}
97		if vy.IsValid() {
98			vvy := reflect.New(t).Elem()
99			vvy.Set(vy)
100			vy = vvy
101		}
102	} else {
103		t = vx.Type()
104	}
105
106	s := newState(opts)
107	s.compareAny(&pathStep{t, vx, vy})
108	return s.result.Equal()
109}
110
111// Diff returns a human-readable report of the differences between two values.
112// It returns an empty string if and only if Equal returns true for the same
113// input values and options.
114//
115// The output is displayed as a literal in pseudo-Go syntax.
116// At the start of each line, a "-" prefix indicates an element removed from x,
117// a "+" prefix to indicates an element added to y, and the lack of a prefix
118// indicates an element common to both x and y. If possible, the output
119// uses fmt.Stringer.String or error.Error methods to produce more humanly
120// readable outputs. In such cases, the string is prefixed with either an
121// 's' or 'e' character, respectively, to indicate that the method was called.
122//
123// Do not depend on this output being stable. If you need the ability to
124// programmatically interpret the difference, consider using a custom Reporter.
125func Diff(x, y interface{}, opts ...Option) string {
126	r := new(defaultReporter)
127	eq := Equal(x, y, Options(opts), Reporter(r))
128	d := r.String()
129	if (d == "") != eq {
130		panic("inconsistent difference and equality results")
131	}
132	return d
133}
134
135type state struct {
136	// These fields represent the "comparison state".
137	// Calling statelessCompare must not result in observable changes to these.
138	result    diff.Result // The current result of comparison
139	curPath   Path        // The current path in the value tree
140	reporters []reporter  // Optional reporters
141
142	// recChecker checks for infinite cycles applying the same set of
143	// transformers upon the output of itself.
144	recChecker recChecker
145
146	// dynChecker triggers pseudo-random checks for option correctness.
147	// It is safe for statelessCompare to mutate this value.
148	dynChecker dynChecker
149
150	// These fields, once set by processOption, will not change.
151	exporters map[reflect.Type]bool // Set of structs with unexported field visibility
152	opts      Options               // List of all fundamental and filter options
153}
154
155func newState(opts []Option) *state {
156	// Always ensure a validator option exists to validate the inputs.
157	s := &state{opts: Options{validator{}}}
158	s.processOption(Options(opts))
159	return s
160}
161
162func (s *state) processOption(opt Option) {
163	switch opt := opt.(type) {
164	case nil:
165	case Options:
166		for _, o := range opt {
167			s.processOption(o)
168		}
169	case coreOption:
170		type filtered interface {
171			isFiltered() bool
172		}
173		if fopt, ok := opt.(filtered); ok && !fopt.isFiltered() {
174			panic(fmt.Sprintf("cannot use an unfiltered option: %v", opt))
175		}
176		s.opts = append(s.opts, opt)
177	case visibleStructs:
178		if s.exporters == nil {
179			s.exporters = make(map[reflect.Type]bool)
180		}
181		for t := range opt {
182			s.exporters[t] = true
183		}
184	case reporter:
185		s.reporters = append(s.reporters, opt)
186	default:
187		panic(fmt.Sprintf("unknown option %T", opt))
188	}
189}
190
191// statelessCompare compares two values and returns the result.
192// This function is stateless in that it does not alter the current result,
193// or output to any registered reporters.
194func (s *state) statelessCompare(step PathStep) diff.Result {
195	// We do not save and restore the curPath because all of the compareX
196	// methods should properly push and pop from the path.
197	// It is an implementation bug if the contents of curPath differs from
198	// when calling this function to when returning from it.
199
200	oldResult, oldReporters := s.result, s.reporters
201	s.result = diff.Result{} // Reset result
202	s.reporters = nil        // Remove reporters to avoid spurious printouts
203	s.compareAny(step)
204	res := s.result
205	s.result, s.reporters = oldResult, oldReporters
206	return res
207}
208
209func (s *state) compareAny(step PathStep) {
210	// Update the path stack.
211	s.curPath.push(step)
212	defer s.curPath.pop()
213	for _, r := range s.reporters {
214		r.PushStep(step)
215		defer r.PopStep()
216	}
217	s.recChecker.Check(s.curPath)
218
219	// Obtain the current type and values.
220	t := step.Type()
221	vx, vy := step.Values()
222
223	// Rule 1: Check whether an option applies on this node in the value tree.
224	if s.tryOptions(t, vx, vy) {
225		return
226	}
227
228	// Rule 2: Check whether the type has a valid Equal method.
229	if s.tryMethod(t, vx, vy) {
230		return
231	}
232
233	// Rule 3: Compare based on the underlying kind.
234	switch t.Kind() {
235	case reflect.Bool:
236		s.report(vx.Bool() == vy.Bool(), 0)
237	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
238		s.report(vx.Int() == vy.Int(), 0)
239	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
240		s.report(vx.Uint() == vy.Uint(), 0)
241	case reflect.Float32, reflect.Float64:
242		s.report(vx.Float() == vy.Float(), 0)
243	case reflect.Complex64, reflect.Complex128:
244		s.report(vx.Complex() == vy.Complex(), 0)
245	case reflect.String:
246		s.report(vx.String() == vy.String(), 0)
247	case reflect.Chan, reflect.UnsafePointer:
248		s.report(vx.Pointer() == vy.Pointer(), 0)
249	case reflect.Func:
250		s.report(vx.IsNil() && vy.IsNil(), 0)
251	case reflect.Struct:
252		s.compareStruct(t, vx, vy)
253	case reflect.Slice, reflect.Array:
254		s.compareSlice(t, vx, vy)
255	case reflect.Map:
256		s.compareMap(t, vx, vy)
257	case reflect.Ptr:
258		s.comparePtr(t, vx, vy)
259	case reflect.Interface:
260		s.compareInterface(t, vx, vy)
261	default:
262		panic(fmt.Sprintf("%v kind not handled", t.Kind()))
263	}
264}
265
266func (s *state) tryOptions(t reflect.Type, vx, vy reflect.Value) bool {
267	// Evaluate all filters and apply the remaining options.
268	if opt := s.opts.filter(s, t, vx, vy); opt != nil {
269		opt.apply(s, vx, vy)
270		return true
271	}
272	return false
273}
274
275func (s *state) tryMethod(t reflect.Type, vx, vy reflect.Value) bool {
276	// Check if this type even has an Equal method.
277	m, ok := t.MethodByName("Equal")
278	if !ok || !function.IsType(m.Type, function.EqualAssignable) {
279		return false
280	}
281
282	eq := s.callTTBFunc(m.Func, vx, vy)
283	s.report(eq, reportByMethod)
284	return true
285}
286
287func (s *state) callTRFunc(f, v reflect.Value, step Transform) reflect.Value {
288	v = sanitizeValue(v, f.Type().In(0))
289	if !s.dynChecker.Next() {
290		return f.Call([]reflect.Value{v})[0]
291	}
292
293	// Run the function twice and ensure that we get the same results back.
294	// We run in goroutines so that the race detector (if enabled) can detect
295	// unsafe mutations to the input.
296	c := make(chan reflect.Value)
297	go detectRaces(c, f, v)
298	got := <-c
299	want := f.Call([]reflect.Value{v})[0]
300	if step.vx, step.vy = got, want; !s.statelessCompare(step).Equal() {
301		// To avoid false-positives with non-reflexive equality operations,
302		// we sanity check whether a value is equal to itself.
303		if step.vx, step.vy = want, want; !s.statelessCompare(step).Equal() {
304			return want
305		}
306		panic(fmt.Sprintf("non-deterministic function detected: %s", function.NameOf(f)))
307	}
308	return want
309}
310
311func (s *state) callTTBFunc(f, x, y reflect.Value) bool {
312	x = sanitizeValue(x, f.Type().In(0))
313	y = sanitizeValue(y, f.Type().In(1))
314	if !s.dynChecker.Next() {
315		return f.Call([]reflect.Value{x, y})[0].Bool()
316	}
317
318	// Swapping the input arguments is sufficient to check that
319	// f is symmetric and deterministic.
320	// We run in goroutines so that the race detector (if enabled) can detect
321	// unsafe mutations to the input.
322	c := make(chan reflect.Value)
323	go detectRaces(c, f, y, x)
324	got := <-c
325	want := f.Call([]reflect.Value{x, y})[0].Bool()
326	if !got.IsValid() || got.Bool() != want {
327		panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", function.NameOf(f)))
328	}
329	return want
330}
331
332func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) {
333	var ret reflect.Value
334	defer func() {
335		recover() // Ignore panics, let the other call to f panic instead
336		c <- ret
337	}()
338	ret = f.Call(vs)[0]
339}
340
341// sanitizeValue converts nil interfaces of type T to those of type R,
342// assuming that T is assignable to R.
343// Otherwise, it returns the input value as is.
344func sanitizeValue(v reflect.Value, t reflect.Type) reflect.Value {
345	// TODO(dsnet): Workaround for reflect bug (https://golang.org/issue/22143).
346	if !flags.AtLeastGo110 {
347		if v.Kind() == reflect.Interface && v.IsNil() && v.Type() != t {
348			return reflect.New(t).Elem()
349		}
350	}
351	return v
352}
353
354func (s *state) compareStruct(t reflect.Type, vx, vy reflect.Value) {
355	var vax, vay reflect.Value // Addressable versions of vx and vy
356
357	step := StructField{&structField{}}
358	for i := 0; i < t.NumField(); i++ {
359		step.typ = t.Field(i).Type
360		step.vx = vx.Field(i)
361		step.vy = vy.Field(i)
362		step.name = t.Field(i).Name
363		step.idx = i
364		step.unexported = !isExported(step.name)
365		if step.unexported {
366			if step.name == "_" {
367				continue
368			}
369			// Defer checking of unexported fields until later to give an
370			// Ignore a chance to ignore the field.
371			if !vax.IsValid() || !vay.IsValid() {
372				// For retrieveUnexportedField to work, the parent struct must
373				// be addressable. Create a new copy of the values if
374				// necessary to make them addressable.
375				vax = makeAddressable(vx)
376				vay = makeAddressable(vy)
377			}
378			step.mayForce = s.exporters[t]
379			step.pvx = vax
380			step.pvy = vay
381			step.field = t.Field(i)
382		}
383		s.compareAny(step)
384	}
385}
386
387func (s *state) compareSlice(t reflect.Type, vx, vy reflect.Value) {
388	isSlice := t.Kind() == reflect.Slice
389	if isSlice && (vx.IsNil() || vy.IsNil()) {
390		s.report(vx.IsNil() && vy.IsNil(), 0)
391		return
392	}
393
394	// TODO: Support cyclic data structures.
395
396	step := SliceIndex{&sliceIndex{pathStep: pathStep{typ: t.Elem()}}}
397	withIndexes := func(ix, iy int) SliceIndex {
398		if ix >= 0 {
399			step.vx, step.xkey = vx.Index(ix), ix
400		} else {
401			step.vx, step.xkey = reflect.Value{}, -1
402		}
403		if iy >= 0 {
404			step.vy, step.ykey = vy.Index(iy), iy
405		} else {
406			step.vy, step.ykey = reflect.Value{}, -1
407		}
408		return step
409	}
410
411	// Ignore options are able to ignore missing elements in a slice.
412	// However, detecting these reliably requires an optimal differencing
413	// algorithm, for which diff.Difference is not.
414	//
415	// Instead, we first iterate through both slices to detect which elements
416	// would be ignored if standing alone. The index of non-discarded elements
417	// are stored in a separate slice, which diffing is then performed on.
418	var indexesX, indexesY []int
419	var ignoredX, ignoredY []bool
420	for ix := 0; ix < vx.Len(); ix++ {
421		ignored := s.statelessCompare(withIndexes(ix, -1)).NumDiff == 0
422		if !ignored {
423			indexesX = append(indexesX, ix)
424		}
425		ignoredX = append(ignoredX, ignored)
426	}
427	for iy := 0; iy < vy.Len(); iy++ {
428		ignored := s.statelessCompare(withIndexes(-1, iy)).NumDiff == 0
429		if !ignored {
430			indexesY = append(indexesY, iy)
431		}
432		ignoredY = append(ignoredY, ignored)
433	}
434
435	// Compute an edit-script for slices vx and vy (excluding ignored elements).
436	edits := diff.Difference(len(indexesX), len(indexesY), func(ix, iy int) diff.Result {
437		return s.statelessCompare(withIndexes(indexesX[ix], indexesY[iy]))
438	})
439
440	// Replay the ignore-scripts and the edit-script.
441	var ix, iy int
442	for ix < vx.Len() || iy < vy.Len() {
443		var e diff.EditType
444		switch {
445		case ix < len(ignoredX) && ignoredX[ix]:
446			e = diff.UniqueX
447		case iy < len(ignoredY) && ignoredY[iy]:
448			e = diff.UniqueY
449		default:
450			e, edits = edits[0], edits[1:]
451		}
452		switch e {
453		case diff.UniqueX:
454			s.compareAny(withIndexes(ix, -1))
455			ix++
456		case diff.UniqueY:
457			s.compareAny(withIndexes(-1, iy))
458			iy++
459		default:
460			s.compareAny(withIndexes(ix, iy))
461			ix++
462			iy++
463		}
464	}
465}
466
467func (s *state) compareMap(t reflect.Type, vx, vy reflect.Value) {
468	if vx.IsNil() || vy.IsNil() {
469		s.report(vx.IsNil() && vy.IsNil(), 0)
470		return
471	}
472
473	// TODO: Support cyclic data structures.
474
475	// We combine and sort the two map keys so that we can perform the
476	// comparisons in a deterministic order.
477	step := MapIndex{&mapIndex{pathStep: pathStep{typ: t.Elem()}}}
478	for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) {
479		step.vx = vx.MapIndex(k)
480		step.vy = vy.MapIndex(k)
481		step.key = k
482		if !step.vx.IsValid() && !step.vy.IsValid() {
483			// It is possible for both vx and vy to be invalid if the
484			// key contained a NaN value in it.
485			//
486			// Even with the ability to retrieve NaN keys in Go 1.12,
487			// there still isn't a sensible way to compare the values since
488			// a NaN key may map to multiple unordered values.
489			// The most reasonable way to compare NaNs would be to compare the
490			// set of values. However, this is impossible to do efficiently
491			// since set equality is provably an O(n^2) operation given only
492			// an Equal function. If we had a Less function or Hash function,
493			// this could be done in O(n*log(n)) or O(n), respectively.
494			//
495			// Rather than adding complex logic to deal with NaNs, make it
496			// the user's responsibility to compare such obscure maps.
497			const help = "consider providing a Comparer to compare the map"
498			panic(fmt.Sprintf("%#v has map key with NaNs\n%s", s.curPath, help))
499		}
500		s.compareAny(step)
501	}
502}
503
504func (s *state) comparePtr(t reflect.Type, vx, vy reflect.Value) {
505	if vx.IsNil() || vy.IsNil() {
506		s.report(vx.IsNil() && vy.IsNil(), 0)
507		return
508	}
509
510	// TODO: Support cyclic data structures.
511
512	vx, vy = vx.Elem(), vy.Elem()
513	s.compareAny(Indirect{&indirect{pathStep{t.Elem(), vx, vy}}})
514}
515
516func (s *state) compareInterface(t reflect.Type, vx, vy reflect.Value) {
517	if vx.IsNil() || vy.IsNil() {
518		s.report(vx.IsNil() && vy.IsNil(), 0)
519		return
520	}
521	vx, vy = vx.Elem(), vy.Elem()
522	if vx.Type() != vy.Type() {
523		s.report(false, 0)
524		return
525	}
526	s.compareAny(TypeAssertion{&typeAssertion{pathStep{vx.Type(), vx, vy}}})
527}
528
529func (s *state) report(eq bool, rf resultFlags) {
530	if rf&reportByIgnore == 0 {
531		if eq {
532			s.result.NumSame++
533			rf |= reportEqual
534		} else {
535			s.result.NumDiff++
536			rf |= reportUnequal
537		}
538	}
539	for _, r := range s.reporters {
540		r.Report(Result{flags: rf})
541	}
542}
543
544// recChecker tracks the state needed to periodically perform checks that
545// user provided transformers are not stuck in an infinitely recursive cycle.
546type recChecker struct{ next int }
547
548// Check scans the Path for any recursive transformers and panics when any
549// recursive transformers are detected. Note that the presence of a
550// recursive Transformer does not necessarily imply an infinite cycle.
551// As such, this check only activates after some minimal number of path steps.
552func (rc *recChecker) Check(p Path) {
553	const minLen = 1 << 16
554	if rc.next == 0 {
555		rc.next = minLen
556	}
557	if len(p) < rc.next {
558		return
559	}
560	rc.next <<= 1
561
562	// Check whether the same transformer has appeared at least twice.
563	var ss []string
564	m := map[Option]int{}
565	for _, ps := range p {
566		if t, ok := ps.(Transform); ok {
567			t := t.Option()
568			if m[t] == 1 { // Transformer was used exactly once before
569				tf := t.(*transformer).fnc.Type()
570				ss = append(ss, fmt.Sprintf("%v: %v => %v", t, tf.In(0), tf.Out(0)))
571			}
572			m[t]++
573		}
574	}
575	if len(ss) > 0 {
576		const warning = "recursive set of Transformers detected"
577		const help = "consider using cmpopts.AcyclicTransformer"
578		set := strings.Join(ss, "\n\t")
579		panic(fmt.Sprintf("%s:\n\t%s\n%s", warning, set, help))
580	}
581}
582
583// dynChecker tracks the state needed to periodically perform checks that
584// user provided functions are symmetric and deterministic.
585// The zero value is safe for immediate use.
586type dynChecker struct{ curr, next int }
587
588// Next increments the state and reports whether a check should be performed.
589//
590// Checks occur every Nth function call, where N is a triangular number:
591//	0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 ...
592// See https://en.wikipedia.org/wiki/Triangular_number
593//
594// This sequence ensures that the cost of checks drops significantly as
595// the number of functions calls grows larger.
596func (dc *dynChecker) Next() bool {
597	ok := dc.curr == dc.next
598	if ok {
599		dc.curr = 0
600		dc.next++
601	}
602	dc.curr++
603	return ok
604}
605
606// makeAddressable returns a value that is always addressable.
607// It returns the input verbatim if it is already addressable,
608// otherwise it creates a new value and returns an addressable copy.
609func makeAddressable(v reflect.Value) reflect.Value {
610	if v.CanAddr() {
611		return v
612	}
613	vc := reflect.New(v.Type()).Elem()
614	vc.Set(v)
615	return vc
616}
617