1 // Copyright 2014 Marco Guazzone (marco.guazzone@gmail.com)
2 //
3 // Use, modification and distribution are subject to the
4 // Boost Software License, Version 1.0. (See accompanying file
5 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6 //
7 // This module implements the Hyper-Exponential distribution.
8 //
9 // References:
10 // - "Queueing Theory in Manufacturing Systems Analysis and Design" by H.T. Papadopolous, C. Heavey and J. Browne (Chapman & Hall/CRC, 1993)
11 // - http://reference.wolfram.com/language/ref/HyperexponentialDistribution.html
12 // - http://en.wikipedia.org/wiki/Hyperexponential_distribution
13 //
14
15 #ifndef BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL_HPP
16 #define BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL_HPP
17
18
19 #include <boost/config.hpp>
20 #include <boost/math/distributions/complement.hpp>
21 #include <boost/math/distributions/detail/common_error_handling.hpp>
22 #include <boost/math/distributions/exponential.hpp>
23 #include <boost/math/policies/policy.hpp>
24 #include <boost/math/special_functions/fpclassify.hpp>
25 #include <boost/math/tools/precision.hpp>
26 #include <boost/math/tools/roots.hpp>
27 #include <boost/range/begin.hpp>
28 #include <boost/range/end.hpp>
29 #include <boost/range/size.hpp>
30 #include <boost/type_traits/has_pre_increment.hpp>
31 #include <cstddef>
32 #include <iterator>
33 #include <limits>
34 #include <numeric>
35 #include <utility>
36 #include <vector>
37
38 #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
39 # include <initializer_list>
40 #endif
41
42 #ifdef _MSC_VER
43 # pragma warning (push)
44 # pragma warning(disable:4127) // conditional expression is constant
45 # pragma warning(disable:4389) // '==' : signed/unsigned mismatch in test_tools
46 #endif // _MSC_VER
47
48 namespace boost { namespace math {
49
50 namespace detail {
51
52 template <typename Dist>
53 typename Dist::value_type generic_quantile(const Dist& dist, const typename Dist::value_type& p, const typename Dist::value_type& guess, bool comp, const char* function);
54
55 } // Namespace detail
56
57
58 template <typename RealT, typename PolicyT>
59 class hyperexponential_distribution;
60
61
62 namespace /*<unnamed>*/ { namespace hyperexp_detail {
63
64 template <typename T>
normalize(std::vector<T> & v)65 void normalize(std::vector<T>& v)
66 {
67 if(!v.size())
68 return; // Our error handlers will get this later
69 const T sum = std::accumulate(v.begin(), v.end(), static_cast<T>(0));
70 T final_sum = 0;
71 const typename std::vector<T>::iterator end = --v.end();
72 for (typename std::vector<T>::iterator it = v.begin();
73 it != end;
74 ++it)
75 {
76 *it /= sum;
77 final_sum += *it;
78 }
79 *end = 1 - final_sum; // avoids round off errors, ensures the probs really do sum to 1.
80 }
81
82 template <typename RealT, typename PolicyT>
check_probabilities(char const * function,std::vector<RealT> const & probabilities,RealT * presult,PolicyT const & pol)83 bool check_probabilities(char const* function, std::vector<RealT> const& probabilities, RealT* presult, PolicyT const& pol)
84 {
85 BOOST_MATH_STD_USING
86 const std::size_t n = probabilities.size();
87 RealT sum = 0;
88 for (std::size_t i = 0; i < n; ++i)
89 {
90 if (probabilities[i] < 0
91 || probabilities[i] > 1
92 || !(boost::math::isfinite)(probabilities[i]))
93 {
94 *presult = policies::raise_domain_error<RealT>(function,
95 "The elements of parameter \"probabilities\" must be >= 0 and <= 1, but at least one of them was: %1%.",
96 probabilities[i],
97 pol);
98 return false;
99 }
100 sum += probabilities[i];
101 }
102
103 //
104 // We try to keep phase probabilities correctly normalized in the distribution constructors,
105 // however in practice we have to allow for a very slight divergence from a sum of exactly 1:
106 //
107 if (fabs(sum - 1) > tools::epsilon<RealT>() * 2)
108 {
109 *presult = policies::raise_domain_error<RealT>(function,
110 "The elements of parameter \"probabilities\" must sum to 1, but their sum is: %1%.",
111 sum,
112 pol);
113 return false;
114 }
115
116 return true;
117 }
118
119 template <typename RealT, typename PolicyT>
check_rates(char const * function,std::vector<RealT> const & rates,RealT * presult,PolicyT const & pol)120 bool check_rates(char const* function, std::vector<RealT> const& rates, RealT* presult, PolicyT const& pol)
121 {
122 const std::size_t n = rates.size();
123 for (std::size_t i = 0; i < n; ++i)
124 {
125 if (rates[i] <= 0
126 || !(boost::math::isfinite)(rates[i]))
127 {
128 *presult = policies::raise_domain_error<RealT>(function,
129 "The elements of parameter \"rates\" must be > 0, but at least one of them is: %1%.",
130 rates[i],
131 pol);
132 return false;
133 }
134 }
135 return true;
136 }
137
138 template <typename RealT, typename PolicyT>
check_dist(char const * function,std::vector<RealT> const & probabilities,std::vector<RealT> const & rates,RealT * presult,PolicyT const & pol)139 bool check_dist(char const* function, std::vector<RealT> const& probabilities, std::vector<RealT> const& rates, RealT* presult, PolicyT const& pol)
140 {
141 BOOST_MATH_STD_USING
142 if (probabilities.size() != rates.size())
143 {
144 *presult = policies::raise_domain_error<RealT>(function,
145 "The parameters \"probabilities\" and \"rates\" must have the same length, but their size differ by: %1%.",
146 fabs(static_cast<RealT>(probabilities.size())-static_cast<RealT>(rates.size())),
147 pol);
148 return false;
149 }
150
151 return check_probabilities(function, probabilities, presult, pol)
152 && check_rates(function, rates, presult, pol);
153 }
154
155 template <typename RealT, typename PolicyT>
check_x(char const * function,RealT x,RealT * presult,PolicyT const & pol)156 bool check_x(char const* function, RealT x, RealT* presult, PolicyT const& pol)
157 {
158 if (x < 0 || (boost::math::isnan)(x))
159 {
160 *presult = policies::raise_domain_error<RealT>(function, "The random variable must be >= 0, but is: %1%.", x, pol);
161 return false;
162 }
163 return true;
164 }
165
166 template <typename RealT, typename PolicyT>
check_probability(char const * function,RealT p,RealT * presult,PolicyT const & pol)167 bool check_probability(char const* function, RealT p, RealT* presult, PolicyT const& pol)
168 {
169 if (p < 0 || p > 1 || (boost::math::isnan)(p))
170 {
171 *presult = policies::raise_domain_error<RealT>(function, "The probability be >= 0 and <= 1, but is: %1%.", p, pol);
172 return false;
173 }
174 return true;
175 }
176
177 template <typename RealT, typename PolicyT>
178 RealT quantile_impl(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& p, bool comp)
179 {
180 // Don't have a closed form so try to numerically solve the inverse CDF...
181
182 typedef typename policies::evaluation<RealT, PolicyT>::type value_type;
183 typedef typename policies::normalise<PolicyT,
184 policies::promote_float<false>,
185 policies::promote_double<false>,
186 policies::discrete_quantile<>,
187 policies::assert_undefined<> >::type forwarding_policy;
188
189 static const char* function = comp ? "boost::math::quantile(const boost::math::complemented2_type<boost::math::hyperexponential_distribution<%1%>, %1%>&)"
190 : "boost::math::quantile(const boost::math::hyperexponential_distribution<%1%>&, %1%)";
191
192 RealT result = 0;
193
194 if (!check_probability(function, p, &result, PolicyT()))
195 {
196 return result;
197 }
198
199 const std::size_t n = dist.num_phases();
200 const std::vector<RealT> probs = dist.probabilities();
201 const std::vector<RealT> rates = dist.rates();
202
203 // A possible (but inaccurate) approximation is given below, where the
204 // quantile is given by the weighted sum of exponential quantiles:
205 RealT guess = 0;
206 if (comp)
207 {
208 for (std::size_t i = 0; i < n; ++i)
209 {
210 const exponential_distribution<RealT,PolicyT> exp(rates[i]);
211
212 guess += probs[i]*quantile(complement(exp, p));
213 }
214 }
215 else
216 {
217 for (std::size_t i = 0; i < n; ++i)
218 {
219 const exponential_distribution<RealT,PolicyT> exp(rates[i]);
220
221 guess += probs[i]*quantile(exp, p);
222 }
223 }
224
225 // Fast return in case the Hyper-Exponential is essentially an Exponential
226 if (n == 1)
227 {
228 return guess;
229 }
230
231 value_type q;
232 q = detail::generic_quantile(hyperexponential_distribution<RealT,forwarding_policy>(probs, rates),
233 p,
234 guess,
235 comp,
236 function);
237
238 result = policies::checked_narrowing_cast<RealT,forwarding_policy>(q, function);
239
240 return result;
241 }
242
243 }} // Namespace <unnamed>::hyperexp_detail
244
245
246 template <typename RealT = double, typename PolicyT = policies::policy<> >
247 class hyperexponential_distribution
248 {
249 public: typedef RealT value_type;
250 public: typedef PolicyT policy_type;
251
252
hyperexponential_distribution()253 public: hyperexponential_distribution()
254 : probs_(1, 1),
255 rates_(1, 1)
256 {
257 RealT err;
258 hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
259 probs_,
260 rates_,
261 &err,
262 PolicyT());
263 }
264
265 // Four arg constructor: no ambiguity here, the arguments must be two pairs of iterators:
266 public: template <typename ProbIterT, typename RateIterT>
hyperexponential_distribution(ProbIterT prob_first,ProbIterT prob_last,RateIterT rate_first,RateIterT rate_last)267 hyperexponential_distribution(ProbIterT prob_first, ProbIterT prob_last,
268 RateIterT rate_first, RateIterT rate_last)
269 : probs_(prob_first, prob_last),
270 rates_(rate_first, rate_last)
271 {
272 hyperexp_detail::normalize(probs_);
273 RealT err;
274 hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
275 probs_,
276 rates_,
277 &err,
278 PolicyT());
279 }
280
281 // Two arg constructor from 2 ranges, we SFINAE this out of existance if
282 // either argument type is incrementable as in that case the type is
283 // probably an iterator:
284 public: template <typename ProbRangeT, typename RateRangeT>
hyperexponential_distribution(ProbRangeT const & prob_range,RateRangeT const & rate_range,typename boost::disable_if_c<boost::has_pre_increment<ProbRangeT>::value||boost::has_pre_increment<RateRangeT>::value>::type * =0)285 hyperexponential_distribution(ProbRangeT const& prob_range,
286 RateRangeT const& rate_range,
287 typename boost::disable_if_c<boost::has_pre_increment<ProbRangeT>::value || boost::has_pre_increment<RateRangeT>::value>::type* = 0)
288 : probs_(boost::begin(prob_range), boost::end(prob_range)),
289 rates_(boost::begin(rate_range), boost::end(rate_range))
290 {
291 hyperexp_detail::normalize(probs_);
292
293 RealT err;
294 hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
295 probs_,
296 rates_,
297 &err,
298 PolicyT());
299 }
300
301 // Two arg constructor for a pair of iterators: we SFINAE this out of
302 // existance if neither argument types are incrementable.
303 // Note that we allow different argument types here to allow for
304 // construction from an array plus a pointer into that array.
305 public: template <typename RateIterT, typename RateIterT2>
hyperexponential_distribution(RateIterT const & rate_first,RateIterT2 const & rate_last,typename boost::enable_if_c<boost::has_pre_increment<RateIterT>::value||boost::has_pre_increment<RateIterT2>::value>::type * =0)306 hyperexponential_distribution(RateIterT const& rate_first,
307 RateIterT2 const& rate_last,
308 typename boost::enable_if_c<boost::has_pre_increment<RateIterT>::value || boost::has_pre_increment<RateIterT2>::value>::type* = 0)
309 : probs_(std::distance(rate_first, rate_last), 1), // will be normalized below
310 rates_(rate_first, rate_last)
311 {
312 hyperexp_detail::normalize(probs_);
313
314 RealT err;
315 hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
316 probs_,
317 rates_,
318 &err,
319 PolicyT());
320 }
321
322 #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
323 // Initializer list constructor: allows for construction from array literals:
hyperexponential_distribution(std::initializer_list<RealT> l1,std::initializer_list<RealT> l2)324 public: hyperexponential_distribution(std::initializer_list<RealT> l1, std::initializer_list<RealT> l2)
325 : probs_(l1.begin(), l1.end()),
326 rates_(l2.begin(), l2.end())
327 {
328 hyperexp_detail::normalize(probs_);
329
330 RealT err;
331 hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
332 probs_,
333 rates_,
334 &err,
335 PolicyT());
336 }
337
hyperexponential_distribution(std::initializer_list<RealT> l1)338 public: hyperexponential_distribution(std::initializer_list<RealT> l1)
339 : probs_(l1.size(), 1),
340 rates_(l1.begin(), l1.end())
341 {
342 hyperexp_detail::normalize(probs_);
343
344 RealT err;
345 hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
346 probs_,
347 rates_,
348 &err,
349 PolicyT());
350 }
351 #endif // !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
352
353 // Single argument constructor: argument must be a range.
354 public: template <typename RateRangeT>
hyperexponential_distribution(RateRangeT const & rate_range)355 hyperexponential_distribution(RateRangeT const& rate_range)
356 : probs_(boost::size(rate_range), 1), // will be normalized below
357 rates_(boost::begin(rate_range), boost::end(rate_range))
358 {
359 hyperexp_detail::normalize(probs_);
360
361 RealT err;
362 hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
363 probs_,
364 rates_,
365 &err,
366 PolicyT());
367 }
368
probabilities() const369 public: std::vector<RealT> probabilities() const
370 {
371 return probs_;
372 }
373
rates() const374 public: std::vector<RealT> rates() const
375 {
376 return rates_;
377 }
378
num_phases() const379 public: std::size_t num_phases() const
380 {
381 return rates_.size();
382 }
383
384
385 private: std::vector<RealT> probs_;
386 private: std::vector<RealT> rates_;
387 }; // class hyperexponential_distribution
388
389
390 // Convenient type synonym for double.
391 typedef hyperexponential_distribution<double> hyperexponential;
392
393
394 // Range of permissible values for random variable x
395 template <typename RealT, typename PolicyT>
range(hyperexponential_distribution<RealT,PolicyT> const &)396 std::pair<RealT,RealT> range(hyperexponential_distribution<RealT,PolicyT> const&)
397 {
398 if (std::numeric_limits<RealT>::has_infinity)
399 {
400 return std::make_pair(static_cast<RealT>(0), std::numeric_limits<RealT>::infinity()); // 0 to +inf.
401 }
402
403 return std::make_pair(static_cast<RealT>(0), tools::max_value<RealT>()); // 0 to +<max value>
404 }
405
406 // Range of supported values for random variable x.
407 // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
408 template <typename RealT, typename PolicyT>
support(hyperexponential_distribution<RealT,PolicyT> const &)409 std::pair<RealT,RealT> support(hyperexponential_distribution<RealT,PolicyT> const&)
410 {
411 return std::make_pair(tools::min_value<RealT>(), tools::max_value<RealT>()); // <min value> to +<max value>.
412 }
413
414 template <typename RealT, typename PolicyT>
415 RealT pdf(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& x)
416 {
417 BOOST_MATH_STD_USING
418 RealT result = 0;
419
420 if (!hyperexp_detail::check_x("boost::math::pdf(const boost::math::hyperexponential_distribution<%1%>&, %1%)", x, &result, PolicyT()))
421 {
422 return result;
423 }
424
425 const std::size_t n = dist.num_phases();
426 const std::vector<RealT> probs = dist.probabilities();
427 const std::vector<RealT> rates = dist.rates();
428
429 for (std::size_t i = 0; i < n; ++i)
430 {
431 const exponential_distribution<RealT,PolicyT> exp(rates[i]);
432
433 result += probs[i]*pdf(exp, x);
434 //result += probs[i]*rates[i]*exp(-rates[i]*x);
435 }
436
437 return result;
438 }
439
440 template <typename RealT, typename PolicyT>
441 RealT cdf(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& x)
442 {
443 RealT result = 0;
444
445 if (!hyperexp_detail::check_x("boost::math::cdf(const boost::math::hyperexponential_distribution<%1%>&, %1%)", x, &result, PolicyT()))
446 {
447 return result;
448 }
449
450 const std::size_t n = dist.num_phases();
451 const std::vector<RealT> probs = dist.probabilities();
452 const std::vector<RealT> rates = dist.rates();
453
454 for (std::size_t i = 0; i < n; ++i)
455 {
456 const exponential_distribution<RealT,PolicyT> exp(rates[i]);
457
458 result += probs[i]*cdf(exp, x);
459 }
460
461 return result;
462 }
463
464 template <typename RealT, typename PolicyT>
465 RealT quantile(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& p)
466 {
467 return hyperexp_detail::quantile_impl(dist, p , false);
468 }
469
470 template <typename RealT, typename PolicyT>
471 RealT cdf(complemented2_type<hyperexponential_distribution<RealT,PolicyT>, RealT> const& c)
472 {
473 RealT const& x = c.param;
474 hyperexponential_distribution<RealT,PolicyT> const& dist = c.dist;
475
476 RealT result = 0;
477
478 if (!hyperexp_detail::check_x("boost::math::cdf(boost::math::complemented2_type<const boost::math::hyperexponential_distribution<%1%>&, %1%>)", x, &result, PolicyT()))
479 {
480 return result;
481 }
482
483 const std::size_t n = dist.num_phases();
484 const std::vector<RealT> probs = dist.probabilities();
485 const std::vector<RealT> rates = dist.rates();
486
487 for (std::size_t i = 0; i < n; ++i)
488 {
489 const exponential_distribution<RealT,PolicyT> exp(rates[i]);
490
491 result += probs[i]*cdf(complement(exp, x));
492 }
493
494 return result;
495 }
496
497
498 template <typename RealT, typename PolicyT>
499 RealT quantile(complemented2_type<hyperexponential_distribution<RealT, PolicyT>, RealT> const& c)
500 {
501 RealT const& p = c.param;
502 hyperexponential_distribution<RealT,PolicyT> const& dist = c.dist;
503
504 return hyperexp_detail::quantile_impl(dist, p , true);
505 }
506
507 template <typename RealT, typename PolicyT>
508 RealT mean(hyperexponential_distribution<RealT, PolicyT> const& dist)
509 {
510 RealT result = 0;
511
512 const std::size_t n = dist.num_phases();
513 const std::vector<RealT> probs = dist.probabilities();
514 const std::vector<RealT> rates = dist.rates();
515
516 for (std::size_t i = 0; i < n; ++i)
517 {
518 const exponential_distribution<RealT,PolicyT> exp(rates[i]);
519
520 result += probs[i]*mean(exp);
521 }
522
523 return result;
524 }
525
526 template <typename RealT, typename PolicyT>
527 RealT variance(hyperexponential_distribution<RealT, PolicyT> const& dist)
528 {
529 RealT result = 0;
530
531 const std::size_t n = dist.num_phases();
532 const std::vector<RealT> probs = dist.probabilities();
533 const std::vector<RealT> rates = dist.rates();
534
535 for (std::size_t i = 0; i < n; ++i)
536 {
537 result += probs[i]/(rates[i]*rates[i]);
538 }
539
540 const RealT mean = boost::math::mean(dist);
541
542 result = 2*result-mean*mean;
543
544 return result;
545 }
546
547 template <typename RealT, typename PolicyT>
548 RealT skewness(hyperexponential_distribution<RealT,PolicyT> const& dist)
549 {
550 BOOST_MATH_STD_USING
551 const std::size_t n = dist.num_phases();
552 const std::vector<RealT> probs = dist.probabilities();
553 const std::vector<RealT> rates = dist.rates();
554
555 RealT s1 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i}
556 RealT s2 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^2}
557 RealT s3 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^3}
558 for (std::size_t i = 0; i < n; ++i)
559 {
560 const RealT p = probs[i];
561 const RealT r = rates[i];
562 const RealT r2 = r*r;
563 const RealT r3 = r2*r;
564
565 s1 += p/r;
566 s2 += p/r2;
567 s3 += p/r3;
568 }
569
570 const RealT s1s1 = s1*s1;
571
572 const RealT num = (6*s3 - (3*(2*s2 - s1s1) + s1s1)*s1);
573 const RealT den = (2*s2 - s1s1);
574
575 return num / pow(den, static_cast<RealT>(1.5));
576 }
577
578 template <typename RealT, typename PolicyT>
579 RealT kurtosis(hyperexponential_distribution<RealT,PolicyT> const& dist)
580 {
581 const std::size_t n = dist.num_phases();
582 const std::vector<RealT> probs = dist.probabilities();
583 const std::vector<RealT> rates = dist.rates();
584
585 RealT s1 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i}
586 RealT s2 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^2}
587 RealT s3 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^3}
588 RealT s4 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^4}
589 for (std::size_t i = 0; i < n; ++i)
590 {
591 const RealT p = probs[i];
592 const RealT r = rates[i];
593 const RealT r2 = r*r;
594 const RealT r3 = r2*r;
595 const RealT r4 = r3*r;
596
597 s1 += p/r;
598 s2 += p/r2;
599 s3 += p/r3;
600 s4 += p/r4;
601 }
602
603 const RealT s1s1 = s1*s1;
604
605 const RealT num = (24*s4 - 24*s3*s1 + 3*(2*(2*s2 - s1s1) + s1s1)*s1s1);
606 const RealT den = (2*s2 - s1s1);
607
608 return num/(den*den);
609 }
610
611 template <typename RealT, typename PolicyT>
612 RealT kurtosis_excess(hyperexponential_distribution<RealT,PolicyT> const& dist)
613 {
614 return kurtosis(dist) - 3;
615 }
616
617 template <typename RealT, typename PolicyT>
618 RealT mode(hyperexponential_distribution<RealT,PolicyT> const& /*dist*/)
619 {
620 return 0;
621 }
622
623 }} // namespace boost::math
624
625 #ifdef BOOST_MSVC
626 #pragma warning (pop)
627 #endif
628 // This include must be at the end, *after* the accessors
629 // for this distribution have been defined, in order to
630 // keep compilers that support two-phase lookup happy.
631 #include <boost/math/distributions/detail/derived_accessors.hpp>
632 #include <boost/math/distributions/detail/generic_quantile.hpp>
633
634 #endif // BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL
635