1 // Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
2 // This source code is licensed under both the GPLv2 (found in the
3 // COPYING file in the root directory) and Apache 2.0 License
4 // (found in the LICENSE.Apache file in the root directory).
5 //
6 // Copyright (c) 2011 The LevelDB Authors. All rights reserved.
7 // Use of this source code is governed by a BSD-style license that can be
8 // found in the LICENSE file. See the AUTHORS file for names of contributors.
9
10 #include "db/version_set.h"
11
12 #include <algorithm>
13 #include <array>
14 #include <cinttypes>
15 #include <cstdio>
16 #include <list>
17 #include <map>
18 #include <set>
19 #include <string>
20 #include <unordered_map>
21 #include <vector>
22
23 #include "compaction/compaction.h"
24 #include "db/blob/blob_file_cache.h"
25 #include "db/blob/blob_file_reader.h"
26 #include "db/blob/blob_index.h"
27 #include "db/internal_stats.h"
28 #include "db/log_reader.h"
29 #include "db/log_writer.h"
30 #include "db/memtable.h"
31 #include "db/merge_context.h"
32 #include "db/merge_helper.h"
33 #include "db/pinned_iterators_manager.h"
34 #include "db/table_cache.h"
35 #include "db/version_builder.h"
36 #include "db/version_edit_handler.h"
37 #include "file/filename.h"
38 #include "file/random_access_file_reader.h"
39 #include "file/read_write_util.h"
40 #include "file/writable_file_writer.h"
41 #include "monitoring/file_read_sample.h"
42 #include "monitoring/perf_context_imp.h"
43 #include "monitoring/persistent_stats_history.h"
44 #include "options/options_helper.h"
45 #include "rocksdb/env.h"
46 #include "rocksdb/merge_operator.h"
47 #include "rocksdb/write_buffer_manager.h"
48 #include "table/format.h"
49 #include "table/get_context.h"
50 #include "table/internal_iterator.h"
51 #include "table/merging_iterator.h"
52 #include "table/meta_blocks.h"
53 #include "table/multiget_context.h"
54 #include "table/plain/plain_table_factory.h"
55 #include "table/table_reader.h"
56 #include "table/two_level_iterator.h"
57 #include "test_util/sync_point.h"
58 #include "util/cast_util.h"
59 #include "util/coding.h"
60 #include "util/stop_watch.h"
61 #include "util/string_util.h"
62 #include "util/user_comparator_wrapper.h"
63
64 namespace ROCKSDB_NAMESPACE {
65
66 namespace {
67
68 // Find File in LevelFilesBrief data structure
69 // Within an index range defined by left and right
FindFileInRange(const InternalKeyComparator & icmp,const LevelFilesBrief & file_level,const Slice & key,uint32_t left,uint32_t right)70 int FindFileInRange(const InternalKeyComparator& icmp,
71 const LevelFilesBrief& file_level,
72 const Slice& key,
73 uint32_t left,
74 uint32_t right) {
75 auto cmp = [&](const FdWithKeyRange& f, const Slice& k) -> bool {
76 return icmp.InternalKeyComparator::Compare(f.largest_key, k) < 0;
77 };
78 const auto &b = file_level.files;
79 return static_cast<int>(std::lower_bound(b + left,
80 b + right, key, cmp) - b);
81 }
82
OverlapWithIterator(const Comparator * ucmp,const Slice & smallest_user_key,const Slice & largest_user_key,InternalIterator * iter,bool * overlap)83 Status OverlapWithIterator(const Comparator* ucmp,
84 const Slice& smallest_user_key,
85 const Slice& largest_user_key,
86 InternalIterator* iter,
87 bool* overlap) {
88 InternalKey range_start(smallest_user_key, kMaxSequenceNumber,
89 kValueTypeForSeek);
90 iter->Seek(range_start.Encode());
91 if (!iter->status().ok()) {
92 return iter->status();
93 }
94
95 *overlap = false;
96 if (iter->Valid()) {
97 ParsedInternalKey seek_result;
98 Status s = ParseInternalKey(iter->key(), &seek_result,
99 false /* log_err_key */); // TODO
100 if (!s.ok()) return s;
101
102 if (ucmp->CompareWithoutTimestamp(seek_result.user_key, largest_user_key) <=
103 0) {
104 *overlap = true;
105 }
106 }
107
108 return iter->status();
109 }
110
111 // Class to help choose the next file to search for the particular key.
112 // Searches and returns files level by level.
113 // We can search level-by-level since entries never hop across
114 // levels. Therefore we are guaranteed that if we find data
115 // in a smaller level, later levels are irrelevant (unless we
116 // are MergeInProgress).
117 class FilePicker {
118 public:
FilePicker(std::vector<FileMetaData * > * files,const Slice & user_key,const Slice & ikey,autovector<LevelFilesBrief> * file_levels,unsigned int num_levels,FileIndexer * file_indexer,const Comparator * user_comparator,const InternalKeyComparator * internal_comparator)119 FilePicker(std::vector<FileMetaData*>* files, const Slice& user_key,
120 const Slice& ikey, autovector<LevelFilesBrief>* file_levels,
121 unsigned int num_levels, FileIndexer* file_indexer,
122 const Comparator* user_comparator,
123 const InternalKeyComparator* internal_comparator)
124 : num_levels_(num_levels),
125 curr_level_(static_cast<unsigned int>(-1)),
126 returned_file_level_(static_cast<unsigned int>(-1)),
127 hit_file_level_(static_cast<unsigned int>(-1)),
128 search_left_bound_(0),
129 search_right_bound_(FileIndexer::kLevelMaxIndex),
130 #ifndef NDEBUG
131 files_(files),
132 #endif
133 level_files_brief_(file_levels),
134 is_hit_file_last_in_level_(false),
135 curr_file_level_(nullptr),
136 user_key_(user_key),
137 ikey_(ikey),
138 file_indexer_(file_indexer),
139 user_comparator_(user_comparator),
140 internal_comparator_(internal_comparator) {
141 #ifdef NDEBUG
142 (void)files;
143 #endif
144 // Setup member variables to search first level.
145 search_ended_ = !PrepareNextLevel();
146 if (!search_ended_) {
147 // Prefetch Level 0 table data to avoid cache miss if possible.
148 for (unsigned int i = 0; i < (*level_files_brief_)[0].num_files; ++i) {
149 auto* r = (*level_files_brief_)[0].files[i].fd.table_reader;
150 if (r) {
151 r->Prepare(ikey);
152 }
153 }
154 }
155 }
156
GetCurrentLevel() const157 int GetCurrentLevel() const { return curr_level_; }
158
GetNextFile()159 FdWithKeyRange* GetNextFile() {
160 while (!search_ended_) { // Loops over different levels.
161 while (curr_index_in_curr_level_ < curr_file_level_->num_files) {
162 // Loops over all files in current level.
163 FdWithKeyRange* f = &curr_file_level_->files[curr_index_in_curr_level_];
164 hit_file_level_ = curr_level_;
165 is_hit_file_last_in_level_ =
166 curr_index_in_curr_level_ == curr_file_level_->num_files - 1;
167 int cmp_largest = -1;
168
169 // Do key range filtering of files or/and fractional cascading if:
170 // (1) not all the files are in level 0, or
171 // (2) there are more than 3 current level files
172 // If there are only 3 or less current level files in the system, we skip
173 // the key range filtering. In this case, more likely, the system is
174 // highly tuned to minimize number of tables queried by each query,
175 // so it is unlikely that key range filtering is more efficient than
176 // querying the files.
177 if (num_levels_ > 1 || curr_file_level_->num_files > 3) {
178 // Check if key is within a file's range. If search left bound and
179 // right bound point to the same find, we are sure key falls in
180 // range.
181 assert(curr_level_ == 0 ||
182 curr_index_in_curr_level_ == start_index_in_curr_level_ ||
183 user_comparator_->CompareWithoutTimestamp(
184 user_key_, ExtractUserKey(f->smallest_key)) <= 0);
185
186 int cmp_smallest = user_comparator_->CompareWithoutTimestamp(
187 user_key_, ExtractUserKey(f->smallest_key));
188 if (cmp_smallest >= 0) {
189 cmp_largest = user_comparator_->CompareWithoutTimestamp(
190 user_key_, ExtractUserKey(f->largest_key));
191 }
192
193 // Setup file search bound for the next level based on the
194 // comparison results
195 if (curr_level_ > 0) {
196 file_indexer_->GetNextLevelIndex(curr_level_,
197 curr_index_in_curr_level_,
198 cmp_smallest, cmp_largest,
199 &search_left_bound_,
200 &search_right_bound_);
201 }
202 // Key falls out of current file's range
203 if (cmp_smallest < 0 || cmp_largest > 0) {
204 if (curr_level_ == 0) {
205 ++curr_index_in_curr_level_;
206 continue;
207 } else {
208 // Search next level.
209 break;
210 }
211 }
212 }
213 #ifndef NDEBUG
214 // Sanity check to make sure that the files are correctly sorted
215 if (prev_file_) {
216 if (curr_level_ != 0) {
217 int comp_sign = internal_comparator_->Compare(
218 prev_file_->largest_key, f->smallest_key);
219 assert(comp_sign < 0);
220 } else {
221 // level == 0, the current file cannot be newer than the previous
222 // one. Use compressed data structure, has no attribute seqNo
223 assert(curr_index_in_curr_level_ > 0);
224 assert(!NewestFirstBySeqNo(files_[0][curr_index_in_curr_level_],
225 files_[0][curr_index_in_curr_level_-1]));
226 }
227 }
228 prev_file_ = f;
229 #endif
230 returned_file_level_ = curr_level_;
231 if (curr_level_ > 0 && cmp_largest < 0) {
232 // No more files to search in this level.
233 search_ended_ = !PrepareNextLevel();
234 } else {
235 ++curr_index_in_curr_level_;
236 }
237 return f;
238 }
239 // Start searching next level.
240 search_ended_ = !PrepareNextLevel();
241 }
242 // Search ended.
243 return nullptr;
244 }
245
246 // getter for current file level
247 // for GET_HIT_L0, GET_HIT_L1 & GET_HIT_L2_AND_UP counts
GetHitFileLevel()248 unsigned int GetHitFileLevel() { return hit_file_level_; }
249
250 // Returns true if the most recent "hit file" (i.e., one returned by
251 // GetNextFile()) is at the last index in its level.
IsHitFileLastInLevel()252 bool IsHitFileLastInLevel() { return is_hit_file_last_in_level_; }
253
254 private:
255 unsigned int num_levels_;
256 unsigned int curr_level_;
257 unsigned int returned_file_level_;
258 unsigned int hit_file_level_;
259 int32_t search_left_bound_;
260 int32_t search_right_bound_;
261 #ifndef NDEBUG
262 std::vector<FileMetaData*>* files_;
263 #endif
264 autovector<LevelFilesBrief>* level_files_brief_;
265 bool search_ended_;
266 bool is_hit_file_last_in_level_;
267 LevelFilesBrief* curr_file_level_;
268 unsigned int curr_index_in_curr_level_;
269 unsigned int start_index_in_curr_level_;
270 Slice user_key_;
271 Slice ikey_;
272 FileIndexer* file_indexer_;
273 const Comparator* user_comparator_;
274 const InternalKeyComparator* internal_comparator_;
275 #ifndef NDEBUG
276 FdWithKeyRange* prev_file_;
277 #endif
278
279 // Setup local variables to search next level.
280 // Returns false if there are no more levels to search.
PrepareNextLevel()281 bool PrepareNextLevel() {
282 curr_level_++;
283 while (curr_level_ < num_levels_) {
284 curr_file_level_ = &(*level_files_brief_)[curr_level_];
285 if (curr_file_level_->num_files == 0) {
286 // When current level is empty, the search bound generated from upper
287 // level must be [0, -1] or [0, FileIndexer::kLevelMaxIndex] if it is
288 // also empty.
289 assert(search_left_bound_ == 0);
290 assert(search_right_bound_ == -1 ||
291 search_right_bound_ == FileIndexer::kLevelMaxIndex);
292 // Since current level is empty, it will need to search all files in
293 // the next level
294 search_left_bound_ = 0;
295 search_right_bound_ = FileIndexer::kLevelMaxIndex;
296 curr_level_++;
297 continue;
298 }
299
300 // Some files may overlap each other. We find
301 // all files that overlap user_key and process them in order from
302 // newest to oldest. In the context of merge-operator, this can occur at
303 // any level. Otherwise, it only occurs at Level-0 (since Put/Deletes
304 // are always compacted into a single entry).
305 int32_t start_index;
306 if (curr_level_ == 0) {
307 // On Level-0, we read through all files to check for overlap.
308 start_index = 0;
309 } else {
310 // On Level-n (n>=1), files are sorted. Binary search to find the
311 // earliest file whose largest key >= ikey. Search left bound and
312 // right bound are used to narrow the range.
313 if (search_left_bound_ <= search_right_bound_) {
314 if (search_right_bound_ == FileIndexer::kLevelMaxIndex) {
315 search_right_bound_ =
316 static_cast<int32_t>(curr_file_level_->num_files) - 1;
317 }
318 // `search_right_bound_` is an inclusive upper-bound, but since it was
319 // determined based on user key, it is still possible the lookup key
320 // falls to the right of `search_right_bound_`'s corresponding file.
321 // So, pass a limit one higher, which allows us to detect this case.
322 start_index =
323 FindFileInRange(*internal_comparator_, *curr_file_level_, ikey_,
324 static_cast<uint32_t>(search_left_bound_),
325 static_cast<uint32_t>(search_right_bound_) + 1);
326 if (start_index == search_right_bound_ + 1) {
327 // `ikey_` comes after `search_right_bound_`. The lookup key does
328 // not exist on this level, so let's skip this level and do a full
329 // binary search on the next level.
330 search_left_bound_ = 0;
331 search_right_bound_ = FileIndexer::kLevelMaxIndex;
332 curr_level_++;
333 continue;
334 }
335 } else {
336 // search_left_bound > search_right_bound, key does not exist in
337 // this level. Since no comparison is done in this level, it will
338 // need to search all files in the next level.
339 search_left_bound_ = 0;
340 search_right_bound_ = FileIndexer::kLevelMaxIndex;
341 curr_level_++;
342 continue;
343 }
344 }
345 start_index_in_curr_level_ = start_index;
346 curr_index_in_curr_level_ = start_index;
347 #ifndef NDEBUG
348 prev_file_ = nullptr;
349 #endif
350 return true;
351 }
352 // curr_level_ = num_levels_. So, no more levels to search.
353 return false;
354 }
355 };
356
357 class FilePickerMultiGet {
358 private:
359 struct FilePickerContext;
360
361 public:
FilePickerMultiGet(MultiGetRange * range,autovector<LevelFilesBrief> * file_levels,unsigned int num_levels,FileIndexer * file_indexer,const Comparator * user_comparator,const InternalKeyComparator * internal_comparator)362 FilePickerMultiGet(MultiGetRange* range,
363 autovector<LevelFilesBrief>* file_levels,
364 unsigned int num_levels, FileIndexer* file_indexer,
365 const Comparator* user_comparator,
366 const InternalKeyComparator* internal_comparator)
367 : num_levels_(num_levels),
368 curr_level_(static_cast<unsigned int>(-1)),
369 returned_file_level_(static_cast<unsigned int>(-1)),
370 hit_file_level_(static_cast<unsigned int>(-1)),
371 range_(range),
372 batch_iter_(range->begin()),
373 batch_iter_prev_(range->begin()),
374 upper_key_(range->begin()),
375 maybe_repeat_key_(false),
376 current_level_range_(*range, range->begin(), range->end()),
377 current_file_range_(*range, range->begin(), range->end()),
378 level_files_brief_(file_levels),
379 is_hit_file_last_in_level_(false),
380 curr_file_level_(nullptr),
381 file_indexer_(file_indexer),
382 user_comparator_(user_comparator),
383 internal_comparator_(internal_comparator) {
384 for (auto iter = range_->begin(); iter != range_->end(); ++iter) {
385 fp_ctx_array_[iter.index()] =
386 FilePickerContext(0, FileIndexer::kLevelMaxIndex);
387 }
388
389 // Setup member variables to search first level.
390 search_ended_ = !PrepareNextLevel();
391 if (!search_ended_) {
392 // REVISIT
393 // Prefetch Level 0 table data to avoid cache miss if possible.
394 // As of now, only PlainTableReader and CuckooTableReader do any
395 // prefetching. This may not be necessary anymore once we implement
396 // batching in those table readers
397 for (unsigned int i = 0; i < (*level_files_brief_)[0].num_files; ++i) {
398 auto* r = (*level_files_brief_)[0].files[i].fd.table_reader;
399 if (r) {
400 for (auto iter = range_->begin(); iter != range_->end(); ++iter) {
401 r->Prepare(iter->ikey);
402 }
403 }
404 }
405 }
406 }
407
GetCurrentLevel() const408 int GetCurrentLevel() const { return curr_level_; }
409
410 // Iterates through files in the current level until it finds a file that
411 // contains at least one key from the MultiGet batch
GetNextFileInLevelWithKeys(MultiGetRange * next_file_range,size_t * file_index,FdWithKeyRange ** fd,bool * is_last_key_in_file)412 bool GetNextFileInLevelWithKeys(MultiGetRange* next_file_range,
413 size_t* file_index, FdWithKeyRange** fd,
414 bool* is_last_key_in_file) {
415 size_t curr_file_index = *file_index;
416 FdWithKeyRange* f = nullptr;
417 bool file_hit = false;
418 int cmp_largest = -1;
419 if (curr_file_index >= curr_file_level_->num_files) {
420 // In the unlikely case the next key is a duplicate of the current key,
421 // and the current key is the last in the level and the internal key
422 // was not found, we need to skip lookup for the remaining keys and
423 // reset the search bounds
424 if (batch_iter_ != current_level_range_.end()) {
425 ++batch_iter_;
426 for (; batch_iter_ != current_level_range_.end(); ++batch_iter_) {
427 struct FilePickerContext& fp_ctx = fp_ctx_array_[batch_iter_.index()];
428 fp_ctx.search_left_bound = 0;
429 fp_ctx.search_right_bound = FileIndexer::kLevelMaxIndex;
430 }
431 }
432 return false;
433 }
434 // Loops over keys in the MultiGet batch until it finds a file with
435 // atleast one of the keys. Then it keeps moving forward until the
436 // last key in the batch that falls in that file
437 while (batch_iter_ != current_level_range_.end() &&
438 (fp_ctx_array_[batch_iter_.index()].curr_index_in_curr_level ==
439 curr_file_index ||
440 !file_hit)) {
441 struct FilePickerContext& fp_ctx = fp_ctx_array_[batch_iter_.index()];
442 f = &curr_file_level_->files[fp_ctx.curr_index_in_curr_level];
443 Slice& user_key = batch_iter_->ukey_without_ts;
444
445 // Do key range filtering of files or/and fractional cascading if:
446 // (1) not all the files are in level 0, or
447 // (2) there are more than 3 current level files
448 // If there are only 3 or less current level files in the system, we
449 // skip the key range filtering. In this case, more likely, the system
450 // is highly tuned to minimize number of tables queried by each query,
451 // so it is unlikely that key range filtering is more efficient than
452 // querying the files.
453 if (num_levels_ > 1 || curr_file_level_->num_files > 3) {
454 // Check if key is within a file's range. If search left bound and
455 // right bound point to the same find, we are sure key falls in
456 // range.
457 int cmp_smallest = user_comparator_->CompareWithoutTimestamp(
458 user_key, false, ExtractUserKey(f->smallest_key), true);
459
460 assert(curr_level_ == 0 ||
461 fp_ctx.curr_index_in_curr_level ==
462 fp_ctx.start_index_in_curr_level ||
463 cmp_smallest <= 0);
464
465 if (cmp_smallest >= 0) {
466 cmp_largest = user_comparator_->CompareWithoutTimestamp(
467 user_key, false, ExtractUserKey(f->largest_key), true);
468 } else {
469 cmp_largest = -1;
470 }
471
472 // Setup file search bound for the next level based on the
473 // comparison results
474 if (curr_level_ > 0) {
475 file_indexer_->GetNextLevelIndex(
476 curr_level_, fp_ctx.curr_index_in_curr_level, cmp_smallest,
477 cmp_largest, &fp_ctx.search_left_bound,
478 &fp_ctx.search_right_bound);
479 }
480 // Key falls out of current file's range
481 if (cmp_smallest < 0 || cmp_largest > 0) {
482 next_file_range->SkipKey(batch_iter_);
483 } else {
484 file_hit = true;
485 }
486 } else {
487 file_hit = true;
488 }
489 if (cmp_largest == 0) {
490 // cmp_largest is 0, which means the next key will not be in this
491 // file, so stop looking further. However, its possible there are
492 // duplicates in the batch, so find the upper bound for the batch
493 // in this file (upper_key_) by skipping past the duplicates. We
494 // leave batch_iter_ as is since we may have to pick up from there
495 // for the next file, if this file has a merge value rather than
496 // final value
497 upper_key_ = batch_iter_;
498 ++upper_key_;
499 while (upper_key_ != current_level_range_.end() &&
500 user_comparator_->CompareWithoutTimestamp(
501 batch_iter_->ukey_without_ts, false,
502 upper_key_->ukey_without_ts, false) == 0) {
503 ++upper_key_;
504 }
505 break;
506 } else {
507 if (curr_level_ == 0) {
508 // We need to look through all files in level 0
509 ++fp_ctx.curr_index_in_curr_level;
510 }
511 ++batch_iter_;
512 }
513 if (!file_hit) {
514 curr_file_index =
515 (batch_iter_ != current_level_range_.end())
516 ? fp_ctx_array_[batch_iter_.index()].curr_index_in_curr_level
517 : curr_file_level_->num_files;
518 }
519 }
520
521 *fd = f;
522 *file_index = curr_file_index;
523 *is_last_key_in_file = cmp_largest == 0;
524 if (!*is_last_key_in_file) {
525 // If the largest key in the batch overlapping the file is not the
526 // largest key in the file, upper_ley_ would not have been updated so
527 // update it here
528 upper_key_ = batch_iter_;
529 }
530 return file_hit;
531 }
532
GetNextFile()533 FdWithKeyRange* GetNextFile() {
534 while (!search_ended_) {
535 // Start searching next level.
536 if (batch_iter_ == current_level_range_.end()) {
537 search_ended_ = !PrepareNextLevel();
538 continue;
539 } else {
540 if (maybe_repeat_key_) {
541 maybe_repeat_key_ = false;
542 // Check if we found the final value for the last key in the
543 // previous lookup range. If we did, then there's no need to look
544 // any further for that key, so advance batch_iter_. Else, keep
545 // batch_iter_ positioned on that key so we look it up again in
546 // the next file
547 // For L0, always advance the key because we will look in the next
548 // file regardless for all keys not found yet
549 if (current_level_range_.CheckKeyDone(batch_iter_) ||
550 curr_level_ == 0) {
551 batch_iter_ = upper_key_;
552 }
553 }
554 // batch_iter_prev_ will become the start key for the next file
555 // lookup
556 batch_iter_prev_ = batch_iter_;
557 }
558
559 MultiGetRange next_file_range(current_level_range_, batch_iter_prev_,
560 current_level_range_.end());
561 size_t curr_file_index =
562 (batch_iter_ != current_level_range_.end())
563 ? fp_ctx_array_[batch_iter_.index()].curr_index_in_curr_level
564 : curr_file_level_->num_files;
565 FdWithKeyRange* f;
566 bool is_last_key_in_file;
567 if (!GetNextFileInLevelWithKeys(&next_file_range, &curr_file_index, &f,
568 &is_last_key_in_file)) {
569 search_ended_ = !PrepareNextLevel();
570 } else {
571 if (is_last_key_in_file) {
572 // Since cmp_largest is 0, batch_iter_ still points to the last key
573 // that falls in this file, instead of the next one. Increment
574 // the file index for all keys between batch_iter_ and upper_key_
575 auto tmp_iter = batch_iter_;
576 while (tmp_iter != upper_key_) {
577 ++(fp_ctx_array_[tmp_iter.index()].curr_index_in_curr_level);
578 ++tmp_iter;
579 }
580 maybe_repeat_key_ = true;
581 }
582 // Set the range for this file
583 current_file_range_ =
584 MultiGetRange(next_file_range, batch_iter_prev_, upper_key_);
585 returned_file_level_ = curr_level_;
586 hit_file_level_ = curr_level_;
587 is_hit_file_last_in_level_ =
588 curr_file_index == curr_file_level_->num_files - 1;
589 return f;
590 }
591 }
592
593 // Search ended
594 return nullptr;
595 }
596
597 // getter for current file level
598 // for GET_HIT_L0, GET_HIT_L1 & GET_HIT_L2_AND_UP counts
GetHitFileLevel()599 unsigned int GetHitFileLevel() { return hit_file_level_; }
600
601 // Returns true if the most recent "hit file" (i.e., one returned by
602 // GetNextFile()) is at the last index in its level.
IsHitFileLastInLevel()603 bool IsHitFileLastInLevel() { return is_hit_file_last_in_level_; }
604
CurrentFileRange()605 const MultiGetRange& CurrentFileRange() { return current_file_range_; }
606
607 private:
608 unsigned int num_levels_;
609 unsigned int curr_level_;
610 unsigned int returned_file_level_;
611 unsigned int hit_file_level_;
612
613 struct FilePickerContext {
614 int32_t search_left_bound;
615 int32_t search_right_bound;
616 unsigned int curr_index_in_curr_level;
617 unsigned int start_index_in_curr_level;
618
FilePickerContextROCKSDB_NAMESPACE::__anonc022178e0111::FilePickerMultiGet::FilePickerContext619 FilePickerContext(int32_t left, int32_t right)
620 : search_left_bound(left), search_right_bound(right),
621 curr_index_in_curr_level(0), start_index_in_curr_level(0) {}
622
623 FilePickerContext() = default;
624 };
625 std::array<FilePickerContext, MultiGetContext::MAX_BATCH_SIZE> fp_ctx_array_;
626 MultiGetRange* range_;
627 // Iterator to iterate through the keys in a MultiGet batch, that gets reset
628 // at the beginning of each level. Each call to GetNextFile() will position
629 // batch_iter_ at or right after the last key that was found in the returned
630 // SST file
631 MultiGetRange::Iterator batch_iter_;
632 // An iterator that records the previous position of batch_iter_, i.e last
633 // key found in the previous SST file, in order to serve as the start of
634 // the batch key range for the next SST file
635 MultiGetRange::Iterator batch_iter_prev_;
636 MultiGetRange::Iterator upper_key_;
637 bool maybe_repeat_key_;
638 MultiGetRange current_level_range_;
639 MultiGetRange current_file_range_;
640 autovector<LevelFilesBrief>* level_files_brief_;
641 bool search_ended_;
642 bool is_hit_file_last_in_level_;
643 LevelFilesBrief* curr_file_level_;
644 FileIndexer* file_indexer_;
645 const Comparator* user_comparator_;
646 const InternalKeyComparator* internal_comparator_;
647
648 // Setup local variables to search next level.
649 // Returns false if there are no more levels to search.
PrepareNextLevel()650 bool PrepareNextLevel() {
651 if (curr_level_ == 0) {
652 MultiGetRange::Iterator mget_iter = current_level_range_.begin();
653 if (fp_ctx_array_[mget_iter.index()].curr_index_in_curr_level <
654 curr_file_level_->num_files) {
655 batch_iter_prev_ = current_level_range_.begin();
656 upper_key_ = batch_iter_ = current_level_range_.begin();
657 return true;
658 }
659 }
660
661 curr_level_++;
662 // Reset key range to saved value
663 while (curr_level_ < num_levels_) {
664 bool level_contains_keys = false;
665 curr_file_level_ = &(*level_files_brief_)[curr_level_];
666 if (curr_file_level_->num_files == 0) {
667 // When current level is empty, the search bound generated from upper
668 // level must be [0, -1] or [0, FileIndexer::kLevelMaxIndex] if it is
669 // also empty.
670
671 for (auto mget_iter = current_level_range_.begin();
672 mget_iter != current_level_range_.end(); ++mget_iter) {
673 struct FilePickerContext& fp_ctx = fp_ctx_array_[mget_iter.index()];
674
675 assert(fp_ctx.search_left_bound == 0);
676 assert(fp_ctx.search_right_bound == -1 ||
677 fp_ctx.search_right_bound == FileIndexer::kLevelMaxIndex);
678 // Since current level is empty, it will need to search all files in
679 // the next level
680 fp_ctx.search_left_bound = 0;
681 fp_ctx.search_right_bound = FileIndexer::kLevelMaxIndex;
682 }
683 // Skip all subsequent empty levels
684 do {
685 ++curr_level_;
686 } while ((curr_level_ < num_levels_) &&
687 (*level_files_brief_)[curr_level_].num_files == 0);
688 continue;
689 }
690
691 // Some files may overlap each other. We find
692 // all files that overlap user_key and process them in order from
693 // newest to oldest. In the context of merge-operator, this can occur at
694 // any level. Otherwise, it only occurs at Level-0 (since Put/Deletes
695 // are always compacted into a single entry).
696 int32_t start_index = -1;
697 current_level_range_ =
698 MultiGetRange(*range_, range_->begin(), range_->end());
699 for (auto mget_iter = current_level_range_.begin();
700 mget_iter != current_level_range_.end(); ++mget_iter) {
701 struct FilePickerContext& fp_ctx = fp_ctx_array_[mget_iter.index()];
702 if (curr_level_ == 0) {
703 // On Level-0, we read through all files to check for overlap.
704 start_index = 0;
705 level_contains_keys = true;
706 } else {
707 // On Level-n (n>=1), files are sorted. Binary search to find the
708 // earliest file whose largest key >= ikey. Search left bound and
709 // right bound are used to narrow the range.
710 if (fp_ctx.search_left_bound <= fp_ctx.search_right_bound) {
711 if (fp_ctx.search_right_bound == FileIndexer::kLevelMaxIndex) {
712 fp_ctx.search_right_bound =
713 static_cast<int32_t>(curr_file_level_->num_files) - 1;
714 }
715 // `search_right_bound_` is an inclusive upper-bound, but since it
716 // was determined based on user key, it is still possible the lookup
717 // key falls to the right of `search_right_bound_`'s corresponding
718 // file. So, pass a limit one higher, which allows us to detect this
719 // case.
720 Slice& ikey = mget_iter->ikey;
721 start_index = FindFileInRange(
722 *internal_comparator_, *curr_file_level_, ikey,
723 static_cast<uint32_t>(fp_ctx.search_left_bound),
724 static_cast<uint32_t>(fp_ctx.search_right_bound) + 1);
725 if (start_index == fp_ctx.search_right_bound + 1) {
726 // `ikey_` comes after `search_right_bound_`. The lookup key does
727 // not exist on this level, so let's skip this level and do a full
728 // binary search on the next level.
729 fp_ctx.search_left_bound = 0;
730 fp_ctx.search_right_bound = FileIndexer::kLevelMaxIndex;
731 current_level_range_.SkipKey(mget_iter);
732 continue;
733 } else {
734 level_contains_keys = true;
735 }
736 } else {
737 // search_left_bound > search_right_bound, key does not exist in
738 // this level. Since no comparison is done in this level, it will
739 // need to search all files in the next level.
740 fp_ctx.search_left_bound = 0;
741 fp_ctx.search_right_bound = FileIndexer::kLevelMaxIndex;
742 current_level_range_.SkipKey(mget_iter);
743 continue;
744 }
745 }
746 fp_ctx.start_index_in_curr_level = start_index;
747 fp_ctx.curr_index_in_curr_level = start_index;
748 }
749 if (level_contains_keys) {
750 batch_iter_prev_ = current_level_range_.begin();
751 upper_key_ = batch_iter_ = current_level_range_.begin();
752 return true;
753 }
754 curr_level_++;
755 }
756 // curr_level_ = num_levels_. So, no more levels to search.
757 return false;
758 }
759 };
760 } // anonymous namespace
761
~VersionStorageInfo()762 VersionStorageInfo::~VersionStorageInfo() { delete[] files_; }
763
~Version()764 Version::~Version() {
765 assert(refs_ == 0);
766
767 // Remove from linked list
768 prev_->next_ = next_;
769 next_->prev_ = prev_;
770
771 // Drop references to files
772 for (int level = 0; level < storage_info_.num_levels_; level++) {
773 for (size_t i = 0; i < storage_info_.files_[level].size(); i++) {
774 FileMetaData* f = storage_info_.files_[level][i];
775 assert(f->refs > 0);
776 f->refs--;
777 if (f->refs <= 0) {
778 assert(cfd_ != nullptr);
779 uint32_t path_id = f->fd.GetPathId();
780 assert(path_id < cfd_->ioptions()->cf_paths.size());
781 vset_->obsolete_files_.push_back(
782 ObsoleteFileInfo(f, cfd_->ioptions()->cf_paths[path_id].path));
783 }
784 }
785 }
786 }
787
FindFile(const InternalKeyComparator & icmp,const LevelFilesBrief & file_level,const Slice & key)788 int FindFile(const InternalKeyComparator& icmp,
789 const LevelFilesBrief& file_level,
790 const Slice& key) {
791 return FindFileInRange(icmp, file_level, key, 0,
792 static_cast<uint32_t>(file_level.num_files));
793 }
794
DoGenerateLevelFilesBrief(LevelFilesBrief * file_level,const std::vector<FileMetaData * > & files,Arena * arena)795 void DoGenerateLevelFilesBrief(LevelFilesBrief* file_level,
796 const std::vector<FileMetaData*>& files,
797 Arena* arena) {
798 assert(file_level);
799 assert(arena);
800
801 size_t num = files.size();
802 file_level->num_files = num;
803 char* mem = arena->AllocateAligned(num * sizeof(FdWithKeyRange));
804 file_level->files = new (mem)FdWithKeyRange[num];
805
806 for (size_t i = 0; i < num; i++) {
807 Slice smallest_key = files[i]->smallest.Encode();
808 Slice largest_key = files[i]->largest.Encode();
809
810 // Copy key slice to sequential memory
811 size_t smallest_size = smallest_key.size();
812 size_t largest_size = largest_key.size();
813 mem = arena->AllocateAligned(smallest_size + largest_size);
814 memcpy(mem, smallest_key.data(), smallest_size);
815 memcpy(mem + smallest_size, largest_key.data(), largest_size);
816
817 FdWithKeyRange& f = file_level->files[i];
818 f.fd = files[i]->fd;
819 f.file_metadata = files[i];
820 f.smallest_key = Slice(mem, smallest_size);
821 f.largest_key = Slice(mem + smallest_size, largest_size);
822 }
823 }
824
AfterFile(const Comparator * ucmp,const Slice * user_key,const FdWithKeyRange * f)825 static bool AfterFile(const Comparator* ucmp,
826 const Slice* user_key, const FdWithKeyRange* f) {
827 // nullptr user_key occurs before all keys and is therefore never after *f
828 return (user_key != nullptr &&
829 ucmp->CompareWithoutTimestamp(*user_key,
830 ExtractUserKey(f->largest_key)) > 0);
831 }
832
BeforeFile(const Comparator * ucmp,const Slice * user_key,const FdWithKeyRange * f)833 static bool BeforeFile(const Comparator* ucmp,
834 const Slice* user_key, const FdWithKeyRange* f) {
835 // nullptr user_key occurs after all keys and is therefore never before *f
836 return (user_key != nullptr &&
837 ucmp->CompareWithoutTimestamp(*user_key,
838 ExtractUserKey(f->smallest_key)) < 0);
839 }
840
SomeFileOverlapsRange(const InternalKeyComparator & icmp,bool disjoint_sorted_files,const LevelFilesBrief & file_level,const Slice * smallest_user_key,const Slice * largest_user_key)841 bool SomeFileOverlapsRange(
842 const InternalKeyComparator& icmp,
843 bool disjoint_sorted_files,
844 const LevelFilesBrief& file_level,
845 const Slice* smallest_user_key,
846 const Slice* largest_user_key) {
847 const Comparator* ucmp = icmp.user_comparator();
848 if (!disjoint_sorted_files) {
849 // Need to check against all files
850 for (size_t i = 0; i < file_level.num_files; i++) {
851 const FdWithKeyRange* f = &(file_level.files[i]);
852 if (AfterFile(ucmp, smallest_user_key, f) ||
853 BeforeFile(ucmp, largest_user_key, f)) {
854 // No overlap
855 } else {
856 return true; // Overlap
857 }
858 }
859 return false;
860 }
861
862 // Binary search over file list
863 uint32_t index = 0;
864 if (smallest_user_key != nullptr) {
865 // Find the leftmost possible internal key for smallest_user_key
866 InternalKey small;
867 small.SetMinPossibleForUserKey(*smallest_user_key);
868 index = FindFile(icmp, file_level, small.Encode());
869 }
870
871 if (index >= file_level.num_files) {
872 // beginning of range is after all files, so no overlap.
873 return false;
874 }
875
876 return !BeforeFile(ucmp, largest_user_key, &file_level.files[index]);
877 }
878
879 namespace {
880
881 class LevelIterator final : public InternalIterator {
882 public:
883 // @param read_options Must outlive this iterator.
LevelIterator(TableCache * table_cache,const ReadOptions & read_options,const FileOptions & file_options,const InternalKeyComparator & icomparator,const LevelFilesBrief * flevel,const SliceTransform * prefix_extractor,bool should_sample,HistogramImpl * file_read_hist,TableReaderCaller caller,bool skip_filters,int level,RangeDelAggregator * range_del_agg,const std::vector<AtomicCompactionUnitBoundary> * compaction_boundaries=nullptr,bool allow_unprepared_value=false)884 LevelIterator(TableCache* table_cache, const ReadOptions& read_options,
885 const FileOptions& file_options,
886 const InternalKeyComparator& icomparator,
887 const LevelFilesBrief* flevel,
888 const SliceTransform* prefix_extractor, bool should_sample,
889 HistogramImpl* file_read_hist, TableReaderCaller caller,
890 bool skip_filters, int level, RangeDelAggregator* range_del_agg,
891 const std::vector<AtomicCompactionUnitBoundary>*
892 compaction_boundaries = nullptr,
893 bool allow_unprepared_value = false)
894 : table_cache_(table_cache),
895 read_options_(read_options),
896 file_options_(file_options),
897 icomparator_(icomparator),
898 user_comparator_(icomparator.user_comparator()),
899 flevel_(flevel),
900 prefix_extractor_(prefix_extractor),
901 file_read_hist_(file_read_hist),
902 should_sample_(should_sample),
903 caller_(caller),
904 skip_filters_(skip_filters),
905 allow_unprepared_value_(allow_unprepared_value),
906 file_index_(flevel_->num_files),
907 level_(level),
908 range_del_agg_(range_del_agg),
909 pinned_iters_mgr_(nullptr),
910 compaction_boundaries_(compaction_boundaries) {
911 // Empty level is not supported.
912 assert(flevel_ != nullptr && flevel_->num_files > 0);
913 }
914
~LevelIterator()915 ~LevelIterator() override { delete file_iter_.Set(nullptr); }
916
917 void Seek(const Slice& target) override;
918 void SeekForPrev(const Slice& target) override;
919 void SeekToFirst() override;
920 void SeekToLast() override;
921 void Next() final override;
922 bool NextAndGetResult(IterateResult* result) override;
923 void Prev() override;
924
Valid() const925 bool Valid() const override { return file_iter_.Valid(); }
key() const926 Slice key() const override {
927 assert(Valid());
928 return file_iter_.key();
929 }
930
value() const931 Slice value() const override {
932 assert(Valid());
933 return file_iter_.value();
934 }
935
status() const936 Status status() const override {
937 return file_iter_.iter() ? file_iter_.status() : Status::OK();
938 }
939
PrepareValue()940 bool PrepareValue() override {
941 return file_iter_.PrepareValue();
942 }
943
MayBeOutOfLowerBound()944 inline bool MayBeOutOfLowerBound() override {
945 assert(Valid());
946 return may_be_out_of_lower_bound_ && file_iter_.MayBeOutOfLowerBound();
947 }
948
UpperBoundCheckResult()949 inline IterBoundCheck UpperBoundCheckResult() override {
950 if (Valid()) {
951 return file_iter_.UpperBoundCheckResult();
952 } else {
953 return IterBoundCheck::kUnknown;
954 }
955 }
956
SetPinnedItersMgr(PinnedIteratorsManager * pinned_iters_mgr)957 void SetPinnedItersMgr(PinnedIteratorsManager* pinned_iters_mgr) override {
958 pinned_iters_mgr_ = pinned_iters_mgr;
959 if (file_iter_.iter()) {
960 file_iter_.SetPinnedItersMgr(pinned_iters_mgr);
961 }
962 }
963
IsKeyPinned() const964 bool IsKeyPinned() const override {
965 return pinned_iters_mgr_ && pinned_iters_mgr_->PinningEnabled() &&
966 file_iter_.iter() && file_iter_.IsKeyPinned();
967 }
968
IsValuePinned() const969 bool IsValuePinned() const override {
970 return pinned_iters_mgr_ && pinned_iters_mgr_->PinningEnabled() &&
971 file_iter_.iter() && file_iter_.IsValuePinned();
972 }
973
974 private:
975 // Return true if at least one invalid file is seen and skipped.
976 bool SkipEmptyFileForward();
977 void SkipEmptyFileBackward();
978 void SetFileIterator(InternalIterator* iter);
979 void InitFileIterator(size_t new_file_index);
980
file_smallest_key(size_t file_index)981 const Slice& file_smallest_key(size_t file_index) {
982 assert(file_index < flevel_->num_files);
983 return flevel_->files[file_index].smallest_key;
984 }
985
KeyReachedUpperBound(const Slice & internal_key)986 bool KeyReachedUpperBound(const Slice& internal_key) {
987 return read_options_.iterate_upper_bound != nullptr &&
988 user_comparator_.CompareWithoutTimestamp(
989 ExtractUserKey(internal_key), /*a_has_ts=*/true,
990 *read_options_.iterate_upper_bound, /*b_has_ts=*/false) >= 0;
991 }
992
NewFileIterator()993 InternalIterator* NewFileIterator() {
994 assert(file_index_ < flevel_->num_files);
995 auto file_meta = flevel_->files[file_index_];
996 if (should_sample_) {
997 sample_file_read_inc(file_meta.file_metadata);
998 }
999
1000 const InternalKey* smallest_compaction_key = nullptr;
1001 const InternalKey* largest_compaction_key = nullptr;
1002 if (compaction_boundaries_ != nullptr) {
1003 smallest_compaction_key = (*compaction_boundaries_)[file_index_].smallest;
1004 largest_compaction_key = (*compaction_boundaries_)[file_index_].largest;
1005 }
1006 CheckMayBeOutOfLowerBound();
1007 return table_cache_->NewIterator(
1008 read_options_, file_options_, icomparator_, *file_meta.file_metadata,
1009 range_del_agg_, prefix_extractor_,
1010 nullptr /* don't need reference to table */, file_read_hist_, caller_,
1011 /*arena=*/nullptr, skip_filters_, level_,
1012 /*max_file_size_for_l0_meta_pin=*/0, smallest_compaction_key,
1013 largest_compaction_key, allow_unprepared_value_);
1014 }
1015
1016 // Check if current file being fully within iterate_lower_bound.
1017 //
1018 // Note MyRocks may update iterate bounds between seek. To workaround it,
1019 // we need to check and update may_be_out_of_lower_bound_ accordingly.
CheckMayBeOutOfLowerBound()1020 void CheckMayBeOutOfLowerBound() {
1021 if (read_options_.iterate_lower_bound != nullptr &&
1022 file_index_ < flevel_->num_files) {
1023 may_be_out_of_lower_bound_ =
1024 user_comparator_.CompareWithoutTimestamp(
1025 ExtractUserKey(file_smallest_key(file_index_)), /*a_has_ts=*/true,
1026 *read_options_.iterate_lower_bound, /*b_has_ts=*/false) < 0;
1027 }
1028 }
1029
1030 TableCache* table_cache_;
1031 const ReadOptions& read_options_;
1032 const FileOptions& file_options_;
1033 const InternalKeyComparator& icomparator_;
1034 const UserComparatorWrapper user_comparator_;
1035 const LevelFilesBrief* flevel_;
1036 mutable FileDescriptor current_value_;
1037 // `prefix_extractor_` may be non-null even for total order seek. Checking
1038 // this variable is not the right way to identify whether prefix iterator
1039 // is used.
1040 const SliceTransform* prefix_extractor_;
1041
1042 HistogramImpl* file_read_hist_;
1043 bool should_sample_;
1044 TableReaderCaller caller_;
1045 bool skip_filters_;
1046 bool allow_unprepared_value_;
1047 bool may_be_out_of_lower_bound_ = true;
1048 size_t file_index_;
1049 int level_;
1050 RangeDelAggregator* range_del_agg_;
1051 IteratorWrapper file_iter_; // May be nullptr
1052 PinnedIteratorsManager* pinned_iters_mgr_;
1053
1054 // To be propagated to RangeDelAggregator in order to safely truncate range
1055 // tombstones.
1056 const std::vector<AtomicCompactionUnitBoundary>* compaction_boundaries_;
1057 };
1058
Seek(const Slice & target)1059 void LevelIterator::Seek(const Slice& target) {
1060 // Check whether the seek key fall under the same file
1061 bool need_to_reseek = true;
1062 if (file_iter_.iter() != nullptr && file_index_ < flevel_->num_files) {
1063 const FdWithKeyRange& cur_file = flevel_->files[file_index_];
1064 if (icomparator_.InternalKeyComparator::Compare(
1065 target, cur_file.largest_key) <= 0 &&
1066 icomparator_.InternalKeyComparator::Compare(
1067 target, cur_file.smallest_key) >= 0) {
1068 need_to_reseek = false;
1069 assert(static_cast<size_t>(FindFile(icomparator_, *flevel_, target)) ==
1070 file_index_);
1071 }
1072 }
1073 if (need_to_reseek) {
1074 TEST_SYNC_POINT("LevelIterator::Seek:BeforeFindFile");
1075 size_t new_file_index = FindFile(icomparator_, *flevel_, target);
1076 InitFileIterator(new_file_index);
1077 }
1078
1079 if (file_iter_.iter() != nullptr) {
1080 file_iter_.Seek(target);
1081 }
1082 if (SkipEmptyFileForward() && prefix_extractor_ != nullptr &&
1083 !read_options_.total_order_seek && !read_options_.auto_prefix_mode &&
1084 file_iter_.iter() != nullptr && file_iter_.Valid()) {
1085 // We've skipped the file we initially positioned to. In the prefix
1086 // seek case, it is likely that the file is skipped because of
1087 // prefix bloom or hash, where more keys are skipped. We then check
1088 // the current key and invalidate the iterator if the prefix is
1089 // already passed.
1090 // When doing prefix iterator seek, when keys for one prefix have
1091 // been exhausted, it can jump to any key that is larger. Here we are
1092 // enforcing a stricter contract than that, in order to make it easier for
1093 // higher layers (merging and DB iterator) to reason the correctness:
1094 // 1. Within the prefix, the result should be accurate.
1095 // 2. If keys for the prefix is exhausted, it is either positioned to the
1096 // next key after the prefix, or make the iterator invalid.
1097 // A side benefit will be that it invalidates the iterator earlier so that
1098 // the upper level merging iterator can merge fewer child iterators.
1099 size_t ts_sz = user_comparator_.timestamp_size();
1100 Slice target_user_key_without_ts =
1101 ExtractUserKeyAndStripTimestamp(target, ts_sz);
1102 Slice file_user_key_without_ts =
1103 ExtractUserKeyAndStripTimestamp(file_iter_.key(), ts_sz);
1104 if (prefix_extractor_->InDomain(target_user_key_without_ts) &&
1105 (!prefix_extractor_->InDomain(file_user_key_without_ts) ||
1106 user_comparator_.CompareWithoutTimestamp(
1107 prefix_extractor_->Transform(target_user_key_without_ts), false,
1108 prefix_extractor_->Transform(file_user_key_without_ts),
1109 false) != 0)) {
1110 SetFileIterator(nullptr);
1111 }
1112 }
1113 CheckMayBeOutOfLowerBound();
1114 }
1115
SeekForPrev(const Slice & target)1116 void LevelIterator::SeekForPrev(const Slice& target) {
1117 size_t new_file_index = FindFile(icomparator_, *flevel_, target);
1118 if (new_file_index >= flevel_->num_files) {
1119 new_file_index = flevel_->num_files - 1;
1120 }
1121
1122 InitFileIterator(new_file_index);
1123 if (file_iter_.iter() != nullptr) {
1124 file_iter_.SeekForPrev(target);
1125 SkipEmptyFileBackward();
1126 }
1127 CheckMayBeOutOfLowerBound();
1128 }
1129
SeekToFirst()1130 void LevelIterator::SeekToFirst() {
1131 InitFileIterator(0);
1132 if (file_iter_.iter() != nullptr) {
1133 file_iter_.SeekToFirst();
1134 }
1135 SkipEmptyFileForward();
1136 CheckMayBeOutOfLowerBound();
1137 }
1138
SeekToLast()1139 void LevelIterator::SeekToLast() {
1140 InitFileIterator(flevel_->num_files - 1);
1141 if (file_iter_.iter() != nullptr) {
1142 file_iter_.SeekToLast();
1143 }
1144 SkipEmptyFileBackward();
1145 CheckMayBeOutOfLowerBound();
1146 }
1147
Next()1148 void LevelIterator::Next() {
1149 assert(Valid());
1150 file_iter_.Next();
1151 SkipEmptyFileForward();
1152 }
1153
NextAndGetResult(IterateResult * result)1154 bool LevelIterator::NextAndGetResult(IterateResult* result) {
1155 assert(Valid());
1156 bool is_valid = file_iter_.NextAndGetResult(result);
1157 if (!is_valid) {
1158 SkipEmptyFileForward();
1159 is_valid = Valid();
1160 if (is_valid) {
1161 result->key = key();
1162 result->bound_check_result = file_iter_.UpperBoundCheckResult();
1163 // Ideally, we should return the real file_iter_.value_prepared but the
1164 // information is not here. It would casue an extra PrepareValue()
1165 // for the first key of a file.
1166 result->value_prepared = !allow_unprepared_value_;
1167 }
1168 }
1169 return is_valid;
1170 }
1171
Prev()1172 void LevelIterator::Prev() {
1173 assert(Valid());
1174 file_iter_.Prev();
1175 SkipEmptyFileBackward();
1176 }
1177
SkipEmptyFileForward()1178 bool LevelIterator::SkipEmptyFileForward() {
1179 bool seen_empty_file = false;
1180 while (file_iter_.iter() == nullptr ||
1181 (!file_iter_.Valid() && file_iter_.status().ok() &&
1182 file_iter_.iter()->UpperBoundCheckResult() !=
1183 IterBoundCheck::kOutOfBound)) {
1184 seen_empty_file = true;
1185 // Move to next file
1186 if (file_index_ >= flevel_->num_files - 1) {
1187 // Already at the last file
1188 SetFileIterator(nullptr);
1189 break;
1190 }
1191 if (KeyReachedUpperBound(file_smallest_key(file_index_ + 1))) {
1192 SetFileIterator(nullptr);
1193 break;
1194 }
1195 InitFileIterator(file_index_ + 1);
1196 if (file_iter_.iter() != nullptr) {
1197 file_iter_.SeekToFirst();
1198 }
1199 }
1200 return seen_empty_file;
1201 }
1202
SkipEmptyFileBackward()1203 void LevelIterator::SkipEmptyFileBackward() {
1204 while (file_iter_.iter() == nullptr ||
1205 (!file_iter_.Valid() && file_iter_.status().ok())) {
1206 // Move to previous file
1207 if (file_index_ == 0) {
1208 // Already the first file
1209 SetFileIterator(nullptr);
1210 return;
1211 }
1212 InitFileIterator(file_index_ - 1);
1213 if (file_iter_.iter() != nullptr) {
1214 file_iter_.SeekToLast();
1215 }
1216 }
1217 }
1218
SetFileIterator(InternalIterator * iter)1219 void LevelIterator::SetFileIterator(InternalIterator* iter) {
1220 if (pinned_iters_mgr_ && iter) {
1221 iter->SetPinnedItersMgr(pinned_iters_mgr_);
1222 }
1223
1224 InternalIterator* old_iter = file_iter_.Set(iter);
1225 if (pinned_iters_mgr_ && pinned_iters_mgr_->PinningEnabled()) {
1226 pinned_iters_mgr_->PinIterator(old_iter);
1227 } else {
1228 delete old_iter;
1229 }
1230 }
1231
InitFileIterator(size_t new_file_index)1232 void LevelIterator::InitFileIterator(size_t new_file_index) {
1233 if (new_file_index >= flevel_->num_files) {
1234 file_index_ = new_file_index;
1235 SetFileIterator(nullptr);
1236 return;
1237 } else {
1238 // If the file iterator shows incomplete, we try it again if users seek
1239 // to the same file, as this time we may go to a different data block
1240 // which is cached in block cache.
1241 //
1242 if (file_iter_.iter() != nullptr && !file_iter_.status().IsIncomplete() &&
1243 new_file_index == file_index_) {
1244 // file_iter_ is already constructed with this iterator, so
1245 // no need to change anything
1246 } else {
1247 file_index_ = new_file_index;
1248 InternalIterator* iter = NewFileIterator();
1249 SetFileIterator(iter);
1250 }
1251 }
1252 }
1253 } // anonymous namespace
1254
GetTableProperties(std::shared_ptr<const TableProperties> * tp,const FileMetaData * file_meta,const std::string * fname) const1255 Status Version::GetTableProperties(std::shared_ptr<const TableProperties>* tp,
1256 const FileMetaData* file_meta,
1257 const std::string* fname) const {
1258 auto table_cache = cfd_->table_cache();
1259 auto ioptions = cfd_->ioptions();
1260 Status s = table_cache->GetTableProperties(
1261 file_options_, cfd_->internal_comparator(), file_meta->fd, tp,
1262 mutable_cf_options_.prefix_extractor.get(), true /* no io */);
1263 if (s.ok()) {
1264 return s;
1265 }
1266
1267 // We only ignore error type `Incomplete` since it's by design that we
1268 // disallow table when it's not in table cache.
1269 if (!s.IsIncomplete()) {
1270 return s;
1271 }
1272
1273 // 2. Table is not present in table cache, we'll read the table properties
1274 // directly from the properties block in the file.
1275 std::unique_ptr<FSRandomAccessFile> file;
1276 std::string file_name;
1277 if (fname != nullptr) {
1278 file_name = *fname;
1279 } else {
1280 file_name =
1281 TableFileName(ioptions->cf_paths, file_meta->fd.GetNumber(),
1282 file_meta->fd.GetPathId());
1283 }
1284 s = ioptions->fs->NewRandomAccessFile(file_name, file_options_, &file,
1285 nullptr);
1286 if (!s.ok()) {
1287 return s;
1288 }
1289
1290 TableProperties* raw_table_properties;
1291 // By setting the magic number to kInvalidTableMagicNumber, we can by
1292 // pass the magic number check in the footer.
1293 std::unique_ptr<RandomAccessFileReader> file_reader(
1294 new RandomAccessFileReader(
1295 std::move(file), file_name, nullptr /* env */, io_tracer_,
1296 nullptr /* stats */, 0 /* hist_type */, nullptr /* file_read_hist */,
1297 nullptr /* rate_limiter */, ioptions->listeners));
1298 s = ReadTableProperties(
1299 file_reader.get(), file_meta->fd.GetFileSize(),
1300 Footer::kInvalidTableMagicNumber /* table's magic number */, *ioptions,
1301 &raw_table_properties, false /* compression_type_missing */);
1302 if (!s.ok()) {
1303 return s;
1304 }
1305 RecordTick(ioptions->stats, NUMBER_DIRECT_LOAD_TABLE_PROPERTIES);
1306
1307 *tp = std::shared_ptr<const TableProperties>(raw_table_properties);
1308 return s;
1309 }
1310
GetPropertiesOfAllTables(TablePropertiesCollection * props)1311 Status Version::GetPropertiesOfAllTables(TablePropertiesCollection* props) {
1312 Status s;
1313 for (int level = 0; level < storage_info_.num_levels_; level++) {
1314 s = GetPropertiesOfAllTables(props, level);
1315 if (!s.ok()) {
1316 return s;
1317 }
1318 }
1319
1320 return Status::OK();
1321 }
1322
TablesRangeTombstoneSummary(int max_entries_to_print,std::string * out_str)1323 Status Version::TablesRangeTombstoneSummary(int max_entries_to_print,
1324 std::string* out_str) {
1325 if (max_entries_to_print <= 0) {
1326 return Status::OK();
1327 }
1328 int num_entries_left = max_entries_to_print;
1329
1330 std::stringstream ss;
1331
1332 for (int level = 0; level < storage_info_.num_levels_; level++) {
1333 for (const auto& file_meta : storage_info_.files_[level]) {
1334 auto fname =
1335 TableFileName(cfd_->ioptions()->cf_paths, file_meta->fd.GetNumber(),
1336 file_meta->fd.GetPathId());
1337
1338 ss << "=== file : " << fname << " ===\n";
1339
1340 TableCache* table_cache = cfd_->table_cache();
1341 std::unique_ptr<FragmentedRangeTombstoneIterator> tombstone_iter;
1342
1343 Status s = table_cache->GetRangeTombstoneIterator(
1344 ReadOptions(), cfd_->internal_comparator(), *file_meta,
1345 &tombstone_iter);
1346 if (!s.ok()) {
1347 return s;
1348 }
1349 if (tombstone_iter) {
1350 tombstone_iter->SeekToFirst();
1351
1352 while (tombstone_iter->Valid() && num_entries_left > 0) {
1353 ss << "start: " << tombstone_iter->start_key().ToString(true)
1354 << " end: " << tombstone_iter->end_key().ToString(true)
1355 << " seq: " << tombstone_iter->seq() << '\n';
1356 tombstone_iter->Next();
1357 num_entries_left--;
1358 }
1359 if (num_entries_left <= 0) {
1360 break;
1361 }
1362 }
1363 }
1364 if (num_entries_left <= 0) {
1365 break;
1366 }
1367 }
1368 assert(num_entries_left >= 0);
1369 if (num_entries_left <= 0) {
1370 ss << "(results may not be complete)\n";
1371 }
1372
1373 *out_str = ss.str();
1374 return Status::OK();
1375 }
1376
GetPropertiesOfAllTables(TablePropertiesCollection * props,int level)1377 Status Version::GetPropertiesOfAllTables(TablePropertiesCollection* props,
1378 int level) {
1379 for (const auto& file_meta : storage_info_.files_[level]) {
1380 auto fname =
1381 TableFileName(cfd_->ioptions()->cf_paths, file_meta->fd.GetNumber(),
1382 file_meta->fd.GetPathId());
1383 // 1. If the table is already present in table cache, load table
1384 // properties from there.
1385 std::shared_ptr<const TableProperties> table_properties;
1386 Status s = GetTableProperties(&table_properties, file_meta, &fname);
1387 if (s.ok()) {
1388 props->insert({fname, table_properties});
1389 } else {
1390 return s;
1391 }
1392 }
1393
1394 return Status::OK();
1395 }
1396
GetPropertiesOfTablesInRange(const Range * range,std::size_t n,TablePropertiesCollection * props) const1397 Status Version::GetPropertiesOfTablesInRange(
1398 const Range* range, std::size_t n, TablePropertiesCollection* props) const {
1399 for (int level = 0; level < storage_info_.num_non_empty_levels(); level++) {
1400 for (decltype(n) i = 0; i < n; i++) {
1401 // Convert user_key into a corresponding internal key.
1402 InternalKey k1(range[i].start, kMaxSequenceNumber, kValueTypeForSeek);
1403 InternalKey k2(range[i].limit, kMaxSequenceNumber, kValueTypeForSeek);
1404 std::vector<FileMetaData*> files;
1405 storage_info_.GetOverlappingInputs(level, &k1, &k2, &files, -1, nullptr,
1406 false);
1407 for (const auto& file_meta : files) {
1408 auto fname =
1409 TableFileName(cfd_->ioptions()->cf_paths,
1410 file_meta->fd.GetNumber(), file_meta->fd.GetPathId());
1411 if (props->count(fname) == 0) {
1412 // 1. If the table is already present in table cache, load table
1413 // properties from there.
1414 std::shared_ptr<const TableProperties> table_properties;
1415 Status s = GetTableProperties(&table_properties, file_meta, &fname);
1416 if (s.ok()) {
1417 props->insert({fname, table_properties});
1418 } else {
1419 return s;
1420 }
1421 }
1422 }
1423 }
1424 }
1425
1426 return Status::OK();
1427 }
1428
GetAggregatedTableProperties(std::shared_ptr<const TableProperties> * tp,int level)1429 Status Version::GetAggregatedTableProperties(
1430 std::shared_ptr<const TableProperties>* tp, int level) {
1431 TablePropertiesCollection props;
1432 Status s;
1433 if (level < 0) {
1434 s = GetPropertiesOfAllTables(&props);
1435 } else {
1436 s = GetPropertiesOfAllTables(&props, level);
1437 }
1438 if (!s.ok()) {
1439 return s;
1440 }
1441
1442 auto* new_tp = new TableProperties();
1443 for (const auto& item : props) {
1444 new_tp->Add(*item.second);
1445 }
1446 tp->reset(new_tp);
1447 return Status::OK();
1448 }
1449
GetMemoryUsageByTableReaders()1450 size_t Version::GetMemoryUsageByTableReaders() {
1451 size_t total_usage = 0;
1452 for (auto& file_level : storage_info_.level_files_brief_) {
1453 for (size_t i = 0; i < file_level.num_files; i++) {
1454 total_usage += cfd_->table_cache()->GetMemoryUsageByTableReader(
1455 file_options_, cfd_->internal_comparator(), file_level.files[i].fd,
1456 mutable_cf_options_.prefix_extractor.get());
1457 }
1458 }
1459 return total_usage;
1460 }
1461
GetColumnFamilyMetaData(ColumnFamilyMetaData * cf_meta)1462 void Version::GetColumnFamilyMetaData(ColumnFamilyMetaData* cf_meta) {
1463 assert(cf_meta);
1464 assert(cfd_);
1465
1466 cf_meta->name = cfd_->GetName();
1467 cf_meta->size = 0;
1468 cf_meta->file_count = 0;
1469 cf_meta->levels.clear();
1470
1471 auto* ioptions = cfd_->ioptions();
1472 auto* vstorage = storage_info();
1473
1474 for (int level = 0; level < cfd_->NumberLevels(); level++) {
1475 uint64_t level_size = 0;
1476 cf_meta->file_count += vstorage->LevelFiles(level).size();
1477 std::vector<SstFileMetaData> files;
1478 for (const auto& file : vstorage->LevelFiles(level)) {
1479 uint32_t path_id = file->fd.GetPathId();
1480 std::string file_path;
1481 if (path_id < ioptions->cf_paths.size()) {
1482 file_path = ioptions->cf_paths[path_id].path;
1483 } else {
1484 assert(!ioptions->cf_paths.empty());
1485 file_path = ioptions->cf_paths.back().path;
1486 }
1487 const uint64_t file_number = file->fd.GetNumber();
1488 files.emplace_back(
1489 MakeTableFileName("", file_number), file_number, file_path,
1490 static_cast<size_t>(file->fd.GetFileSize()), file->fd.smallest_seqno,
1491 file->fd.largest_seqno, file->smallest.user_key().ToString(),
1492 file->largest.user_key().ToString(),
1493 file->stats.num_reads_sampled.load(std::memory_order_relaxed),
1494 file->being_compacted, file->temperature,
1495 file->oldest_blob_file_number, file->TryGetOldestAncesterTime(),
1496 file->TryGetFileCreationTime(), file->file_checksum,
1497 file->file_checksum_func_name);
1498 files.back().num_entries = file->num_entries;
1499 files.back().num_deletions = file->num_deletions;
1500 level_size += file->fd.GetFileSize();
1501 }
1502 cf_meta->levels.emplace_back(
1503 level, level_size, std::move(files));
1504 cf_meta->size += level_size;
1505 }
1506 }
1507
GetSstFilesSize()1508 uint64_t Version::GetSstFilesSize() {
1509 uint64_t sst_files_size = 0;
1510 for (int level = 0; level < storage_info_.num_levels_; level++) {
1511 for (const auto& file_meta : storage_info_.LevelFiles(level)) {
1512 sst_files_size += file_meta->fd.GetFileSize();
1513 }
1514 }
1515 return sst_files_size;
1516 }
1517
GetCreationTimeOfOldestFile(uint64_t * creation_time)1518 void Version::GetCreationTimeOfOldestFile(uint64_t* creation_time) {
1519 uint64_t oldest_time = port::kMaxUint64;
1520 for (int level = 0; level < storage_info_.num_non_empty_levels_; level++) {
1521 for (FileMetaData* meta : storage_info_.LevelFiles(level)) {
1522 assert(meta->fd.table_reader != nullptr);
1523 uint64_t file_creation_time = meta->TryGetFileCreationTime();
1524 if (file_creation_time == kUnknownFileCreationTime) {
1525 *creation_time = 0;
1526 return;
1527 }
1528 if (file_creation_time < oldest_time) {
1529 oldest_time = file_creation_time;
1530 }
1531 }
1532 }
1533 *creation_time = oldest_time;
1534 }
1535
GetEstimatedActiveKeys() const1536 uint64_t VersionStorageInfo::GetEstimatedActiveKeys() const {
1537 // Estimation will be inaccurate when:
1538 // (1) there exist merge keys
1539 // (2) keys are directly overwritten
1540 // (3) deletion on non-existing keys
1541 // (4) low number of samples
1542 if (current_num_samples_ == 0) {
1543 return 0;
1544 }
1545
1546 if (current_num_non_deletions_ <= current_num_deletions_) {
1547 return 0;
1548 }
1549
1550 uint64_t est = current_num_non_deletions_ - current_num_deletions_;
1551
1552 uint64_t file_count = 0;
1553 for (int level = 0; level < num_levels_; ++level) {
1554 file_count += files_[level].size();
1555 }
1556
1557 if (current_num_samples_ < file_count) {
1558 // casting to avoid overflowing
1559 return
1560 static_cast<uint64_t>(
1561 (est * static_cast<double>(file_count) / current_num_samples_)
1562 );
1563 } else {
1564 return est;
1565 }
1566 }
1567
GetEstimatedCompressionRatioAtLevel(int level) const1568 double VersionStorageInfo::GetEstimatedCompressionRatioAtLevel(
1569 int level) const {
1570 assert(level < num_levels_);
1571 uint64_t sum_file_size_bytes = 0;
1572 uint64_t sum_data_size_bytes = 0;
1573 for (auto* file_meta : files_[level]) {
1574 sum_file_size_bytes += file_meta->fd.GetFileSize();
1575 sum_data_size_bytes += file_meta->raw_key_size + file_meta->raw_value_size;
1576 }
1577 if (sum_file_size_bytes == 0) {
1578 return -1.0;
1579 }
1580 return static_cast<double>(sum_data_size_bytes) / sum_file_size_bytes;
1581 }
1582
AddIterators(const ReadOptions & read_options,const FileOptions & soptions,MergeIteratorBuilder * merge_iter_builder,RangeDelAggregator * range_del_agg,bool allow_unprepared_value)1583 void Version::AddIterators(const ReadOptions& read_options,
1584 const FileOptions& soptions,
1585 MergeIteratorBuilder* merge_iter_builder,
1586 RangeDelAggregator* range_del_agg,
1587 bool allow_unprepared_value) {
1588 assert(storage_info_.finalized_);
1589
1590 for (int level = 0; level < storage_info_.num_non_empty_levels(); level++) {
1591 AddIteratorsForLevel(read_options, soptions, merge_iter_builder, level,
1592 range_del_agg, allow_unprepared_value);
1593 }
1594 }
1595
AddIteratorsForLevel(const ReadOptions & read_options,const FileOptions & soptions,MergeIteratorBuilder * merge_iter_builder,int level,RangeDelAggregator * range_del_agg,bool allow_unprepared_value)1596 void Version::AddIteratorsForLevel(const ReadOptions& read_options,
1597 const FileOptions& soptions,
1598 MergeIteratorBuilder* merge_iter_builder,
1599 int level,
1600 RangeDelAggregator* range_del_agg,
1601 bool allow_unprepared_value) {
1602 assert(storage_info_.finalized_);
1603 if (level >= storage_info_.num_non_empty_levels()) {
1604 // This is an empty level
1605 return;
1606 } else if (storage_info_.LevelFilesBrief(level).num_files == 0) {
1607 // No files in this level
1608 return;
1609 }
1610
1611 bool should_sample = should_sample_file_read();
1612
1613 auto* arena = merge_iter_builder->GetArena();
1614 if (level == 0) {
1615 // Merge all level zero files together since they may overlap
1616 for (size_t i = 0; i < storage_info_.LevelFilesBrief(0).num_files; i++) {
1617 const auto& file = storage_info_.LevelFilesBrief(0).files[i];
1618 merge_iter_builder->AddIterator(cfd_->table_cache()->NewIterator(
1619 read_options, soptions, cfd_->internal_comparator(),
1620 *file.file_metadata, range_del_agg,
1621 mutable_cf_options_.prefix_extractor.get(), nullptr,
1622 cfd_->internal_stats()->GetFileReadHist(0),
1623 TableReaderCaller::kUserIterator, arena,
1624 /*skip_filters=*/false, /*level=*/0, max_file_size_for_l0_meta_pin_,
1625 /*smallest_compaction_key=*/nullptr,
1626 /*largest_compaction_key=*/nullptr, allow_unprepared_value));
1627 }
1628 if (should_sample) {
1629 // Count ones for every L0 files. This is done per iterator creation
1630 // rather than Seek(), while files in other levels are recored per seek.
1631 // If users execute one range query per iterator, there may be some
1632 // discrepancy here.
1633 for (FileMetaData* meta : storage_info_.LevelFiles(0)) {
1634 sample_file_read_inc(meta);
1635 }
1636 }
1637 } else if (storage_info_.LevelFilesBrief(level).num_files > 0) {
1638 // For levels > 0, we can use a concatenating iterator that sequentially
1639 // walks through the non-overlapping files in the level, opening them
1640 // lazily.
1641 auto* mem = arena->AllocateAligned(sizeof(LevelIterator));
1642 merge_iter_builder->AddIterator(new (mem) LevelIterator(
1643 cfd_->table_cache(), read_options, soptions,
1644 cfd_->internal_comparator(), &storage_info_.LevelFilesBrief(level),
1645 mutable_cf_options_.prefix_extractor.get(), should_sample_file_read(),
1646 cfd_->internal_stats()->GetFileReadHist(level),
1647 TableReaderCaller::kUserIterator, IsFilterSkipped(level), level,
1648 range_del_agg,
1649 /*compaction_boundaries=*/nullptr, allow_unprepared_value));
1650 }
1651 }
1652
OverlapWithLevelIterator(const ReadOptions & read_options,const FileOptions & file_options,const Slice & smallest_user_key,const Slice & largest_user_key,int level,bool * overlap)1653 Status Version::OverlapWithLevelIterator(const ReadOptions& read_options,
1654 const FileOptions& file_options,
1655 const Slice& smallest_user_key,
1656 const Slice& largest_user_key,
1657 int level, bool* overlap) {
1658 assert(storage_info_.finalized_);
1659
1660 auto icmp = cfd_->internal_comparator();
1661 auto ucmp = icmp.user_comparator();
1662
1663 Arena arena;
1664 Status status;
1665 ReadRangeDelAggregator range_del_agg(&icmp,
1666 kMaxSequenceNumber /* upper_bound */);
1667
1668 *overlap = false;
1669
1670 if (level == 0) {
1671 for (size_t i = 0; i < storage_info_.LevelFilesBrief(0).num_files; i++) {
1672 const auto file = &storage_info_.LevelFilesBrief(0).files[i];
1673 if (AfterFile(ucmp, &smallest_user_key, file) ||
1674 BeforeFile(ucmp, &largest_user_key, file)) {
1675 continue;
1676 }
1677 ScopedArenaIterator iter(cfd_->table_cache()->NewIterator(
1678 read_options, file_options, cfd_->internal_comparator(),
1679 *file->file_metadata, &range_del_agg,
1680 mutable_cf_options_.prefix_extractor.get(), nullptr,
1681 cfd_->internal_stats()->GetFileReadHist(0),
1682 TableReaderCaller::kUserIterator, &arena,
1683 /*skip_filters=*/false, /*level=*/0, max_file_size_for_l0_meta_pin_,
1684 /*smallest_compaction_key=*/nullptr,
1685 /*largest_compaction_key=*/nullptr,
1686 /*allow_unprepared_value=*/false));
1687 status = OverlapWithIterator(
1688 ucmp, smallest_user_key, largest_user_key, iter.get(), overlap);
1689 if (!status.ok() || *overlap) {
1690 break;
1691 }
1692 }
1693 } else if (storage_info_.LevelFilesBrief(level).num_files > 0) {
1694 auto mem = arena.AllocateAligned(sizeof(LevelIterator));
1695 ScopedArenaIterator iter(new (mem) LevelIterator(
1696 cfd_->table_cache(), read_options, file_options,
1697 cfd_->internal_comparator(), &storage_info_.LevelFilesBrief(level),
1698 mutable_cf_options_.prefix_extractor.get(), should_sample_file_read(),
1699 cfd_->internal_stats()->GetFileReadHist(level),
1700 TableReaderCaller::kUserIterator, IsFilterSkipped(level), level,
1701 &range_del_agg));
1702 status = OverlapWithIterator(
1703 ucmp, smallest_user_key, largest_user_key, iter.get(), overlap);
1704 }
1705
1706 if (status.ok() && *overlap == false &&
1707 range_del_agg.IsRangeOverlapped(smallest_user_key, largest_user_key)) {
1708 *overlap = true;
1709 }
1710 return status;
1711 }
1712
VersionStorageInfo(const InternalKeyComparator * internal_comparator,const Comparator * user_comparator,int levels,CompactionStyle compaction_style,VersionStorageInfo * ref_vstorage,bool _force_consistency_checks)1713 VersionStorageInfo::VersionStorageInfo(
1714 const InternalKeyComparator* internal_comparator,
1715 const Comparator* user_comparator, int levels,
1716 CompactionStyle compaction_style, VersionStorageInfo* ref_vstorage,
1717 bool _force_consistency_checks)
1718 : internal_comparator_(internal_comparator),
1719 user_comparator_(user_comparator),
1720 // cfd is nullptr if Version is dummy
1721 num_levels_(levels),
1722 num_non_empty_levels_(0),
1723 file_indexer_(user_comparator),
1724 compaction_style_(compaction_style),
1725 files_(new std::vector<FileMetaData*>[num_levels_]),
1726 base_level_(num_levels_ == 1 ? -1 : 1),
1727 level_multiplier_(0.0),
1728 files_by_compaction_pri_(num_levels_),
1729 level0_non_overlapping_(false),
1730 next_file_to_compact_by_size_(num_levels_),
1731 compaction_score_(num_levels_),
1732 compaction_level_(num_levels_),
1733 l0_delay_trigger_count_(0),
1734 accumulated_file_size_(0),
1735 accumulated_raw_key_size_(0),
1736 accumulated_raw_value_size_(0),
1737 accumulated_num_non_deletions_(0),
1738 accumulated_num_deletions_(0),
1739 current_num_non_deletions_(0),
1740 current_num_deletions_(0),
1741 current_num_samples_(0),
1742 estimated_compaction_needed_bytes_(0),
1743 finalized_(false),
1744 force_consistency_checks_(_force_consistency_checks) {
1745 if (ref_vstorage != nullptr) {
1746 accumulated_file_size_ = ref_vstorage->accumulated_file_size_;
1747 accumulated_raw_key_size_ = ref_vstorage->accumulated_raw_key_size_;
1748 accumulated_raw_value_size_ = ref_vstorage->accumulated_raw_value_size_;
1749 accumulated_num_non_deletions_ =
1750 ref_vstorage->accumulated_num_non_deletions_;
1751 accumulated_num_deletions_ = ref_vstorage->accumulated_num_deletions_;
1752 current_num_non_deletions_ = ref_vstorage->current_num_non_deletions_;
1753 current_num_deletions_ = ref_vstorage->current_num_deletions_;
1754 current_num_samples_ = ref_vstorage->current_num_samples_;
1755 oldest_snapshot_seqnum_ = ref_vstorage->oldest_snapshot_seqnum_;
1756 }
1757 }
1758
Version(ColumnFamilyData * column_family_data,VersionSet * vset,const FileOptions & file_opt,const MutableCFOptions mutable_cf_options,const std::shared_ptr<IOTracer> & io_tracer,uint64_t version_number)1759 Version::Version(ColumnFamilyData* column_family_data, VersionSet* vset,
1760 const FileOptions& file_opt,
1761 const MutableCFOptions mutable_cf_options,
1762 const std::shared_ptr<IOTracer>& io_tracer,
1763 uint64_t version_number)
1764 : env_(vset->env_),
1765 clock_(vset->clock_),
1766 cfd_(column_family_data),
1767 info_log_((cfd_ == nullptr) ? nullptr : cfd_->ioptions()->logger),
1768 db_statistics_((cfd_ == nullptr) ? nullptr : cfd_->ioptions()->stats),
1769 table_cache_((cfd_ == nullptr) ? nullptr : cfd_->table_cache()),
1770 blob_file_cache_(cfd_ ? cfd_->blob_file_cache() : nullptr),
1771 merge_operator_(
1772 (cfd_ == nullptr) ? nullptr : cfd_->ioptions()->merge_operator.get()),
1773 storage_info_(
1774 (cfd_ == nullptr) ? nullptr : &cfd_->internal_comparator(),
1775 (cfd_ == nullptr) ? nullptr : cfd_->user_comparator(),
1776 cfd_ == nullptr ? 0 : cfd_->NumberLevels(),
1777 cfd_ == nullptr ? kCompactionStyleLevel
1778 : cfd_->ioptions()->compaction_style,
1779 (cfd_ == nullptr || cfd_->current() == nullptr)
1780 ? nullptr
1781 : cfd_->current()->storage_info(),
1782 cfd_ == nullptr ? false : cfd_->ioptions()->force_consistency_checks),
1783 vset_(vset),
1784 next_(this),
1785 prev_(this),
1786 refs_(0),
1787 file_options_(file_opt),
1788 mutable_cf_options_(mutable_cf_options),
1789 max_file_size_for_l0_meta_pin_(
1790 MaxFileSizeForL0MetaPin(mutable_cf_options_)),
1791 version_number_(version_number),
1792 io_tracer_(io_tracer) {}
1793
GetBlob(const ReadOptions & read_options,const Slice & user_key,const Slice & blob_index_slice,PinnableSlice * value,uint64_t * bytes_read) const1794 Status Version::GetBlob(const ReadOptions& read_options, const Slice& user_key,
1795 const Slice& blob_index_slice, PinnableSlice* value,
1796 uint64_t* bytes_read) const {
1797 if (read_options.read_tier == kBlockCacheTier) {
1798 return Status::Incomplete("Cannot read blob: no disk I/O allowed");
1799 }
1800
1801 BlobIndex blob_index;
1802
1803 {
1804 Status s = blob_index.DecodeFrom(blob_index_slice);
1805 if (!s.ok()) {
1806 return s;
1807 }
1808 }
1809
1810 return GetBlob(read_options, user_key, blob_index, value, bytes_read);
1811 }
1812
GetBlob(const ReadOptions & read_options,const Slice & user_key,const BlobIndex & blob_index,PinnableSlice * value,uint64_t * bytes_read) const1813 Status Version::GetBlob(const ReadOptions& read_options, const Slice& user_key,
1814 const BlobIndex& blob_index, PinnableSlice* value,
1815 uint64_t* bytes_read) const {
1816 assert(value);
1817
1818 if (blob_index.HasTTL() || blob_index.IsInlined()) {
1819 return Status::Corruption("Unexpected TTL/inlined blob index");
1820 }
1821
1822 const auto& blob_files = storage_info_.GetBlobFiles();
1823
1824 const uint64_t blob_file_number = blob_index.file_number();
1825
1826 const auto it = blob_files.find(blob_file_number);
1827 if (it == blob_files.end()) {
1828 return Status::Corruption("Invalid blob file number");
1829 }
1830
1831 CacheHandleGuard<BlobFileReader> blob_file_reader;
1832
1833 {
1834 assert(blob_file_cache_);
1835 const Status s = blob_file_cache_->GetBlobFileReader(blob_file_number,
1836 &blob_file_reader);
1837 if (!s.ok()) {
1838 return s;
1839 }
1840 }
1841
1842 assert(blob_file_reader.GetValue());
1843 const Status s = blob_file_reader.GetValue()->GetBlob(
1844 read_options, user_key, blob_index.offset(), blob_index.size(),
1845 blob_index.compression(), value, bytes_read);
1846
1847 return s;
1848 }
1849
Get(const ReadOptions & read_options,const LookupKey & k,PinnableSlice * value,std::string * timestamp,Status * status,MergeContext * merge_context,SequenceNumber * max_covering_tombstone_seq,bool * value_found,bool * key_exists,SequenceNumber * seq,ReadCallback * callback,bool * is_blob,bool do_merge)1850 void Version::Get(const ReadOptions& read_options, const LookupKey& k,
1851 PinnableSlice* value, std::string* timestamp, Status* status,
1852 MergeContext* merge_context,
1853 SequenceNumber* max_covering_tombstone_seq, bool* value_found,
1854 bool* key_exists, SequenceNumber* seq, ReadCallback* callback,
1855 bool* is_blob, bool do_merge) {
1856 Slice ikey = k.internal_key();
1857 Slice user_key = k.user_key();
1858
1859 assert(status->ok() || status->IsMergeInProgress());
1860
1861 if (key_exists != nullptr) {
1862 // will falsify below if not found
1863 *key_exists = true;
1864 }
1865
1866 PinnedIteratorsManager pinned_iters_mgr;
1867 uint64_t tracing_get_id = BlockCacheTraceHelper::kReservedGetId;
1868 if (vset_ && vset_->block_cache_tracer_ &&
1869 vset_->block_cache_tracer_->is_tracing_enabled()) {
1870 tracing_get_id = vset_->block_cache_tracer_->NextGetId();
1871 }
1872
1873 // Note: the old StackableDB-based BlobDB passes in
1874 // GetImplOptions::is_blob_index; for the integrated BlobDB implementation, we
1875 // need to provide it here.
1876 bool is_blob_index = false;
1877 bool* const is_blob_to_use = is_blob ? is_blob : &is_blob_index;
1878
1879 GetContext get_context(
1880 user_comparator(), merge_operator_, info_log_, db_statistics_,
1881 status->ok() ? GetContext::kNotFound : GetContext::kMerge, user_key,
1882 do_merge ? value : nullptr, do_merge ? timestamp : nullptr, value_found,
1883 merge_context, do_merge, max_covering_tombstone_seq, clock_, seq,
1884 merge_operator_ ? &pinned_iters_mgr : nullptr, callback, is_blob_to_use,
1885 tracing_get_id);
1886
1887 // Pin blocks that we read to hold merge operands
1888 if (merge_operator_) {
1889 pinned_iters_mgr.StartPinning();
1890 }
1891
1892 FilePicker fp(
1893 storage_info_.files_, user_key, ikey, &storage_info_.level_files_brief_,
1894 storage_info_.num_non_empty_levels_, &storage_info_.file_indexer_,
1895 user_comparator(), internal_comparator());
1896 FdWithKeyRange* f = fp.GetNextFile();
1897
1898 while (f != nullptr) {
1899 if (*max_covering_tombstone_seq > 0) {
1900 // The remaining files we look at will only contain covered keys, so we
1901 // stop here.
1902 break;
1903 }
1904 if (get_context.sample()) {
1905 sample_file_read_inc(f->file_metadata);
1906 }
1907
1908 bool timer_enabled =
1909 GetPerfLevel() >= PerfLevel::kEnableTimeExceptForMutex &&
1910 get_perf_context()->per_level_perf_context_enabled;
1911 StopWatchNano timer(clock_, timer_enabled /* auto_start */);
1912 *status = table_cache_->Get(
1913 read_options, *internal_comparator(), *f->file_metadata, ikey,
1914 &get_context, mutable_cf_options_.prefix_extractor.get(),
1915 cfd_->internal_stats()->GetFileReadHist(fp.GetHitFileLevel()),
1916 IsFilterSkipped(static_cast<int>(fp.GetHitFileLevel()),
1917 fp.IsHitFileLastInLevel()),
1918 fp.GetHitFileLevel(), max_file_size_for_l0_meta_pin_);
1919 // TODO: examine the behavior for corrupted key
1920 if (timer_enabled) {
1921 PERF_COUNTER_BY_LEVEL_ADD(get_from_table_nanos, timer.ElapsedNanos(),
1922 fp.GetHitFileLevel());
1923 }
1924 if (!status->ok()) {
1925 return;
1926 }
1927
1928 // report the counters before returning
1929 if (get_context.State() != GetContext::kNotFound &&
1930 get_context.State() != GetContext::kMerge &&
1931 db_statistics_ != nullptr) {
1932 get_context.ReportCounters();
1933 }
1934 switch (get_context.State()) {
1935 case GetContext::kNotFound:
1936 // Keep searching in other files
1937 break;
1938 case GetContext::kMerge:
1939 // TODO: update per-level perfcontext user_key_return_count for kMerge
1940 break;
1941 case GetContext::kFound:
1942 if (fp.GetHitFileLevel() == 0) {
1943 RecordTick(db_statistics_, GET_HIT_L0);
1944 } else if (fp.GetHitFileLevel() == 1) {
1945 RecordTick(db_statistics_, GET_HIT_L1);
1946 } else if (fp.GetHitFileLevel() >= 2) {
1947 RecordTick(db_statistics_, GET_HIT_L2_AND_UP);
1948 }
1949
1950 PERF_COUNTER_BY_LEVEL_ADD(user_key_return_count, 1,
1951 fp.GetHitFileLevel());
1952
1953 if (is_blob_index) {
1954 if (do_merge && value) {
1955 constexpr uint64_t* bytes_read = nullptr;
1956
1957 *status =
1958 GetBlob(read_options, user_key, *value, value, bytes_read);
1959 if (!status->ok()) {
1960 if (status->IsIncomplete()) {
1961 get_context.MarkKeyMayExist();
1962 }
1963 return;
1964 }
1965 }
1966 }
1967
1968 return;
1969 case GetContext::kDeleted:
1970 // Use empty error message for speed
1971 *status = Status::NotFound();
1972 return;
1973 case GetContext::kCorrupt:
1974 *status = Status::Corruption("corrupted key for ", user_key);
1975 return;
1976 case GetContext::kUnexpectedBlobIndex:
1977 ROCKS_LOG_ERROR(info_log_, "Encounter unexpected blob index.");
1978 *status = Status::NotSupported(
1979 "Encounter unexpected blob index. Please open DB with "
1980 "ROCKSDB_NAMESPACE::blob_db::BlobDB instead.");
1981 return;
1982 }
1983 f = fp.GetNextFile();
1984 }
1985 if (db_statistics_ != nullptr) {
1986 get_context.ReportCounters();
1987 }
1988 if (GetContext::kMerge == get_context.State()) {
1989 if (!do_merge) {
1990 *status = Status::OK();
1991 return;
1992 }
1993 if (!merge_operator_) {
1994 *status = Status::InvalidArgument(
1995 "merge_operator is not properly initialized.");
1996 return;
1997 }
1998 // merge_operands are in saver and we hit the beginning of the key history
1999 // do a final merge of nullptr and operands;
2000 std::string* str_value = value != nullptr ? value->GetSelf() : nullptr;
2001 *status = MergeHelper::TimedFullMerge(
2002 merge_operator_, user_key, nullptr, merge_context->GetOperands(),
2003 str_value, info_log_, db_statistics_, clock_,
2004 nullptr /* result_operand */, true);
2005 if (LIKELY(value != nullptr)) {
2006 value->PinSelf();
2007 }
2008 } else {
2009 if (key_exists != nullptr) {
2010 *key_exists = false;
2011 }
2012 *status = Status::NotFound(); // Use an empty error message for speed
2013 }
2014 }
2015
MultiGet(const ReadOptions & read_options,MultiGetRange * range,ReadCallback * callback)2016 void Version::MultiGet(const ReadOptions& read_options, MultiGetRange* range,
2017 ReadCallback* callback) {
2018 PinnedIteratorsManager pinned_iters_mgr;
2019
2020 // Pin blocks that we read to hold merge operands
2021 if (merge_operator_) {
2022 pinned_iters_mgr.StartPinning();
2023 }
2024 uint64_t tracing_mget_id = BlockCacheTraceHelper::kReservedGetId;
2025
2026 if (vset_ && vset_->block_cache_tracer_ &&
2027 vset_->block_cache_tracer_->is_tracing_enabled()) {
2028 tracing_mget_id = vset_->block_cache_tracer_->NextGetId();
2029 }
2030 // Even though we know the batch size won't be > MAX_BATCH_SIZE,
2031 // use autovector in order to avoid unnecessary construction of GetContext
2032 // objects, which is expensive
2033 autovector<GetContext, 16> get_ctx;
2034 for (auto iter = range->begin(); iter != range->end(); ++iter) {
2035 assert(iter->s->ok() || iter->s->IsMergeInProgress());
2036 get_ctx.emplace_back(
2037 user_comparator(), merge_operator_, info_log_, db_statistics_,
2038 iter->s->ok() ? GetContext::kNotFound : GetContext::kMerge,
2039 iter->ukey_with_ts, iter->value, iter->timestamp, nullptr,
2040 &(iter->merge_context), true, &iter->max_covering_tombstone_seq, clock_,
2041 nullptr, merge_operator_ ? &pinned_iters_mgr : nullptr, callback,
2042 &iter->is_blob_index, tracing_mget_id);
2043 // MergeInProgress status, if set, has been transferred to the get_context
2044 // state, so we set status to ok here. From now on, the iter status will
2045 // be used for IO errors, and get_context state will be used for any
2046 // key level errors
2047 *(iter->s) = Status::OK();
2048 }
2049 int get_ctx_index = 0;
2050 for (auto iter = range->begin(); iter != range->end();
2051 ++iter, get_ctx_index++) {
2052 iter->get_context = &(get_ctx[get_ctx_index]);
2053 }
2054
2055 MultiGetRange file_picker_range(*range, range->begin(), range->end());
2056 FilePickerMultiGet fp(
2057 &file_picker_range,
2058 &storage_info_.level_files_brief_, storage_info_.num_non_empty_levels_,
2059 &storage_info_.file_indexer_, user_comparator(), internal_comparator());
2060 FdWithKeyRange* f = fp.GetNextFile();
2061 Status s;
2062 uint64_t num_index_read = 0;
2063 uint64_t num_filter_read = 0;
2064 uint64_t num_data_read = 0;
2065 uint64_t num_sst_read = 0;
2066
2067 while (f != nullptr) {
2068 MultiGetRange file_range = fp.CurrentFileRange();
2069 bool timer_enabled =
2070 GetPerfLevel() >= PerfLevel::kEnableTimeExceptForMutex &&
2071 get_perf_context()->per_level_perf_context_enabled;
2072 StopWatchNano timer(clock_, timer_enabled /* auto_start */);
2073 s = table_cache_->MultiGet(
2074 read_options, *internal_comparator(), *f->file_metadata, &file_range,
2075 mutable_cf_options_.prefix_extractor.get(),
2076 cfd_->internal_stats()->GetFileReadHist(fp.GetHitFileLevel()),
2077 IsFilterSkipped(static_cast<int>(fp.GetHitFileLevel()),
2078 fp.IsHitFileLastInLevel()),
2079 fp.GetHitFileLevel());
2080 // TODO: examine the behavior for corrupted key
2081 if (timer_enabled) {
2082 PERF_COUNTER_BY_LEVEL_ADD(get_from_table_nanos, timer.ElapsedNanos(),
2083 fp.GetHitFileLevel());
2084 }
2085 if (!s.ok()) {
2086 // TODO: Set status for individual keys appropriately
2087 for (auto iter = file_range.begin(); iter != file_range.end(); ++iter) {
2088 *iter->s = s;
2089 file_range.MarkKeyDone(iter);
2090 }
2091 return;
2092 }
2093 uint64_t batch_size = 0;
2094 for (auto iter = file_range.begin(); s.ok() && iter != file_range.end();
2095 ++iter) {
2096 GetContext& get_context = *iter->get_context;
2097 Status* status = iter->s;
2098 // The Status in the KeyContext takes precedence over GetContext state
2099 // Status may be an error if there were any IO errors in the table
2100 // reader. We never expect Status to be NotFound(), as that is
2101 // determined by get_context
2102 assert(!status->IsNotFound());
2103 if (!status->ok()) {
2104 file_range.MarkKeyDone(iter);
2105 continue;
2106 }
2107
2108 if (get_context.sample()) {
2109 sample_file_read_inc(f->file_metadata);
2110 }
2111 batch_size++;
2112 num_index_read += get_context.get_context_stats_.num_index_read;
2113 num_filter_read += get_context.get_context_stats_.num_filter_read;
2114 num_data_read += get_context.get_context_stats_.num_data_read;
2115 num_sst_read += get_context.get_context_stats_.num_sst_read;
2116
2117 // report the counters before returning
2118 if (get_context.State() != GetContext::kNotFound &&
2119 get_context.State() != GetContext::kMerge &&
2120 db_statistics_ != nullptr) {
2121 get_context.ReportCounters();
2122 } else {
2123 if (iter->max_covering_tombstone_seq > 0) {
2124 // The remaining files we look at will only contain covered keys, so
2125 // we stop here for this key
2126 file_picker_range.SkipKey(iter);
2127 }
2128 }
2129 switch (get_context.State()) {
2130 case GetContext::kNotFound:
2131 // Keep searching in other files
2132 break;
2133 case GetContext::kMerge:
2134 // TODO: update per-level perfcontext user_key_return_count for kMerge
2135 break;
2136 case GetContext::kFound:
2137 if (fp.GetHitFileLevel() == 0) {
2138 RecordTick(db_statistics_, GET_HIT_L0);
2139 } else if (fp.GetHitFileLevel() == 1) {
2140 RecordTick(db_statistics_, GET_HIT_L1);
2141 } else if (fp.GetHitFileLevel() >= 2) {
2142 RecordTick(db_statistics_, GET_HIT_L2_AND_UP);
2143 }
2144
2145 PERF_COUNTER_BY_LEVEL_ADD(user_key_return_count, 1,
2146 fp.GetHitFileLevel());
2147
2148 file_range.MarkKeyDone(iter);
2149
2150 if (iter->is_blob_index) {
2151 if (iter->value) {
2152 constexpr uint64_t* bytes_read = nullptr;
2153
2154 *status = GetBlob(read_options, iter->ukey_with_ts, *iter->value,
2155 iter->value, bytes_read);
2156 if (!status->ok()) {
2157 if (status->IsIncomplete()) {
2158 get_context.MarkKeyMayExist();
2159 }
2160
2161 continue;
2162 }
2163 }
2164 }
2165
2166 file_range.AddValueSize(iter->value->size());
2167 if (file_range.GetValueSize() > read_options.value_size_soft_limit) {
2168 s = Status::Aborted();
2169 break;
2170 }
2171 continue;
2172 case GetContext::kDeleted:
2173 // Use empty error message for speed
2174 *status = Status::NotFound();
2175 file_range.MarkKeyDone(iter);
2176 continue;
2177 case GetContext::kCorrupt:
2178 *status =
2179 Status::Corruption("corrupted key for ", iter->lkey->user_key());
2180 file_range.MarkKeyDone(iter);
2181 continue;
2182 case GetContext::kUnexpectedBlobIndex:
2183 ROCKS_LOG_ERROR(info_log_, "Encounter unexpected blob index.");
2184 *status = Status::NotSupported(
2185 "Encounter unexpected blob index. Please open DB with "
2186 "ROCKSDB_NAMESPACE::blob_db::BlobDB instead.");
2187 file_range.MarkKeyDone(iter);
2188 continue;
2189 }
2190 }
2191
2192 // Report MultiGet stats per level.
2193 if (fp.IsHitFileLastInLevel()) {
2194 // Dump the stats if this is the last file of this level and reset for
2195 // next level.
2196 RecordInHistogram(db_statistics_,
2197 NUM_INDEX_AND_FILTER_BLOCKS_READ_PER_LEVEL,
2198 num_index_read + num_filter_read);
2199 RecordInHistogram(db_statistics_, NUM_DATA_BLOCKS_READ_PER_LEVEL,
2200 num_data_read);
2201 RecordInHistogram(db_statistics_, NUM_SST_READ_PER_LEVEL, num_sst_read);
2202 num_filter_read = 0;
2203 num_index_read = 0;
2204 num_data_read = 0;
2205 num_sst_read = 0;
2206 }
2207
2208 RecordInHistogram(db_statistics_, SST_BATCH_SIZE, batch_size);
2209 if (!s.ok() || file_picker_range.empty()) {
2210 break;
2211 }
2212 f = fp.GetNextFile();
2213 }
2214
2215 // Process any left over keys
2216 for (auto iter = range->begin(); s.ok() && iter != range->end(); ++iter) {
2217 GetContext& get_context = *iter->get_context;
2218 Status* status = iter->s;
2219 Slice user_key = iter->lkey->user_key();
2220
2221 if (db_statistics_ != nullptr) {
2222 get_context.ReportCounters();
2223 }
2224 if (GetContext::kMerge == get_context.State()) {
2225 if (!merge_operator_) {
2226 *status = Status::InvalidArgument(
2227 "merge_operator is not properly initialized.");
2228 range->MarkKeyDone(iter);
2229 continue;
2230 }
2231 // merge_operands are in saver and we hit the beginning of the key history
2232 // do a final merge of nullptr and operands;
2233 std::string* str_value =
2234 iter->value != nullptr ? iter->value->GetSelf() : nullptr;
2235 *status = MergeHelper::TimedFullMerge(
2236 merge_operator_, user_key, nullptr, iter->merge_context.GetOperands(),
2237 str_value, info_log_, db_statistics_, clock_,
2238 nullptr /* result_operand */, true);
2239 if (LIKELY(iter->value != nullptr)) {
2240 iter->value->PinSelf();
2241 range->AddValueSize(iter->value->size());
2242 range->MarkKeyDone(iter);
2243 if (range->GetValueSize() > read_options.value_size_soft_limit) {
2244 s = Status::Aborted();
2245 break;
2246 }
2247 }
2248 } else {
2249 range->MarkKeyDone(iter);
2250 *status = Status::NotFound(); // Use an empty error message for speed
2251 }
2252 }
2253
2254 for (auto iter = range->begin(); iter != range->end(); ++iter) {
2255 range->MarkKeyDone(iter);
2256 *(iter->s) = s;
2257 }
2258 }
2259
IsFilterSkipped(int level,bool is_file_last_in_level)2260 bool Version::IsFilterSkipped(int level, bool is_file_last_in_level) {
2261 // Reaching the bottom level implies misses at all upper levels, so we'll
2262 // skip checking the filters when we predict a hit.
2263 return cfd_->ioptions()->optimize_filters_for_hits &&
2264 (level > 0 || is_file_last_in_level) &&
2265 level == storage_info_.num_non_empty_levels() - 1;
2266 }
2267
GenerateLevelFilesBrief()2268 void VersionStorageInfo::GenerateLevelFilesBrief() {
2269 level_files_brief_.resize(num_non_empty_levels_);
2270 for (int level = 0; level < num_non_empty_levels_; level++) {
2271 DoGenerateLevelFilesBrief(
2272 &level_files_brief_[level], files_[level], &arena_);
2273 }
2274 }
2275
PrepareApply(const MutableCFOptions & mutable_cf_options,bool update_stats)2276 void Version::PrepareApply(
2277 const MutableCFOptions& mutable_cf_options,
2278 bool update_stats) {
2279 TEST_SYNC_POINT_CALLBACK(
2280 "Version::PrepareApply:forced_check",
2281 reinterpret_cast<void*>(&storage_info_.force_consistency_checks_));
2282 UpdateAccumulatedStats(update_stats);
2283 storage_info_.UpdateNumNonEmptyLevels();
2284 storage_info_.CalculateBaseBytes(*cfd_->ioptions(), mutable_cf_options);
2285 storage_info_.UpdateFilesByCompactionPri(cfd_->ioptions()->compaction_pri);
2286 storage_info_.GenerateFileIndexer();
2287 storage_info_.GenerateLevelFilesBrief();
2288 storage_info_.GenerateLevel0NonOverlapping();
2289 storage_info_.GenerateBottommostFiles();
2290 }
2291
MaybeInitializeFileMetaData(FileMetaData * file_meta)2292 bool Version::MaybeInitializeFileMetaData(FileMetaData* file_meta) {
2293 if (file_meta->init_stats_from_file ||
2294 file_meta->compensated_file_size > 0) {
2295 return false;
2296 }
2297 std::shared_ptr<const TableProperties> tp;
2298 Status s = GetTableProperties(&tp, file_meta);
2299 file_meta->init_stats_from_file = true;
2300 if (!s.ok()) {
2301 ROCKS_LOG_ERROR(vset_->db_options_->info_log,
2302 "Unable to load table properties for file %" PRIu64
2303 " --- %s\n",
2304 file_meta->fd.GetNumber(), s.ToString().c_str());
2305 return false;
2306 }
2307 if (tp.get() == nullptr) return false;
2308 file_meta->num_entries = tp->num_entries;
2309 file_meta->num_deletions = tp->num_deletions;
2310 file_meta->raw_value_size = tp->raw_value_size;
2311 file_meta->raw_key_size = tp->raw_key_size;
2312
2313 return true;
2314 }
2315
UpdateAccumulatedStats(FileMetaData * file_meta)2316 void VersionStorageInfo::UpdateAccumulatedStats(FileMetaData* file_meta) {
2317 TEST_SYNC_POINT_CALLBACK("VersionStorageInfo::UpdateAccumulatedStats",
2318 nullptr);
2319
2320 assert(file_meta->init_stats_from_file);
2321 accumulated_file_size_ += file_meta->fd.GetFileSize();
2322 accumulated_raw_key_size_ += file_meta->raw_key_size;
2323 accumulated_raw_value_size_ += file_meta->raw_value_size;
2324 accumulated_num_non_deletions_ +=
2325 file_meta->num_entries - file_meta->num_deletions;
2326 accumulated_num_deletions_ += file_meta->num_deletions;
2327
2328 current_num_non_deletions_ +=
2329 file_meta->num_entries - file_meta->num_deletions;
2330 current_num_deletions_ += file_meta->num_deletions;
2331 current_num_samples_++;
2332 }
2333
RemoveCurrentStats(FileMetaData * file_meta)2334 void VersionStorageInfo::RemoveCurrentStats(FileMetaData* file_meta) {
2335 if (file_meta->init_stats_from_file) {
2336 current_num_non_deletions_ -=
2337 file_meta->num_entries - file_meta->num_deletions;
2338 current_num_deletions_ -= file_meta->num_deletions;
2339 current_num_samples_--;
2340 }
2341 }
2342
UpdateAccumulatedStats(bool update_stats)2343 void Version::UpdateAccumulatedStats(bool update_stats) {
2344 if (update_stats) {
2345 // maximum number of table properties loaded from files.
2346 const int kMaxInitCount = 20;
2347 int init_count = 0;
2348 // here only the first kMaxInitCount files which haven't been
2349 // initialized from file will be updated with num_deletions.
2350 // The motivation here is to cap the maximum I/O per Version creation.
2351 // The reason for choosing files from lower-level instead of higher-level
2352 // is that such design is able to propagate the initialization from
2353 // lower-level to higher-level: When the num_deletions of lower-level
2354 // files are updated, it will make the lower-level files have accurate
2355 // compensated_file_size, making lower-level to higher-level compaction
2356 // will be triggered, which creates higher-level files whose num_deletions
2357 // will be updated here.
2358 for (int level = 0;
2359 level < storage_info_.num_levels_ && init_count < kMaxInitCount;
2360 ++level) {
2361 for (auto* file_meta : storage_info_.files_[level]) {
2362 if (MaybeInitializeFileMetaData(file_meta)) {
2363 // each FileMeta will be initialized only once.
2364 storage_info_.UpdateAccumulatedStats(file_meta);
2365 // when option "max_open_files" is -1, all the file metadata has
2366 // already been read, so MaybeInitializeFileMetaData() won't incur
2367 // any I/O cost. "max_open_files=-1" means that the table cache passed
2368 // to the VersionSet and then to the ColumnFamilySet has a size of
2369 // TableCache::kInfiniteCapacity
2370 if (vset_->GetColumnFamilySet()->get_table_cache()->GetCapacity() ==
2371 TableCache::kInfiniteCapacity) {
2372 continue;
2373 }
2374 if (++init_count >= kMaxInitCount) {
2375 break;
2376 }
2377 }
2378 }
2379 }
2380 // In case all sampled-files contain only deletion entries, then we
2381 // load the table-property of a file in higher-level to initialize
2382 // that value.
2383 for (int level = storage_info_.num_levels_ - 1;
2384 storage_info_.accumulated_raw_value_size_ == 0 && level >= 0;
2385 --level) {
2386 for (int i = static_cast<int>(storage_info_.files_[level].size()) - 1;
2387 storage_info_.accumulated_raw_value_size_ == 0 && i >= 0; --i) {
2388 if (MaybeInitializeFileMetaData(storage_info_.files_[level][i])) {
2389 storage_info_.UpdateAccumulatedStats(storage_info_.files_[level][i]);
2390 }
2391 }
2392 }
2393 }
2394
2395 storage_info_.ComputeCompensatedSizes();
2396 }
2397
ComputeCompensatedSizes()2398 void VersionStorageInfo::ComputeCompensatedSizes() {
2399 static const int kDeletionWeightOnCompaction = 2;
2400 uint64_t average_value_size = GetAverageValueSize();
2401
2402 // compute the compensated size
2403 for (int level = 0; level < num_levels_; level++) {
2404 for (auto* file_meta : files_[level]) {
2405 // Here we only compute compensated_file_size for those file_meta
2406 // which compensated_file_size is uninitialized (== 0). This is true only
2407 // for files that have been created right now and no other thread has
2408 // access to them. That's why we can safely mutate compensated_file_size.
2409 if (file_meta->compensated_file_size == 0) {
2410 file_meta->compensated_file_size = file_meta->fd.GetFileSize();
2411 // Here we only boost the size of deletion entries of a file only
2412 // when the number of deletion entries is greater than the number of
2413 // non-deletion entries in the file. The motivation here is that in
2414 // a stable workload, the number of deletion entries should be roughly
2415 // equal to the number of non-deletion entries. If we compensate the
2416 // size of deletion entries in a stable workload, the deletion
2417 // compensation logic might introduce unwanted effet which changes the
2418 // shape of LSM tree.
2419 if (file_meta->num_deletions * 2 >= file_meta->num_entries) {
2420 file_meta->compensated_file_size +=
2421 (file_meta->num_deletions * 2 - file_meta->num_entries) *
2422 average_value_size * kDeletionWeightOnCompaction;
2423 }
2424 }
2425 }
2426 }
2427 }
2428
MaxInputLevel() const2429 int VersionStorageInfo::MaxInputLevel() const {
2430 if (compaction_style_ == kCompactionStyleLevel) {
2431 return num_levels() - 2;
2432 }
2433 return 0;
2434 }
2435
MaxOutputLevel(bool allow_ingest_behind) const2436 int VersionStorageInfo::MaxOutputLevel(bool allow_ingest_behind) const {
2437 if (allow_ingest_behind) {
2438 assert(num_levels() > 1);
2439 return num_levels() - 2;
2440 }
2441 return num_levels() - 1;
2442 }
2443
EstimateCompactionBytesNeeded(const MutableCFOptions & mutable_cf_options)2444 void VersionStorageInfo::EstimateCompactionBytesNeeded(
2445 const MutableCFOptions& mutable_cf_options) {
2446 // Only implemented for level-based compaction
2447 if (compaction_style_ != kCompactionStyleLevel) {
2448 estimated_compaction_needed_bytes_ = 0;
2449 return;
2450 }
2451
2452 // Start from Level 0, if level 0 qualifies compaction to level 1,
2453 // we estimate the size of compaction.
2454 // Then we move on to the next level and see whether it qualifies compaction
2455 // to the next level. The size of the level is estimated as the actual size
2456 // on the level plus the input bytes from the previous level if there is any.
2457 // If it exceeds, take the exceeded bytes as compaction input and add the size
2458 // of the compaction size to tatal size.
2459 // We keep doing it to Level 2, 3, etc, until the last level and return the
2460 // accumulated bytes.
2461
2462 uint64_t bytes_compact_to_next_level = 0;
2463 uint64_t level_size = 0;
2464 for (auto* f : files_[0]) {
2465 level_size += f->fd.GetFileSize();
2466 }
2467 // Level 0
2468 bool level0_compact_triggered = false;
2469 if (static_cast<int>(files_[0].size()) >=
2470 mutable_cf_options.level0_file_num_compaction_trigger ||
2471 level_size >= mutable_cf_options.max_bytes_for_level_base) {
2472 level0_compact_triggered = true;
2473 estimated_compaction_needed_bytes_ = level_size;
2474 bytes_compact_to_next_level = level_size;
2475 } else {
2476 estimated_compaction_needed_bytes_ = 0;
2477 }
2478
2479 // Level 1 and up.
2480 uint64_t bytes_next_level = 0;
2481 for (int level = base_level(); level <= MaxInputLevel(); level++) {
2482 level_size = 0;
2483 if (bytes_next_level > 0) {
2484 #ifndef NDEBUG
2485 uint64_t level_size2 = 0;
2486 for (auto* f : files_[level]) {
2487 level_size2 += f->fd.GetFileSize();
2488 }
2489 assert(level_size2 == bytes_next_level);
2490 #endif
2491 level_size = bytes_next_level;
2492 bytes_next_level = 0;
2493 } else {
2494 for (auto* f : files_[level]) {
2495 level_size += f->fd.GetFileSize();
2496 }
2497 }
2498 if (level == base_level() && level0_compact_triggered) {
2499 // Add base level size to compaction if level0 compaction triggered.
2500 estimated_compaction_needed_bytes_ += level_size;
2501 }
2502 // Add size added by previous compaction
2503 level_size += bytes_compact_to_next_level;
2504 bytes_compact_to_next_level = 0;
2505 uint64_t level_target = MaxBytesForLevel(level);
2506 if (level_size > level_target) {
2507 bytes_compact_to_next_level = level_size - level_target;
2508 // Estimate the actual compaction fan-out ratio as size ratio between
2509 // the two levels.
2510
2511 assert(bytes_next_level == 0);
2512 if (level + 1 < num_levels_) {
2513 for (auto* f : files_[level + 1]) {
2514 bytes_next_level += f->fd.GetFileSize();
2515 }
2516 }
2517 if (bytes_next_level > 0) {
2518 assert(level_size > 0);
2519 estimated_compaction_needed_bytes_ += static_cast<uint64_t>(
2520 static_cast<double>(bytes_compact_to_next_level) *
2521 (static_cast<double>(bytes_next_level) /
2522 static_cast<double>(level_size) +
2523 1));
2524 }
2525 }
2526 }
2527 }
2528
2529 namespace {
GetExpiredTtlFilesCount(const ImmutableOptions & ioptions,const MutableCFOptions & mutable_cf_options,const std::vector<FileMetaData * > & files)2530 uint32_t GetExpiredTtlFilesCount(const ImmutableOptions& ioptions,
2531 const MutableCFOptions& mutable_cf_options,
2532 const std::vector<FileMetaData*>& files) {
2533 uint32_t ttl_expired_files_count = 0;
2534
2535 int64_t _current_time;
2536 auto status = ioptions.clock->GetCurrentTime(&_current_time);
2537 if (status.ok()) {
2538 const uint64_t current_time = static_cast<uint64_t>(_current_time);
2539 for (FileMetaData* f : files) {
2540 if (!f->being_compacted) {
2541 uint64_t oldest_ancester_time = f->TryGetOldestAncesterTime();
2542 if (oldest_ancester_time != 0 &&
2543 oldest_ancester_time < (current_time - mutable_cf_options.ttl)) {
2544 ttl_expired_files_count++;
2545 }
2546 }
2547 }
2548 }
2549 return ttl_expired_files_count;
2550 }
2551 } // anonymous namespace
2552
ComputeCompactionScore(const ImmutableOptions & immutable_cf_options,const MutableCFOptions & mutable_cf_options)2553 void VersionStorageInfo::ComputeCompactionScore(
2554 const ImmutableOptions& immutable_cf_options,
2555 const MutableCFOptions& mutable_cf_options) {
2556 for (int level = 0; level <= MaxInputLevel(); level++) {
2557 double score;
2558 if (level == 0) {
2559 // We treat level-0 specially by bounding the number of files
2560 // instead of number of bytes for two reasons:
2561 //
2562 // (1) With larger write-buffer sizes, it is nice not to do too
2563 // many level-0 compactions.
2564 //
2565 // (2) The files in level-0 are merged on every read and
2566 // therefore we wish to avoid too many files when the individual
2567 // file size is small (perhaps because of a small write-buffer
2568 // setting, or very high compression ratios, or lots of
2569 // overwrites/deletions).
2570 int num_sorted_runs = 0;
2571 uint64_t total_size = 0;
2572 for (auto* f : files_[level]) {
2573 if (!f->being_compacted) {
2574 total_size += f->compensated_file_size;
2575 num_sorted_runs++;
2576 }
2577 }
2578 if (compaction_style_ == kCompactionStyleUniversal) {
2579 // For universal compaction, we use level0 score to indicate
2580 // compaction score for the whole DB. Adding other levels as if
2581 // they are L0 files.
2582 for (int i = 1; i < num_levels(); i++) {
2583 // Its possible that a subset of the files in a level may be in a
2584 // compaction, due to delete triggered compaction or trivial move.
2585 // In that case, the below check may not catch a level being
2586 // compacted as it only checks the first file. The worst that can
2587 // happen is a scheduled compaction thread will find nothing to do.
2588 if (!files_[i].empty() && !files_[i][0]->being_compacted) {
2589 num_sorted_runs++;
2590 }
2591 }
2592 }
2593
2594 if (compaction_style_ == kCompactionStyleFIFO) {
2595 score = static_cast<double>(total_size) /
2596 mutable_cf_options.compaction_options_fifo.max_table_files_size;
2597 if (mutable_cf_options.compaction_options_fifo.allow_compaction) {
2598 score = std::max(
2599 static_cast<double>(num_sorted_runs) /
2600 mutable_cf_options.level0_file_num_compaction_trigger,
2601 score);
2602 }
2603 if (mutable_cf_options.ttl > 0) {
2604 score = std::max(
2605 static_cast<double>(GetExpiredTtlFilesCount(
2606 immutable_cf_options, mutable_cf_options, files_[level])),
2607 score);
2608 }
2609
2610 } else {
2611 score = static_cast<double>(num_sorted_runs) /
2612 mutable_cf_options.level0_file_num_compaction_trigger;
2613 if (compaction_style_ == kCompactionStyleLevel && num_levels() > 1) {
2614 // Level-based involves L0->L0 compactions that can lead to oversized
2615 // L0 files. Take into account size as well to avoid later giant
2616 // compactions to the base level.
2617 uint64_t l0_target_size = mutable_cf_options.max_bytes_for_level_base;
2618 if (immutable_cf_options.level_compaction_dynamic_level_bytes &&
2619 level_multiplier_ != 0.0) {
2620 // Prevent L0 to Lbase fanout from growing larger than
2621 // `level_multiplier_`. This prevents us from getting stuck picking
2622 // L0 forever even when it is hurting write-amp. That could happen
2623 // in dynamic level compaction's write-burst mode where the base
2624 // level's target size can grow to be enormous.
2625 l0_target_size =
2626 std::max(l0_target_size,
2627 static_cast<uint64_t>(level_max_bytes_[base_level_] /
2628 level_multiplier_));
2629 }
2630 score =
2631 std::max(score, static_cast<double>(total_size) / l0_target_size);
2632 }
2633 }
2634 } else {
2635 // Compute the ratio of current size to size limit.
2636 uint64_t level_bytes_no_compacting = 0;
2637 for (auto f : files_[level]) {
2638 if (!f->being_compacted) {
2639 level_bytes_no_compacting += f->compensated_file_size;
2640 }
2641 }
2642 score = static_cast<double>(level_bytes_no_compacting) /
2643 MaxBytesForLevel(level);
2644 }
2645 compaction_level_[level] = level;
2646 compaction_score_[level] = score;
2647 }
2648
2649 // sort all the levels based on their score. Higher scores get listed
2650 // first. Use bubble sort because the number of entries are small.
2651 for (int i = 0; i < num_levels() - 2; i++) {
2652 for (int j = i + 1; j < num_levels() - 1; j++) {
2653 if (compaction_score_[i] < compaction_score_[j]) {
2654 double score = compaction_score_[i];
2655 int level = compaction_level_[i];
2656 compaction_score_[i] = compaction_score_[j];
2657 compaction_level_[i] = compaction_level_[j];
2658 compaction_score_[j] = score;
2659 compaction_level_[j] = level;
2660 }
2661 }
2662 }
2663 ComputeFilesMarkedForCompaction();
2664 ComputeBottommostFilesMarkedForCompaction();
2665 if (mutable_cf_options.ttl > 0) {
2666 ComputeExpiredTtlFiles(immutable_cf_options, mutable_cf_options.ttl);
2667 }
2668 if (mutable_cf_options.periodic_compaction_seconds > 0) {
2669 ComputeFilesMarkedForPeriodicCompaction(
2670 immutable_cf_options, mutable_cf_options.periodic_compaction_seconds);
2671 }
2672 EstimateCompactionBytesNeeded(mutable_cf_options);
2673 }
2674
ComputeFilesMarkedForCompaction()2675 void VersionStorageInfo::ComputeFilesMarkedForCompaction() {
2676 files_marked_for_compaction_.clear();
2677 int last_qualify_level = 0;
2678
2679 // Do not include files from the last level with data
2680 // If table properties collector suggests a file on the last level,
2681 // we should not move it to a new level.
2682 for (int level = num_levels() - 1; level >= 1; level--) {
2683 if (!files_[level].empty()) {
2684 last_qualify_level = level - 1;
2685 break;
2686 }
2687 }
2688
2689 for (int level = 0; level <= last_qualify_level; level++) {
2690 for (auto* f : files_[level]) {
2691 if (!f->being_compacted && f->marked_for_compaction) {
2692 files_marked_for_compaction_.emplace_back(level, f);
2693 }
2694 }
2695 }
2696 }
2697
ComputeExpiredTtlFiles(const ImmutableOptions & ioptions,const uint64_t ttl)2698 void VersionStorageInfo::ComputeExpiredTtlFiles(
2699 const ImmutableOptions& ioptions, const uint64_t ttl) {
2700 assert(ttl > 0);
2701
2702 expired_ttl_files_.clear();
2703
2704 int64_t _current_time;
2705 auto status = ioptions.clock->GetCurrentTime(&_current_time);
2706 if (!status.ok()) {
2707 return;
2708 }
2709 const uint64_t current_time = static_cast<uint64_t>(_current_time);
2710
2711 for (int level = 0; level < num_levels() - 1; level++) {
2712 for (FileMetaData* f : files_[level]) {
2713 if (!f->being_compacted) {
2714 uint64_t oldest_ancester_time = f->TryGetOldestAncesterTime();
2715 if (oldest_ancester_time > 0 &&
2716 oldest_ancester_time < (current_time - ttl)) {
2717 expired_ttl_files_.emplace_back(level, f);
2718 }
2719 }
2720 }
2721 }
2722 }
2723
ComputeFilesMarkedForPeriodicCompaction(const ImmutableOptions & ioptions,const uint64_t periodic_compaction_seconds)2724 void VersionStorageInfo::ComputeFilesMarkedForPeriodicCompaction(
2725 const ImmutableOptions& ioptions,
2726 const uint64_t periodic_compaction_seconds) {
2727 assert(periodic_compaction_seconds > 0);
2728
2729 files_marked_for_periodic_compaction_.clear();
2730
2731 int64_t temp_current_time;
2732 auto status = ioptions.clock->GetCurrentTime(&temp_current_time);
2733 if (!status.ok()) {
2734 return;
2735 }
2736 const uint64_t current_time = static_cast<uint64_t>(temp_current_time);
2737
2738 // If periodic_compaction_seconds is larger than current time, periodic
2739 // compaction can't possibly be triggered.
2740 if (periodic_compaction_seconds > current_time) {
2741 return;
2742 }
2743
2744 const uint64_t allowed_time_limit =
2745 current_time - periodic_compaction_seconds;
2746
2747 for (int level = 0; level < num_levels(); level++) {
2748 for (auto f : files_[level]) {
2749 if (!f->being_compacted) {
2750 // Compute a file's modification time in the following order:
2751 // 1. Use file_creation_time table property if it is > 0.
2752 // 2. Use creation_time table property if it is > 0.
2753 // 3. Use file's mtime metadata if the above two table properties are 0.
2754 // Don't consider the file at all if the modification time cannot be
2755 // correctly determined based on the above conditions.
2756 uint64_t file_modification_time = f->TryGetFileCreationTime();
2757 if (file_modification_time == kUnknownFileCreationTime) {
2758 file_modification_time = f->TryGetOldestAncesterTime();
2759 }
2760 if (file_modification_time == kUnknownOldestAncesterTime) {
2761 auto file_path = TableFileName(ioptions.cf_paths, f->fd.GetNumber(),
2762 f->fd.GetPathId());
2763 status = ioptions.env->GetFileModificationTime(
2764 file_path, &file_modification_time);
2765 if (!status.ok()) {
2766 ROCKS_LOG_WARN(ioptions.logger,
2767 "Can't get file modification time: %s: %s",
2768 file_path.c_str(), status.ToString().c_str());
2769 continue;
2770 }
2771 }
2772 if (file_modification_time > 0 &&
2773 file_modification_time < allowed_time_limit) {
2774 files_marked_for_periodic_compaction_.emplace_back(level, f);
2775 }
2776 }
2777 }
2778 }
2779 }
2780
2781 namespace {
2782
2783 // used to sort files by size
2784 struct Fsize {
2785 size_t index;
2786 FileMetaData* file;
2787 };
2788
2789 // Comparator that is used to sort files based on their size
2790 // In normal mode: descending size
CompareCompensatedSizeDescending(const Fsize & first,const Fsize & second)2791 bool CompareCompensatedSizeDescending(const Fsize& first, const Fsize& second) {
2792 return (first.file->compensated_file_size >
2793 second.file->compensated_file_size);
2794 }
2795 } // anonymous namespace
2796
AddFile(int level,FileMetaData * f)2797 void VersionStorageInfo::AddFile(int level, FileMetaData* f) {
2798 auto& level_files = files_[level];
2799 level_files.push_back(f);
2800
2801 f->refs++;
2802
2803 const uint64_t file_number = f->fd.GetNumber();
2804
2805 assert(file_locations_.find(file_number) == file_locations_.end());
2806 file_locations_.emplace(file_number,
2807 FileLocation(level, level_files.size() - 1));
2808 }
2809
AddBlobFile(std::shared_ptr<BlobFileMetaData> blob_file_meta)2810 void VersionStorageInfo::AddBlobFile(
2811 std::shared_ptr<BlobFileMetaData> blob_file_meta) {
2812 assert(blob_file_meta);
2813
2814 const uint64_t blob_file_number = blob_file_meta->GetBlobFileNumber();
2815
2816 auto it = blob_files_.lower_bound(blob_file_number);
2817 assert(it == blob_files_.end() || it->first != blob_file_number);
2818
2819 blob_files_.insert(
2820 it, BlobFiles::value_type(blob_file_number, std::move(blob_file_meta)));
2821 }
2822
2823 // Version::PrepareApply() need to be called before calling the function, or
2824 // following functions called:
2825 // 1. UpdateNumNonEmptyLevels();
2826 // 2. CalculateBaseBytes();
2827 // 3. UpdateFilesByCompactionPri();
2828 // 4. GenerateFileIndexer();
2829 // 5. GenerateLevelFilesBrief();
2830 // 6. GenerateLevel0NonOverlapping();
2831 // 7. GenerateBottommostFiles();
SetFinalized()2832 void VersionStorageInfo::SetFinalized() {
2833 finalized_ = true;
2834 #ifndef NDEBUG
2835 if (compaction_style_ != kCompactionStyleLevel) {
2836 // Not level based compaction.
2837 return;
2838 }
2839 assert(base_level_ < 0 || num_levels() == 1 ||
2840 (base_level_ >= 1 && base_level_ < num_levels()));
2841 // Verify all levels newer than base_level are empty except L0
2842 for (int level = 1; level < base_level(); level++) {
2843 assert(NumLevelBytes(level) == 0);
2844 }
2845 uint64_t max_bytes_prev_level = 0;
2846 for (int level = base_level(); level < num_levels() - 1; level++) {
2847 if (LevelFiles(level).size() == 0) {
2848 continue;
2849 }
2850 assert(MaxBytesForLevel(level) >= max_bytes_prev_level);
2851 max_bytes_prev_level = MaxBytesForLevel(level);
2852 }
2853 int num_empty_non_l0_level = 0;
2854 for (int level = 0; level < num_levels(); level++) {
2855 assert(LevelFiles(level).size() == 0 ||
2856 LevelFiles(level).size() == LevelFilesBrief(level).num_files);
2857 if (level > 0 && NumLevelBytes(level) > 0) {
2858 num_empty_non_l0_level++;
2859 }
2860 if (LevelFiles(level).size() > 0) {
2861 assert(level < num_non_empty_levels());
2862 }
2863 }
2864 assert(compaction_level_.size() > 0);
2865 assert(compaction_level_.size() == compaction_score_.size());
2866 #endif
2867 }
2868
UpdateNumNonEmptyLevels()2869 void VersionStorageInfo::UpdateNumNonEmptyLevels() {
2870 num_non_empty_levels_ = num_levels_;
2871 for (int i = num_levels_ - 1; i >= 0; i--) {
2872 if (files_[i].size() != 0) {
2873 return;
2874 } else {
2875 num_non_empty_levels_ = i;
2876 }
2877 }
2878 }
2879
2880 namespace {
2881 // Sort `temp` based on ratio of overlapping size over file size
SortFileByOverlappingRatio(const InternalKeyComparator & icmp,const std::vector<FileMetaData * > & files,const std::vector<FileMetaData * > & next_level_files,std::vector<Fsize> * temp)2882 void SortFileByOverlappingRatio(
2883 const InternalKeyComparator& icmp, const std::vector<FileMetaData*>& files,
2884 const std::vector<FileMetaData*>& next_level_files,
2885 std::vector<Fsize>* temp) {
2886 std::unordered_map<uint64_t, uint64_t> file_to_order;
2887 auto next_level_it = next_level_files.begin();
2888
2889 for (auto& file : files) {
2890 uint64_t overlapping_bytes = 0;
2891 // Skip files in next level that is smaller than current file
2892 while (next_level_it != next_level_files.end() &&
2893 icmp.Compare((*next_level_it)->largest, file->smallest) < 0) {
2894 next_level_it++;
2895 }
2896
2897 while (next_level_it != next_level_files.end() &&
2898 icmp.Compare((*next_level_it)->smallest, file->largest) < 0) {
2899 overlapping_bytes += (*next_level_it)->fd.file_size;
2900
2901 if (icmp.Compare((*next_level_it)->largest, file->largest) > 0) {
2902 // next level file cross large boundary of current file.
2903 break;
2904 }
2905 next_level_it++;
2906 }
2907
2908 assert(file->compensated_file_size != 0);
2909 file_to_order[file->fd.GetNumber()] =
2910 overlapping_bytes * 1024u / file->compensated_file_size;
2911 }
2912
2913 std::sort(temp->begin(), temp->end(),
2914 [&](const Fsize& f1, const Fsize& f2) -> bool {
2915 return file_to_order[f1.file->fd.GetNumber()] <
2916 file_to_order[f2.file->fd.GetNumber()];
2917 });
2918 }
2919 } // namespace
2920
UpdateFilesByCompactionPri(CompactionPri compaction_pri)2921 void VersionStorageInfo::UpdateFilesByCompactionPri(
2922 CompactionPri compaction_pri) {
2923 if (compaction_style_ == kCompactionStyleNone ||
2924 compaction_style_ == kCompactionStyleFIFO ||
2925 compaction_style_ == kCompactionStyleUniversal) {
2926 // don't need this
2927 return;
2928 }
2929 // No need to sort the highest level because it is never compacted.
2930 for (int level = 0; level < num_levels() - 1; level++) {
2931 const std::vector<FileMetaData*>& files = files_[level];
2932 auto& files_by_compaction_pri = files_by_compaction_pri_[level];
2933 assert(files_by_compaction_pri.size() == 0);
2934
2935 // populate a temp vector for sorting based on size
2936 std::vector<Fsize> temp(files.size());
2937 for (size_t i = 0; i < files.size(); i++) {
2938 temp[i].index = i;
2939 temp[i].file = files[i];
2940 }
2941
2942 // sort the top number_of_files_to_sort_ based on file size
2943 size_t num = VersionStorageInfo::kNumberFilesToSort;
2944 if (num > temp.size()) {
2945 num = temp.size();
2946 }
2947 switch (compaction_pri) {
2948 case kByCompensatedSize:
2949 std::partial_sort(temp.begin(), temp.begin() + num, temp.end(),
2950 CompareCompensatedSizeDescending);
2951 break;
2952 case kOldestLargestSeqFirst:
2953 std::sort(temp.begin(), temp.end(),
2954 [](const Fsize& f1, const Fsize& f2) -> bool {
2955 return f1.file->fd.largest_seqno <
2956 f2.file->fd.largest_seqno;
2957 });
2958 break;
2959 case kOldestSmallestSeqFirst:
2960 std::sort(temp.begin(), temp.end(),
2961 [](const Fsize& f1, const Fsize& f2) -> bool {
2962 return f1.file->fd.smallest_seqno <
2963 f2.file->fd.smallest_seqno;
2964 });
2965 break;
2966 case kMinOverlappingRatio:
2967 SortFileByOverlappingRatio(*internal_comparator_, files_[level],
2968 files_[level + 1], &temp);
2969 break;
2970 default:
2971 assert(false);
2972 }
2973 assert(temp.size() == files.size());
2974
2975 // initialize files_by_compaction_pri_
2976 for (size_t i = 0; i < temp.size(); i++) {
2977 files_by_compaction_pri.push_back(static_cast<int>(temp[i].index));
2978 }
2979 next_file_to_compact_by_size_[level] = 0;
2980 assert(files_[level].size() == files_by_compaction_pri_[level].size());
2981 }
2982 }
2983
GenerateLevel0NonOverlapping()2984 void VersionStorageInfo::GenerateLevel0NonOverlapping() {
2985 assert(!finalized_);
2986 level0_non_overlapping_ = true;
2987 if (level_files_brief_.size() == 0) {
2988 return;
2989 }
2990
2991 // A copy of L0 files sorted by smallest key
2992 std::vector<FdWithKeyRange> level0_sorted_file(
2993 level_files_brief_[0].files,
2994 level_files_brief_[0].files + level_files_brief_[0].num_files);
2995 std::sort(level0_sorted_file.begin(), level0_sorted_file.end(),
2996 [this](const FdWithKeyRange& f1, const FdWithKeyRange& f2) -> bool {
2997 return (internal_comparator_->Compare(f1.smallest_key,
2998 f2.smallest_key) < 0);
2999 });
3000
3001 for (size_t i = 1; i < level0_sorted_file.size(); ++i) {
3002 FdWithKeyRange& f = level0_sorted_file[i];
3003 FdWithKeyRange& prev = level0_sorted_file[i - 1];
3004 if (internal_comparator_->Compare(prev.largest_key, f.smallest_key) >= 0) {
3005 level0_non_overlapping_ = false;
3006 break;
3007 }
3008 }
3009 }
3010
GenerateBottommostFiles()3011 void VersionStorageInfo::GenerateBottommostFiles() {
3012 assert(!finalized_);
3013 assert(bottommost_files_.empty());
3014 for (size_t level = 0; level < level_files_brief_.size(); ++level) {
3015 for (size_t file_idx = 0; file_idx < level_files_brief_[level].num_files;
3016 ++file_idx) {
3017 const FdWithKeyRange& f = level_files_brief_[level].files[file_idx];
3018 int l0_file_idx;
3019 if (level == 0) {
3020 l0_file_idx = static_cast<int>(file_idx);
3021 } else {
3022 l0_file_idx = -1;
3023 }
3024 Slice smallest_user_key = ExtractUserKey(f.smallest_key);
3025 Slice largest_user_key = ExtractUserKey(f.largest_key);
3026 if (!RangeMightExistAfterSortedRun(smallest_user_key, largest_user_key,
3027 static_cast<int>(level),
3028 l0_file_idx)) {
3029 bottommost_files_.emplace_back(static_cast<int>(level),
3030 f.file_metadata);
3031 }
3032 }
3033 }
3034 }
3035
UpdateOldestSnapshot(SequenceNumber seqnum)3036 void VersionStorageInfo::UpdateOldestSnapshot(SequenceNumber seqnum) {
3037 assert(seqnum >= oldest_snapshot_seqnum_);
3038 oldest_snapshot_seqnum_ = seqnum;
3039 if (oldest_snapshot_seqnum_ > bottommost_files_mark_threshold_) {
3040 ComputeBottommostFilesMarkedForCompaction();
3041 }
3042 }
3043
ComputeBottommostFilesMarkedForCompaction()3044 void VersionStorageInfo::ComputeBottommostFilesMarkedForCompaction() {
3045 bottommost_files_marked_for_compaction_.clear();
3046 bottommost_files_mark_threshold_ = kMaxSequenceNumber;
3047 for (auto& level_and_file : bottommost_files_) {
3048 if (!level_and_file.second->being_compacted &&
3049 level_and_file.second->fd.largest_seqno != 0 &&
3050 level_and_file.second->num_deletions > 1) {
3051 // largest_seqno might be nonzero due to containing the final key in an
3052 // earlier compaction, whose seqnum we didn't zero out. Multiple deletions
3053 // ensures the file really contains deleted or overwritten keys.
3054 if (level_and_file.second->fd.largest_seqno < oldest_snapshot_seqnum_) {
3055 bottommost_files_marked_for_compaction_.push_back(level_and_file);
3056 } else {
3057 bottommost_files_mark_threshold_ =
3058 std::min(bottommost_files_mark_threshold_,
3059 level_and_file.second->fd.largest_seqno);
3060 }
3061 }
3062 }
3063 }
3064
Ref()3065 void Version::Ref() {
3066 ++refs_;
3067 }
3068
Unref()3069 bool Version::Unref() {
3070 assert(refs_ >= 1);
3071 --refs_;
3072 if (refs_ == 0) {
3073 delete this;
3074 return true;
3075 }
3076 return false;
3077 }
3078
OverlapInLevel(int level,const Slice * smallest_user_key,const Slice * largest_user_key)3079 bool VersionStorageInfo::OverlapInLevel(int level,
3080 const Slice* smallest_user_key,
3081 const Slice* largest_user_key) {
3082 if (level >= num_non_empty_levels_) {
3083 // empty level, no overlap
3084 return false;
3085 }
3086 return SomeFileOverlapsRange(*internal_comparator_, (level > 0),
3087 level_files_brief_[level], smallest_user_key,
3088 largest_user_key);
3089 }
3090
3091 // Store in "*inputs" all files in "level" that overlap [begin,end]
3092 // If hint_index is specified, then it points to a file in the
3093 // overlapping range.
3094 // The file_index returns a pointer to any file in an overlapping range.
GetOverlappingInputs(int level,const InternalKey * begin,const InternalKey * end,std::vector<FileMetaData * > * inputs,int hint_index,int * file_index,bool expand_range,InternalKey ** next_smallest) const3095 void VersionStorageInfo::GetOverlappingInputs(
3096 int level, const InternalKey* begin, const InternalKey* end,
3097 std::vector<FileMetaData*>* inputs, int hint_index, int* file_index,
3098 bool expand_range, InternalKey** next_smallest) const {
3099 if (level >= num_non_empty_levels_) {
3100 // this level is empty, no overlapping inputs
3101 return;
3102 }
3103
3104 inputs->clear();
3105 if (file_index) {
3106 *file_index = -1;
3107 }
3108 const Comparator* user_cmp = user_comparator_;
3109 if (level > 0) {
3110 GetOverlappingInputsRangeBinarySearch(level, begin, end, inputs, hint_index,
3111 file_index, false, next_smallest);
3112 return;
3113 }
3114
3115 if (next_smallest) {
3116 // next_smallest key only makes sense for non-level 0, where files are
3117 // non-overlapping
3118 *next_smallest = nullptr;
3119 }
3120
3121 Slice user_begin, user_end;
3122 if (begin != nullptr) {
3123 user_begin = begin->user_key();
3124 }
3125 if (end != nullptr) {
3126 user_end = end->user_key();
3127 }
3128
3129 // index stores the file index need to check.
3130 std::list<size_t> index;
3131 for (size_t i = 0; i < level_files_brief_[level].num_files; i++) {
3132 index.emplace_back(i);
3133 }
3134
3135 while (!index.empty()) {
3136 bool found_overlapping_file = false;
3137 auto iter = index.begin();
3138 while (iter != index.end()) {
3139 FdWithKeyRange* f = &(level_files_brief_[level].files[*iter]);
3140 const Slice file_start = ExtractUserKey(f->smallest_key);
3141 const Slice file_limit = ExtractUserKey(f->largest_key);
3142 if (begin != nullptr &&
3143 user_cmp->CompareWithoutTimestamp(file_limit, user_begin) < 0) {
3144 // "f" is completely before specified range; skip it
3145 iter++;
3146 } else if (end != nullptr &&
3147 user_cmp->CompareWithoutTimestamp(file_start, user_end) > 0) {
3148 // "f" is completely after specified range; skip it
3149 iter++;
3150 } else {
3151 // if overlap
3152 inputs->emplace_back(files_[level][*iter]);
3153 found_overlapping_file = true;
3154 // record the first file index.
3155 if (file_index && *file_index == -1) {
3156 *file_index = static_cast<int>(*iter);
3157 }
3158 // the related file is overlap, erase to avoid checking again.
3159 iter = index.erase(iter);
3160 if (expand_range) {
3161 if (begin != nullptr &&
3162 user_cmp->CompareWithoutTimestamp(file_start, user_begin) < 0) {
3163 user_begin = file_start;
3164 }
3165 if (end != nullptr &&
3166 user_cmp->CompareWithoutTimestamp(file_limit, user_end) > 0) {
3167 user_end = file_limit;
3168 }
3169 }
3170 }
3171 }
3172 // if all the files left are not overlap, break
3173 if (!found_overlapping_file) {
3174 break;
3175 }
3176 }
3177 }
3178
3179 // Store in "*inputs" files in "level" that within range [begin,end]
3180 // Guarantee a "clean cut" boundary between the files in inputs
3181 // and the surrounding files and the maxinum number of files.
3182 // This will ensure that no parts of a key are lost during compaction.
3183 // If hint_index is specified, then it points to a file in the range.
3184 // The file_index returns a pointer to any file in an overlapping range.
GetCleanInputsWithinInterval(int level,const InternalKey * begin,const InternalKey * end,std::vector<FileMetaData * > * inputs,int hint_index,int * file_index) const3185 void VersionStorageInfo::GetCleanInputsWithinInterval(
3186 int level, const InternalKey* begin, const InternalKey* end,
3187 std::vector<FileMetaData*>* inputs, int hint_index, int* file_index) const {
3188 inputs->clear();
3189 if (file_index) {
3190 *file_index = -1;
3191 }
3192 if (level >= num_non_empty_levels_ || level == 0 ||
3193 level_files_brief_[level].num_files == 0) {
3194 // this level is empty, no inputs within range
3195 // also don't support clean input interval within L0
3196 return;
3197 }
3198
3199 GetOverlappingInputsRangeBinarySearch(level, begin, end, inputs,
3200 hint_index, file_index,
3201 true /* within_interval */);
3202 }
3203
3204 // Store in "*inputs" all files in "level" that overlap [begin,end]
3205 // Employ binary search to find at least one file that overlaps the
3206 // specified range. From that file, iterate backwards and
3207 // forwards to find all overlapping files.
3208 // if within_range is set, then only store the maximum clean inputs
3209 // within range [begin, end]. "clean" means there is a boundary
3210 // between the files in "*inputs" and the surrounding files
GetOverlappingInputsRangeBinarySearch(int level,const InternalKey * begin,const InternalKey * end,std::vector<FileMetaData * > * inputs,int hint_index,int * file_index,bool within_interval,InternalKey ** next_smallest) const3211 void VersionStorageInfo::GetOverlappingInputsRangeBinarySearch(
3212 int level, const InternalKey* begin, const InternalKey* end,
3213 std::vector<FileMetaData*>* inputs, int hint_index, int* file_index,
3214 bool within_interval, InternalKey** next_smallest) const {
3215 assert(level > 0);
3216
3217 auto user_cmp = user_comparator_;
3218 const FdWithKeyRange* files = level_files_brief_[level].files;
3219 const int num_files = static_cast<int>(level_files_brief_[level].num_files);
3220
3221 // begin to use binary search to find lower bound
3222 // and upper bound.
3223 int start_index = 0;
3224 int end_index = num_files;
3225
3226 if (begin != nullptr) {
3227 // if within_interval is true, with file_key would find
3228 // not overlapping ranges in std::lower_bound.
3229 auto cmp = [&user_cmp, &within_interval](const FdWithKeyRange& f,
3230 const InternalKey* k) {
3231 auto& file_key = within_interval ? f.file_metadata->smallest
3232 : f.file_metadata->largest;
3233 return sstableKeyCompare(user_cmp, file_key, *k) < 0;
3234 };
3235
3236 start_index = static_cast<int>(
3237 std::lower_bound(files,
3238 files + (hint_index == -1 ? num_files : hint_index),
3239 begin, cmp) -
3240 files);
3241
3242 if (start_index > 0 && within_interval) {
3243 bool is_overlapping = true;
3244 while (is_overlapping && start_index < num_files) {
3245 auto& pre_limit = files[start_index - 1].file_metadata->largest;
3246 auto& cur_start = files[start_index].file_metadata->smallest;
3247 is_overlapping = sstableKeyCompare(user_cmp, pre_limit, cur_start) == 0;
3248 start_index += is_overlapping;
3249 }
3250 }
3251 }
3252
3253 if (end != nullptr) {
3254 // if within_interval is true, with file_key would find
3255 // not overlapping ranges in std::upper_bound.
3256 auto cmp = [&user_cmp, &within_interval](const InternalKey* k,
3257 const FdWithKeyRange& f) {
3258 auto& file_key = within_interval ? f.file_metadata->largest
3259 : f.file_metadata->smallest;
3260 return sstableKeyCompare(user_cmp, *k, file_key) < 0;
3261 };
3262
3263 end_index = static_cast<int>(
3264 std::upper_bound(files + start_index, files + num_files, end, cmp) -
3265 files);
3266
3267 if (end_index < num_files && within_interval) {
3268 bool is_overlapping = true;
3269 while (is_overlapping && end_index > start_index) {
3270 auto& next_start = files[end_index].file_metadata->smallest;
3271 auto& cur_limit = files[end_index - 1].file_metadata->largest;
3272 is_overlapping =
3273 sstableKeyCompare(user_cmp, cur_limit, next_start) == 0;
3274 end_index -= is_overlapping;
3275 }
3276 }
3277 }
3278
3279 assert(start_index <= end_index);
3280
3281 // If there were no overlapping files, return immediately.
3282 if (start_index == end_index) {
3283 if (next_smallest) {
3284 *next_smallest = nullptr;
3285 }
3286 return;
3287 }
3288
3289 assert(start_index < end_index);
3290
3291 // returns the index where an overlap is found
3292 if (file_index) {
3293 *file_index = start_index;
3294 }
3295
3296 // insert overlapping files into vector
3297 for (int i = start_index; i < end_index; i++) {
3298 inputs->push_back(files_[level][i]);
3299 }
3300
3301 if (next_smallest != nullptr) {
3302 // Provide the next key outside the range covered by inputs
3303 if (end_index < static_cast<int>(files_[level].size())) {
3304 **next_smallest = files_[level][end_index]->smallest;
3305 } else {
3306 *next_smallest = nullptr;
3307 }
3308 }
3309 }
3310
NumLevelBytes(int level) const3311 uint64_t VersionStorageInfo::NumLevelBytes(int level) const {
3312 assert(level >= 0);
3313 assert(level < num_levels());
3314 return TotalFileSize(files_[level]);
3315 }
3316
LevelSummary(LevelSummaryStorage * scratch) const3317 const char* VersionStorageInfo::LevelSummary(
3318 LevelSummaryStorage* scratch) const {
3319 int len = 0;
3320 if (compaction_style_ == kCompactionStyleLevel && num_levels() > 1) {
3321 assert(base_level_ < static_cast<int>(level_max_bytes_.size()));
3322 if (level_multiplier_ != 0.0) {
3323 len = snprintf(
3324 scratch->buffer, sizeof(scratch->buffer),
3325 "base level %d level multiplier %.2f max bytes base %" PRIu64 " ",
3326 base_level_, level_multiplier_, level_max_bytes_[base_level_]);
3327 }
3328 }
3329 len +=
3330 snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len, "files[");
3331 for (int i = 0; i < num_levels(); i++) {
3332 int sz = sizeof(scratch->buffer) - len;
3333 int ret = snprintf(scratch->buffer + len, sz, "%d ", int(files_[i].size()));
3334 if (ret < 0 || ret >= sz) break;
3335 len += ret;
3336 }
3337 if (len > 0) {
3338 // overwrite the last space
3339 --len;
3340 }
3341 len += snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len,
3342 "] max score %.2f", compaction_score_[0]);
3343
3344 if (!files_marked_for_compaction_.empty()) {
3345 snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len,
3346 " (%" ROCKSDB_PRIszt " files need compaction)",
3347 files_marked_for_compaction_.size());
3348 }
3349
3350 return scratch->buffer;
3351 }
3352
LevelFileSummary(FileSummaryStorage * scratch,int level) const3353 const char* VersionStorageInfo::LevelFileSummary(FileSummaryStorage* scratch,
3354 int level) const {
3355 int len = snprintf(scratch->buffer, sizeof(scratch->buffer), "files_size[");
3356 for (const auto& f : files_[level]) {
3357 int sz = sizeof(scratch->buffer) - len;
3358 char sztxt[16];
3359 AppendHumanBytes(f->fd.GetFileSize(), sztxt, sizeof(sztxt));
3360 int ret = snprintf(scratch->buffer + len, sz,
3361 "#%" PRIu64 "(seq=%" PRIu64 ",sz=%s,%d) ",
3362 f->fd.GetNumber(), f->fd.smallest_seqno, sztxt,
3363 static_cast<int>(f->being_compacted));
3364 if (ret < 0 || ret >= sz)
3365 break;
3366 len += ret;
3367 }
3368 // overwrite the last space (only if files_[level].size() is non-zero)
3369 if (files_[level].size() && len > 0) {
3370 --len;
3371 }
3372 snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len, "]");
3373 return scratch->buffer;
3374 }
3375
MaxNextLevelOverlappingBytes()3376 int64_t VersionStorageInfo::MaxNextLevelOverlappingBytes() {
3377 uint64_t result = 0;
3378 std::vector<FileMetaData*> overlaps;
3379 for (int level = 1; level < num_levels() - 1; level++) {
3380 for (const auto& f : files_[level]) {
3381 GetOverlappingInputs(level + 1, &f->smallest, &f->largest, &overlaps);
3382 const uint64_t sum = TotalFileSize(overlaps);
3383 if (sum > result) {
3384 result = sum;
3385 }
3386 }
3387 }
3388 return result;
3389 }
3390
MaxBytesForLevel(int level) const3391 uint64_t VersionStorageInfo::MaxBytesForLevel(int level) const {
3392 // Note: the result for level zero is not really used since we set
3393 // the level-0 compaction threshold based on number of files.
3394 assert(level >= 0);
3395 assert(level < static_cast<int>(level_max_bytes_.size()));
3396 return level_max_bytes_[level];
3397 }
3398
CalculateBaseBytes(const ImmutableOptions & ioptions,const MutableCFOptions & options)3399 void VersionStorageInfo::CalculateBaseBytes(const ImmutableOptions& ioptions,
3400 const MutableCFOptions& options) {
3401 // Special logic to set number of sorted runs.
3402 // It is to match the previous behavior when all files are in L0.
3403 int num_l0_count = static_cast<int>(files_[0].size());
3404 if (compaction_style_ == kCompactionStyleUniversal) {
3405 // For universal compaction, we use level0 score to indicate
3406 // compaction score for the whole DB. Adding other levels as if
3407 // they are L0 files.
3408 for (int i = 1; i < num_levels(); i++) {
3409 if (!files_[i].empty()) {
3410 num_l0_count++;
3411 }
3412 }
3413 }
3414 set_l0_delay_trigger_count(num_l0_count);
3415
3416 level_max_bytes_.resize(ioptions.num_levels);
3417 if (!ioptions.level_compaction_dynamic_level_bytes) {
3418 base_level_ = (ioptions.compaction_style == kCompactionStyleLevel) ? 1 : -1;
3419
3420 // Calculate for static bytes base case
3421 for (int i = 0; i < ioptions.num_levels; ++i) {
3422 if (i == 0 && ioptions.compaction_style == kCompactionStyleUniversal) {
3423 level_max_bytes_[i] = options.max_bytes_for_level_base;
3424 } else if (i > 1) {
3425 level_max_bytes_[i] = MultiplyCheckOverflow(
3426 MultiplyCheckOverflow(level_max_bytes_[i - 1],
3427 options.max_bytes_for_level_multiplier),
3428 options.MaxBytesMultiplerAdditional(i - 1));
3429 } else {
3430 level_max_bytes_[i] = options.max_bytes_for_level_base;
3431 }
3432 }
3433 } else {
3434 uint64_t max_level_size = 0;
3435
3436 int first_non_empty_level = -1;
3437 // Find size of non-L0 level of most data.
3438 // Cannot use the size of the last level because it can be empty or less
3439 // than previous levels after compaction.
3440 for (int i = 1; i < num_levels_; i++) {
3441 uint64_t total_size = 0;
3442 for (const auto& f : files_[i]) {
3443 total_size += f->fd.GetFileSize();
3444 }
3445 if (total_size > 0 && first_non_empty_level == -1) {
3446 first_non_empty_level = i;
3447 }
3448 if (total_size > max_level_size) {
3449 max_level_size = total_size;
3450 }
3451 }
3452
3453 // Prefill every level's max bytes to disallow compaction from there.
3454 for (int i = 0; i < num_levels_; i++) {
3455 level_max_bytes_[i] = std::numeric_limits<uint64_t>::max();
3456 }
3457
3458 if (max_level_size == 0) {
3459 // No data for L1 and up. L0 compacts to last level directly.
3460 // No compaction from L1+ needs to be scheduled.
3461 base_level_ = num_levels_ - 1;
3462 } else {
3463 uint64_t l0_size = 0;
3464 for (const auto& f : files_[0]) {
3465 l0_size += f->fd.GetFileSize();
3466 }
3467
3468 uint64_t base_bytes_max =
3469 std::max(options.max_bytes_for_level_base, l0_size);
3470 uint64_t base_bytes_min = static_cast<uint64_t>(
3471 base_bytes_max / options.max_bytes_for_level_multiplier);
3472
3473 // Try whether we can make last level's target size to be max_level_size
3474 uint64_t cur_level_size = max_level_size;
3475 for (int i = num_levels_ - 2; i >= first_non_empty_level; i--) {
3476 // Round up after dividing
3477 cur_level_size = static_cast<uint64_t>(
3478 cur_level_size / options.max_bytes_for_level_multiplier);
3479 }
3480
3481 // Calculate base level and its size.
3482 uint64_t base_level_size;
3483 if (cur_level_size <= base_bytes_min) {
3484 // Case 1. If we make target size of last level to be max_level_size,
3485 // target size of the first non-empty level would be smaller than
3486 // base_bytes_min. We set it be base_bytes_min.
3487 base_level_size = base_bytes_min + 1U;
3488 base_level_ = first_non_empty_level;
3489 ROCKS_LOG_INFO(ioptions.logger,
3490 "More existing levels in DB than needed. "
3491 "max_bytes_for_level_multiplier may not be guaranteed.");
3492 } else {
3493 // Find base level (where L0 data is compacted to).
3494 base_level_ = first_non_empty_level;
3495 while (base_level_ > 1 && cur_level_size > base_bytes_max) {
3496 --base_level_;
3497 cur_level_size = static_cast<uint64_t>(
3498 cur_level_size / options.max_bytes_for_level_multiplier);
3499 }
3500 if (cur_level_size > base_bytes_max) {
3501 // Even L1 will be too large
3502 assert(base_level_ == 1);
3503 base_level_size = base_bytes_max;
3504 } else {
3505 base_level_size = cur_level_size;
3506 }
3507 }
3508
3509 level_multiplier_ = options.max_bytes_for_level_multiplier;
3510 assert(base_level_size > 0);
3511 if (l0_size > base_level_size &&
3512 (l0_size > options.max_bytes_for_level_base ||
3513 static_cast<int>(files_[0].size() / 2) >=
3514 options.level0_file_num_compaction_trigger)) {
3515 // We adjust the base level according to actual L0 size, and adjust
3516 // the level multiplier accordingly, when:
3517 // 1. the L0 size is larger than level size base, or
3518 // 2. number of L0 files reaches twice the L0->L1 compaction trigger
3519 // We don't do this otherwise to keep the LSM-tree structure stable
3520 // unless the L0 compaction is backlogged.
3521 base_level_size = l0_size;
3522 if (base_level_ == num_levels_ - 1) {
3523 level_multiplier_ = 1.0;
3524 } else {
3525 level_multiplier_ = std::pow(
3526 static_cast<double>(max_level_size) /
3527 static_cast<double>(base_level_size),
3528 1.0 / static_cast<double>(num_levels_ - base_level_ - 1));
3529 }
3530 }
3531
3532 uint64_t level_size = base_level_size;
3533 for (int i = base_level_; i < num_levels_; i++) {
3534 if (i > base_level_) {
3535 level_size = MultiplyCheckOverflow(level_size, level_multiplier_);
3536 }
3537 // Don't set any level below base_bytes_max. Otherwise, the LSM can
3538 // assume an hourglass shape where L1+ sizes are smaller than L0. This
3539 // causes compaction scoring, which depends on level sizes, to favor L1+
3540 // at the expense of L0, which may fill up and stall.
3541 level_max_bytes_[i] = std::max(level_size, base_bytes_max);
3542 }
3543 }
3544 }
3545 }
3546
EstimateLiveDataSize() const3547 uint64_t VersionStorageInfo::EstimateLiveDataSize() const {
3548 // Estimate the live data size by adding up the size of a maximal set of
3549 // sst files with no range overlap in same or higher level. The less
3550 // compacted, the more optimistic (smaller) this estimate is. Also,
3551 // for multiple sorted runs within a level, file order will matter.
3552 uint64_t size = 0;
3553
3554 auto ikey_lt = [this](InternalKey* x, InternalKey* y) {
3555 return internal_comparator_->Compare(*x, *y) < 0;
3556 };
3557 // (Ordered) map of largest keys in files being included in size estimate
3558 std::map<InternalKey*, FileMetaData*, decltype(ikey_lt)> ranges(ikey_lt);
3559
3560 for (int l = num_levels_ - 1; l >= 0; l--) {
3561 bool found_end = false;
3562 for (auto file : files_[l]) {
3563 // Find the first file already included with largest key is larger than
3564 // the smallest key of `file`. If that file does not overlap with the
3565 // current file, none of the files in the map does. If there is
3566 // no potential overlap, we can safely insert the rest of this level
3567 // (if the level is not 0) into the map without checking again because
3568 // the elements in the level are sorted and non-overlapping.
3569 auto lb = (found_end && l != 0) ?
3570 ranges.end() : ranges.lower_bound(&file->smallest);
3571 found_end = (lb == ranges.end());
3572 if (found_end || internal_comparator_->Compare(
3573 file->largest, (*lb).second->smallest) < 0) {
3574 ranges.emplace_hint(lb, &file->largest, file);
3575 size += file->fd.file_size;
3576 }
3577 }
3578 }
3579 return size;
3580 }
3581
RangeMightExistAfterSortedRun(const Slice & smallest_user_key,const Slice & largest_user_key,int last_level,int last_l0_idx)3582 bool VersionStorageInfo::RangeMightExistAfterSortedRun(
3583 const Slice& smallest_user_key, const Slice& largest_user_key,
3584 int last_level, int last_l0_idx) {
3585 assert((last_l0_idx != -1) == (last_level == 0));
3586 // TODO(ajkr): this preserves earlier behavior where we considered an L0 file
3587 // bottommost only if it's the oldest L0 file and there are no files on older
3588 // levels. It'd be better to consider it bottommost if there's no overlap in
3589 // older levels/files.
3590 if (last_level == 0 &&
3591 last_l0_idx != static_cast<int>(LevelFiles(0).size() - 1)) {
3592 return true;
3593 }
3594
3595 // Checks whether there are files living beyond the `last_level`. If lower
3596 // levels have files, it checks for overlap between [`smallest_key`,
3597 // `largest_key`] and those files. Bottomlevel optimizations can be made if
3598 // there are no files in lower levels or if there is no overlap with the files
3599 // in the lower levels.
3600 for (int level = last_level + 1; level < num_levels(); level++) {
3601 // The range is not in the bottommost level if there are files in lower
3602 // levels when the `last_level` is 0 or if there are files in lower levels
3603 // which overlap with [`smallest_key`, `largest_key`].
3604 if (files_[level].size() > 0 &&
3605 (last_level == 0 ||
3606 OverlapInLevel(level, &smallest_user_key, &largest_user_key))) {
3607 return true;
3608 }
3609 }
3610 return false;
3611 }
3612
AddLiveFiles(std::vector<uint64_t> * live_table_files,std::vector<uint64_t> * live_blob_files) const3613 void Version::AddLiveFiles(std::vector<uint64_t>* live_table_files,
3614 std::vector<uint64_t>* live_blob_files) const {
3615 assert(live_table_files);
3616 assert(live_blob_files);
3617
3618 for (int level = 0; level < storage_info_.num_levels(); ++level) {
3619 const auto& level_files = storage_info_.LevelFiles(level);
3620 for (const auto& meta : level_files) {
3621 assert(meta);
3622
3623 live_table_files->emplace_back(meta->fd.GetNumber());
3624 }
3625 }
3626
3627 const auto& blob_files = storage_info_.GetBlobFiles();
3628 for (const auto& pair : blob_files) {
3629 const auto& meta = pair.second;
3630 assert(meta);
3631
3632 live_blob_files->emplace_back(meta->GetBlobFileNumber());
3633 }
3634 }
3635
DebugString(bool hex,bool print_stats) const3636 std::string Version::DebugString(bool hex, bool print_stats) const {
3637 std::string r;
3638 for (int level = 0; level < storage_info_.num_levels_; level++) {
3639 // E.g.,
3640 // --- level 1 ---
3641 // 17:123[1 .. 124]['a' .. 'd']
3642 // 20:43[124 .. 128]['e' .. 'g']
3643 //
3644 // if print_stats=true:
3645 // 17:123[1 .. 124]['a' .. 'd'](4096)
3646 r.append("--- level ");
3647 AppendNumberTo(&r, level);
3648 r.append(" --- version# ");
3649 AppendNumberTo(&r, version_number_);
3650 r.append(" ---\n");
3651 const std::vector<FileMetaData*>& files = storage_info_.files_[level];
3652 for (size_t i = 0; i < files.size(); i++) {
3653 r.push_back(' ');
3654 AppendNumberTo(&r, files[i]->fd.GetNumber());
3655 r.push_back(':');
3656 AppendNumberTo(&r, files[i]->fd.GetFileSize());
3657 r.append("[");
3658 AppendNumberTo(&r, files[i]->fd.smallest_seqno);
3659 r.append(" .. ");
3660 AppendNumberTo(&r, files[i]->fd.largest_seqno);
3661 r.append("]");
3662 r.append("[");
3663 r.append(files[i]->smallest.DebugString(hex));
3664 r.append(" .. ");
3665 r.append(files[i]->largest.DebugString(hex));
3666 r.append("]");
3667 if (files[i]->oldest_blob_file_number != kInvalidBlobFileNumber) {
3668 r.append(" blob_file:");
3669 AppendNumberTo(&r, files[i]->oldest_blob_file_number);
3670 }
3671 if (print_stats) {
3672 r.append("(");
3673 r.append(ToString(
3674 files[i]->stats.num_reads_sampled.load(std::memory_order_relaxed)));
3675 r.append(")");
3676 }
3677 r.append("\n");
3678 }
3679 }
3680
3681 const auto& blob_files = storage_info_.GetBlobFiles();
3682 if (!blob_files.empty()) {
3683 r.append("--- blob files --- version# ");
3684 AppendNumberTo(&r, version_number_);
3685 r.append(" ---\n");
3686 for (const auto& pair : blob_files) {
3687 const auto& blob_file_meta = pair.second;
3688 assert(blob_file_meta);
3689
3690 r.append(blob_file_meta->DebugString());
3691 r.push_back('\n');
3692 }
3693 }
3694
3695 return r;
3696 }
3697
3698 // this is used to batch writes to the manifest file
3699 struct VersionSet::ManifestWriter {
3700 Status status;
3701 bool done;
3702 InstrumentedCondVar cv;
3703 ColumnFamilyData* cfd;
3704 const MutableCFOptions mutable_cf_options;
3705 const autovector<VersionEdit*>& edit_list;
3706 const std::function<void(const Status&)> manifest_write_callback;
3707
ManifestWriterROCKSDB_NAMESPACE::VersionSet::ManifestWriter3708 explicit ManifestWriter(
3709 InstrumentedMutex* mu, ColumnFamilyData* _cfd,
3710 const MutableCFOptions& cf_options, const autovector<VersionEdit*>& e,
3711 const std::function<void(const Status&)>& manifest_wcb)
3712 : done(false),
3713 cv(mu),
3714 cfd(_cfd),
3715 mutable_cf_options(cf_options),
3716 edit_list(e),
3717 manifest_write_callback(manifest_wcb) {}
~ManifestWriterROCKSDB_NAMESPACE::VersionSet::ManifestWriter3718 ~ManifestWriter() { status.PermitUncheckedError(); }
3719
IsAllWalEditsROCKSDB_NAMESPACE::VersionSet::ManifestWriter3720 bool IsAllWalEdits() const {
3721 bool all_wal_edits = true;
3722 for (const auto& e : edit_list) {
3723 if (!e->IsWalManipulation()) {
3724 all_wal_edits = false;
3725 break;
3726 }
3727 }
3728 return all_wal_edits;
3729 }
3730 };
3731
AddEdit(VersionEdit * edit)3732 Status AtomicGroupReadBuffer::AddEdit(VersionEdit* edit) {
3733 assert(edit);
3734 if (edit->is_in_atomic_group_) {
3735 TEST_SYNC_POINT("AtomicGroupReadBuffer::AddEdit:AtomicGroup");
3736 if (replay_buffer_.empty()) {
3737 replay_buffer_.resize(edit->remaining_entries_ + 1);
3738 TEST_SYNC_POINT_CALLBACK(
3739 "AtomicGroupReadBuffer::AddEdit:FirstInAtomicGroup", edit);
3740 }
3741 read_edits_in_atomic_group_++;
3742 if (read_edits_in_atomic_group_ + edit->remaining_entries_ !=
3743 static_cast<uint32_t>(replay_buffer_.size())) {
3744 TEST_SYNC_POINT_CALLBACK(
3745 "AtomicGroupReadBuffer::AddEdit:IncorrectAtomicGroupSize", edit);
3746 return Status::Corruption("corrupted atomic group");
3747 }
3748 replay_buffer_[read_edits_in_atomic_group_ - 1] = *edit;
3749 if (read_edits_in_atomic_group_ == replay_buffer_.size()) {
3750 TEST_SYNC_POINT_CALLBACK(
3751 "AtomicGroupReadBuffer::AddEdit:LastInAtomicGroup", edit);
3752 return Status::OK();
3753 }
3754 return Status::OK();
3755 }
3756
3757 // A normal edit.
3758 if (!replay_buffer().empty()) {
3759 TEST_SYNC_POINT_CALLBACK(
3760 "AtomicGroupReadBuffer::AddEdit:AtomicGroupMixedWithNormalEdits", edit);
3761 return Status::Corruption("corrupted atomic group");
3762 }
3763 return Status::OK();
3764 }
3765
IsFull() const3766 bool AtomicGroupReadBuffer::IsFull() const {
3767 return read_edits_in_atomic_group_ == replay_buffer_.size();
3768 }
3769
IsEmpty() const3770 bool AtomicGroupReadBuffer::IsEmpty() const { return replay_buffer_.empty(); }
3771
Clear()3772 void AtomicGroupReadBuffer::Clear() {
3773 read_edits_in_atomic_group_ = 0;
3774 replay_buffer_.clear();
3775 }
3776
VersionSet(const std::string & dbname,const ImmutableDBOptions * _db_options,const FileOptions & storage_options,Cache * table_cache,WriteBufferManager * write_buffer_manager,WriteController * write_controller,BlockCacheTracer * const block_cache_tracer,const std::shared_ptr<IOTracer> & io_tracer)3777 VersionSet::VersionSet(const std::string& dbname,
3778 const ImmutableDBOptions* _db_options,
3779 const FileOptions& storage_options, Cache* table_cache,
3780 WriteBufferManager* write_buffer_manager,
3781 WriteController* write_controller,
3782 BlockCacheTracer* const block_cache_tracer,
3783 const std::shared_ptr<IOTracer>& io_tracer)
3784 : column_family_set_(
3785 new ColumnFamilySet(dbname, _db_options, storage_options, table_cache,
3786 write_buffer_manager, write_controller,
3787 block_cache_tracer, io_tracer)),
3788 table_cache_(table_cache),
3789 env_(_db_options->env),
3790 fs_(_db_options->fs, io_tracer),
3791 clock_(_db_options->clock),
3792 dbname_(dbname),
3793 db_options_(_db_options),
3794 next_file_number_(2),
3795 manifest_file_number_(0), // Filled by Recover()
3796 options_file_number_(0),
3797 pending_manifest_file_number_(0),
3798 last_sequence_(0),
3799 last_allocated_sequence_(0),
3800 last_published_sequence_(0),
3801 prev_log_number_(0),
3802 current_version_number_(0),
3803 manifest_file_size_(0),
3804 file_options_(storage_options),
3805 block_cache_tracer_(block_cache_tracer),
3806 io_tracer_(io_tracer) {}
3807
~VersionSet()3808 VersionSet::~VersionSet() {
3809 // we need to delete column_family_set_ because its destructor depends on
3810 // VersionSet
3811 column_family_set_.reset();
3812 for (auto& file : obsolete_files_) {
3813 if (file.metadata->table_reader_handle) {
3814 table_cache_->Release(file.metadata->table_reader_handle);
3815 TableCache::Evict(table_cache_, file.metadata->fd.GetNumber());
3816 }
3817 file.DeleteMetadata();
3818 }
3819 obsolete_files_.clear();
3820 io_status_.PermitUncheckedError();
3821 }
3822
Reset()3823 void VersionSet::Reset() {
3824 if (column_family_set_) {
3825 WriteBufferManager* wbm = column_family_set_->write_buffer_manager();
3826 WriteController* wc = column_family_set_->write_controller();
3827 column_family_set_.reset(
3828 new ColumnFamilySet(dbname_, db_options_, file_options_, table_cache_,
3829 wbm, wc, block_cache_tracer_, io_tracer_));
3830 }
3831 db_id_.clear();
3832 next_file_number_.store(2);
3833 min_log_number_to_keep_2pc_.store(0);
3834 manifest_file_number_ = 0;
3835 options_file_number_ = 0;
3836 pending_manifest_file_number_ = 0;
3837 last_sequence_.store(0);
3838 last_allocated_sequence_.store(0);
3839 last_published_sequence_.store(0);
3840 prev_log_number_ = 0;
3841 descriptor_log_.reset();
3842 current_version_number_ = 0;
3843 manifest_writers_.clear();
3844 manifest_file_size_ = 0;
3845 obsolete_files_.clear();
3846 obsolete_manifests_.clear();
3847 wals_.Reset();
3848 }
3849
AppendVersion(ColumnFamilyData * column_family_data,Version * v)3850 void VersionSet::AppendVersion(ColumnFamilyData* column_family_data,
3851 Version* v) {
3852 // compute new compaction score
3853 v->storage_info()->ComputeCompactionScore(
3854 *column_family_data->ioptions(),
3855 *column_family_data->GetLatestMutableCFOptions());
3856
3857 // Mark v finalized
3858 v->storage_info_.SetFinalized();
3859
3860 // Make "v" current
3861 assert(v->refs_ == 0);
3862 Version* current = column_family_data->current();
3863 assert(v != current);
3864 if (current != nullptr) {
3865 assert(current->refs_ > 0);
3866 current->Unref();
3867 }
3868 column_family_data->SetCurrent(v);
3869 v->Ref();
3870
3871 // Append to linked list
3872 v->prev_ = column_family_data->dummy_versions()->prev_;
3873 v->next_ = column_family_data->dummy_versions();
3874 v->prev_->next_ = v;
3875 v->next_->prev_ = v;
3876 }
3877
ProcessManifestWrites(std::deque<ManifestWriter> & writers,InstrumentedMutex * mu,FSDirectory * db_directory,bool new_descriptor_log,const ColumnFamilyOptions * new_cf_options)3878 Status VersionSet::ProcessManifestWrites(
3879 std::deque<ManifestWriter>& writers, InstrumentedMutex* mu,
3880 FSDirectory* db_directory, bool new_descriptor_log,
3881 const ColumnFamilyOptions* new_cf_options) {
3882 mu->AssertHeld();
3883 assert(!writers.empty());
3884 ManifestWriter& first_writer = writers.front();
3885 ManifestWriter* last_writer = &first_writer;
3886
3887 assert(!manifest_writers_.empty());
3888 assert(manifest_writers_.front() == &first_writer);
3889
3890 autovector<VersionEdit*> batch_edits;
3891 autovector<Version*> versions;
3892 autovector<const MutableCFOptions*> mutable_cf_options_ptrs;
3893 std::vector<std::unique_ptr<BaseReferencedVersionBuilder>> builder_guards;
3894
3895 if (first_writer.edit_list.front()->IsColumnFamilyManipulation()) {
3896 // No group commits for column family add or drop
3897 LogAndApplyCFHelper(first_writer.edit_list.front());
3898 batch_edits.push_back(first_writer.edit_list.front());
3899 } else {
3900 auto it = manifest_writers_.cbegin();
3901 size_t group_start = std::numeric_limits<size_t>::max();
3902 while (it != manifest_writers_.cend()) {
3903 if ((*it)->edit_list.front()->IsColumnFamilyManipulation()) {
3904 // no group commits for column family add or drop
3905 break;
3906 }
3907 last_writer = *(it++);
3908 assert(last_writer != nullptr);
3909 assert(last_writer->cfd != nullptr);
3910 if (last_writer->cfd->IsDropped()) {
3911 // If we detect a dropped CF at this point, and the corresponding
3912 // version edits belong to an atomic group, then we need to find out
3913 // the preceding version edits in the same atomic group, and update
3914 // their `remaining_entries_` member variable because we are NOT going
3915 // to write the version edits' of dropped CF to the MANIFEST. If we
3916 // don't update, then Recover can report corrupted atomic group because
3917 // the `remaining_entries_` do not match.
3918 if (!batch_edits.empty()) {
3919 if (batch_edits.back()->is_in_atomic_group_ &&
3920 batch_edits.back()->remaining_entries_ > 0) {
3921 assert(group_start < batch_edits.size());
3922 const auto& edit_list = last_writer->edit_list;
3923 size_t k = 0;
3924 while (k < edit_list.size()) {
3925 if (!edit_list[k]->is_in_atomic_group_) {
3926 break;
3927 } else if (edit_list[k]->remaining_entries_ == 0) {
3928 ++k;
3929 break;
3930 }
3931 ++k;
3932 }
3933 for (auto i = group_start; i < batch_edits.size(); ++i) {
3934 assert(static_cast<uint32_t>(k) <=
3935 batch_edits.back()->remaining_entries_);
3936 batch_edits[i]->remaining_entries_ -= static_cast<uint32_t>(k);
3937 }
3938 }
3939 }
3940 continue;
3941 }
3942 // We do a linear search on versions because versions is small.
3943 // TODO(yanqin) maybe consider unordered_map
3944 Version* version = nullptr;
3945 VersionBuilder* builder = nullptr;
3946 for (int i = 0; i != static_cast<int>(versions.size()); ++i) {
3947 uint32_t cf_id = last_writer->cfd->GetID();
3948 if (versions[i]->cfd()->GetID() == cf_id) {
3949 version = versions[i];
3950 assert(!builder_guards.empty() &&
3951 builder_guards.size() == versions.size());
3952 builder = builder_guards[i]->version_builder();
3953 TEST_SYNC_POINT_CALLBACK(
3954 "VersionSet::ProcessManifestWrites:SameColumnFamily", &cf_id);
3955 break;
3956 }
3957 }
3958 if (version == nullptr) {
3959 // WAL manipulations do not need to be applied to versions.
3960 if (!last_writer->IsAllWalEdits()) {
3961 version = new Version(last_writer->cfd, this, file_options_,
3962 last_writer->mutable_cf_options, io_tracer_,
3963 current_version_number_++);
3964 versions.push_back(version);
3965 mutable_cf_options_ptrs.push_back(&last_writer->mutable_cf_options);
3966 builder_guards.emplace_back(
3967 new BaseReferencedVersionBuilder(last_writer->cfd));
3968 builder = builder_guards.back()->version_builder();
3969 }
3970 assert(last_writer->IsAllWalEdits() || builder);
3971 assert(last_writer->IsAllWalEdits() || version);
3972 TEST_SYNC_POINT_CALLBACK("VersionSet::ProcessManifestWrites:NewVersion",
3973 version);
3974 }
3975 for (const auto& e : last_writer->edit_list) {
3976 if (e->is_in_atomic_group_) {
3977 if (batch_edits.empty() || !batch_edits.back()->is_in_atomic_group_ ||
3978 (batch_edits.back()->is_in_atomic_group_ &&
3979 batch_edits.back()->remaining_entries_ == 0)) {
3980 group_start = batch_edits.size();
3981 }
3982 } else if (group_start != std::numeric_limits<size_t>::max()) {
3983 group_start = std::numeric_limits<size_t>::max();
3984 }
3985 Status s = LogAndApplyHelper(last_writer->cfd, builder, e, mu);
3986 if (!s.ok()) {
3987 // free up the allocated memory
3988 for (auto v : versions) {
3989 delete v;
3990 }
3991 return s;
3992 }
3993 batch_edits.push_back(e);
3994 }
3995 }
3996 for (int i = 0; i < static_cast<int>(versions.size()); ++i) {
3997 assert(!builder_guards.empty() &&
3998 builder_guards.size() == versions.size());
3999 auto* builder = builder_guards[i]->version_builder();
4000 Status s = builder->SaveTo(versions[i]->storage_info());
4001 if (!s.ok()) {
4002 // free up the allocated memory
4003 for (auto v : versions) {
4004 delete v;
4005 }
4006 return s;
4007 }
4008 }
4009 }
4010
4011 #ifndef NDEBUG
4012 // Verify that version edits of atomic groups have correct
4013 // remaining_entries_.
4014 size_t k = 0;
4015 while (k < batch_edits.size()) {
4016 while (k < batch_edits.size() && !batch_edits[k]->is_in_atomic_group_) {
4017 ++k;
4018 }
4019 if (k == batch_edits.size()) {
4020 break;
4021 }
4022 size_t i = k;
4023 while (i < batch_edits.size()) {
4024 if (!batch_edits[i]->is_in_atomic_group_) {
4025 break;
4026 }
4027 assert(i - k + batch_edits[i]->remaining_entries_ ==
4028 batch_edits[k]->remaining_entries_);
4029 if (batch_edits[i]->remaining_entries_ == 0) {
4030 ++i;
4031 break;
4032 }
4033 ++i;
4034 }
4035 assert(batch_edits[i - 1]->is_in_atomic_group_);
4036 assert(0 == batch_edits[i - 1]->remaining_entries_);
4037 std::vector<VersionEdit*> tmp;
4038 for (size_t j = k; j != i; ++j) {
4039 tmp.emplace_back(batch_edits[j]);
4040 }
4041 TEST_SYNC_POINT_CALLBACK(
4042 "VersionSet::ProcessManifestWrites:CheckOneAtomicGroup", &tmp);
4043 k = i;
4044 }
4045 #endif // NDEBUG
4046
4047 assert(pending_manifest_file_number_ == 0);
4048 if (!descriptor_log_ ||
4049 manifest_file_size_ > db_options_->max_manifest_file_size) {
4050 TEST_SYNC_POINT("VersionSet::ProcessManifestWrites:BeforeNewManifest");
4051 new_descriptor_log = true;
4052 } else {
4053 pending_manifest_file_number_ = manifest_file_number_;
4054 }
4055
4056 // Local cached copy of state variable(s). WriteCurrentStateToManifest()
4057 // reads its content after releasing db mutex to avoid race with
4058 // SwitchMemtable().
4059 std::unordered_map<uint32_t, MutableCFState> curr_state;
4060 VersionEdit wal_additions;
4061 if (new_descriptor_log) {
4062 pending_manifest_file_number_ = NewFileNumber();
4063 batch_edits.back()->SetNextFile(next_file_number_.load());
4064
4065 // if we are writing out new snapshot make sure to persist max column
4066 // family.
4067 if (column_family_set_->GetMaxColumnFamily() > 0) {
4068 first_writer.edit_list.front()->SetMaxColumnFamily(
4069 column_family_set_->GetMaxColumnFamily());
4070 }
4071 for (const auto* cfd : *column_family_set_) {
4072 assert(curr_state.find(cfd->GetID()) == curr_state.end());
4073 curr_state.emplace(std::make_pair(
4074 cfd->GetID(),
4075 MutableCFState(cfd->GetLogNumber(), cfd->GetFullHistoryTsLow())));
4076 }
4077
4078 for (const auto& wal : wals_.GetWals()) {
4079 wal_additions.AddWal(wal.first, wal.second);
4080 }
4081 }
4082
4083 uint64_t new_manifest_file_size = 0;
4084 Status s;
4085 IOStatus io_s;
4086 IOStatus manifest_io_status;
4087 {
4088 FileOptions opt_file_opts = fs_->OptimizeForManifestWrite(file_options_);
4089 mu->Unlock();
4090
4091 TEST_SYNC_POINT_CALLBACK("VersionSet::LogAndApply:WriteManifest", nullptr);
4092 if (!first_writer.edit_list.front()->IsColumnFamilyManipulation()) {
4093 for (int i = 0; i < static_cast<int>(versions.size()); ++i) {
4094 assert(!builder_guards.empty() &&
4095 builder_guards.size() == versions.size());
4096 assert(!mutable_cf_options_ptrs.empty() &&
4097 builder_guards.size() == versions.size());
4098 ColumnFamilyData* cfd = versions[i]->cfd_;
4099 s = builder_guards[i]->version_builder()->LoadTableHandlers(
4100 cfd->internal_stats(), 1 /* max_threads */,
4101 true /* prefetch_index_and_filter_in_cache */,
4102 false /* is_initial_load */,
4103 mutable_cf_options_ptrs[i]->prefix_extractor.get(),
4104 MaxFileSizeForL0MetaPin(*mutable_cf_options_ptrs[i]));
4105 if (!s.ok()) {
4106 if (db_options_->paranoid_checks) {
4107 break;
4108 }
4109 s = Status::OK();
4110 }
4111 }
4112 }
4113
4114 if (s.ok() && new_descriptor_log) {
4115 // This is fine because everything inside of this block is serialized --
4116 // only one thread can be here at the same time
4117 // create new manifest file
4118 ROCKS_LOG_INFO(db_options_->info_log, "Creating manifest %" PRIu64 "\n",
4119 pending_manifest_file_number_);
4120 std::string descriptor_fname =
4121 DescriptorFileName(dbname_, pending_manifest_file_number_);
4122 std::unique_ptr<FSWritableFile> descriptor_file;
4123 io_s = NewWritableFile(fs_.get(), descriptor_fname, &descriptor_file,
4124 opt_file_opts);
4125 if (io_s.ok()) {
4126 descriptor_file->SetPreallocationBlockSize(
4127 db_options_->manifest_preallocation_size);
4128 FileTypeSet tmp_set = db_options_->checksum_handoff_file_types;
4129 std::unique_ptr<WritableFileWriter> file_writer(new WritableFileWriter(
4130 std::move(descriptor_file), descriptor_fname, opt_file_opts, clock_,
4131 io_tracer_, nullptr, db_options_->listeners, nullptr,
4132 tmp_set.Contains(FileType::kDescriptorFile)));
4133 descriptor_log_.reset(
4134 new log::Writer(std::move(file_writer), 0, false));
4135 s = WriteCurrentStateToManifest(curr_state, wal_additions,
4136 descriptor_log_.get(), io_s);
4137 } else {
4138 manifest_io_status = io_s;
4139 s = io_s;
4140 }
4141 }
4142
4143 if (s.ok()) {
4144 if (!first_writer.edit_list.front()->IsColumnFamilyManipulation()) {
4145 for (int i = 0; i < static_cast<int>(versions.size()); ++i) {
4146 versions[i]->PrepareApply(*mutable_cf_options_ptrs[i], true);
4147 }
4148 }
4149
4150 // Write new records to MANIFEST log
4151 #ifndef NDEBUG
4152 size_t idx = 0;
4153 #endif
4154 for (auto& e : batch_edits) {
4155 std::string record;
4156 if (!e->EncodeTo(&record)) {
4157 s = Status::Corruption("Unable to encode VersionEdit:" +
4158 e->DebugString(true));
4159 break;
4160 }
4161 TEST_KILL_RANDOM_WITH_WEIGHT("VersionSet::LogAndApply:BeforeAddRecord",
4162 REDUCE_ODDS2);
4163 #ifndef NDEBUG
4164 if (batch_edits.size() > 1 && batch_edits.size() - 1 == idx) {
4165 TEST_SYNC_POINT_CALLBACK(
4166 "VersionSet::ProcessManifestWrites:BeforeWriteLastVersionEdit:0",
4167 nullptr);
4168 TEST_SYNC_POINT(
4169 "VersionSet::ProcessManifestWrites:BeforeWriteLastVersionEdit:1");
4170 }
4171 ++idx;
4172 #endif /* !NDEBUG */
4173 io_s = descriptor_log_->AddRecord(record);
4174 if (!io_s.ok()) {
4175 s = io_s;
4176 manifest_io_status = io_s;
4177 break;
4178 }
4179 }
4180 if (s.ok()) {
4181 io_s = SyncManifest(db_options_, descriptor_log_->file());
4182 manifest_io_status = io_s;
4183 TEST_SYNC_POINT_CALLBACK(
4184 "VersionSet::ProcessManifestWrites:AfterSyncManifest", &io_s);
4185 }
4186 if (!io_s.ok()) {
4187 s = io_s;
4188 ROCKS_LOG_ERROR(db_options_->info_log, "MANIFEST write %s\n",
4189 s.ToString().c_str());
4190 }
4191 }
4192
4193 // If we just created a new descriptor file, install it by writing a
4194 // new CURRENT file that points to it.
4195 if (s.ok()) {
4196 assert(manifest_io_status.ok());
4197 }
4198 if (s.ok() && new_descriptor_log) {
4199 io_s = SetCurrentFile(fs_.get(), dbname_, pending_manifest_file_number_,
4200 db_directory);
4201 if (!io_s.ok()) {
4202 s = io_s;
4203 }
4204 TEST_SYNC_POINT("VersionSet::ProcessManifestWrites:AfterNewManifest");
4205 }
4206
4207 if (s.ok()) {
4208 // find offset in manifest file where this version is stored.
4209 new_manifest_file_size = descriptor_log_->file()->GetFileSize();
4210 }
4211
4212 if (first_writer.edit_list.front()->is_column_family_drop_) {
4213 TEST_SYNC_POINT("VersionSet::LogAndApply::ColumnFamilyDrop:0");
4214 TEST_SYNC_POINT("VersionSet::LogAndApply::ColumnFamilyDrop:1");
4215 TEST_SYNC_POINT("VersionSet::LogAndApply::ColumnFamilyDrop:2");
4216 }
4217
4218 LogFlush(db_options_->info_log);
4219 TEST_SYNC_POINT("VersionSet::LogAndApply:WriteManifestDone");
4220 mu->Lock();
4221 }
4222
4223 if (s.ok()) {
4224 // Apply WAL edits, DB mutex must be held.
4225 for (auto& e : batch_edits) {
4226 if (e->IsWalAddition()) {
4227 s = wals_.AddWals(e->GetWalAdditions());
4228 } else if (e->IsWalDeletion()) {
4229 s = wals_.DeleteWalsBefore(e->GetWalDeletion().GetLogNumber());
4230 }
4231 if (!s.ok()) {
4232 break;
4233 }
4234 }
4235 }
4236
4237 if (!io_s.ok()) {
4238 if (io_status_.ok()) {
4239 io_status_ = io_s;
4240 }
4241 } else if (!io_status_.ok()) {
4242 io_status_ = io_s;
4243 }
4244
4245 // Append the old manifest file to the obsolete_manifest_ list to be deleted
4246 // by PurgeObsoleteFiles later.
4247 if (s.ok() && new_descriptor_log) {
4248 obsolete_manifests_.emplace_back(
4249 DescriptorFileName("", manifest_file_number_));
4250 }
4251
4252 // Install the new versions
4253 if (s.ok()) {
4254 if (first_writer.edit_list.front()->is_column_family_add_) {
4255 assert(batch_edits.size() == 1);
4256 assert(new_cf_options != nullptr);
4257 CreateColumnFamily(*new_cf_options, first_writer.edit_list.front());
4258 } else if (first_writer.edit_list.front()->is_column_family_drop_) {
4259 assert(batch_edits.size() == 1);
4260 first_writer.cfd->SetDropped();
4261 first_writer.cfd->UnrefAndTryDelete();
4262 } else {
4263 // Each version in versions corresponds to a column family.
4264 // For each column family, update its log number indicating that logs
4265 // with number smaller than this should be ignored.
4266 uint64_t last_min_log_number_to_keep = 0;
4267 for (const auto& e : batch_edits) {
4268 ColumnFamilyData* cfd = nullptr;
4269 if (!e->IsColumnFamilyManipulation()) {
4270 cfd = column_family_set_->GetColumnFamily(e->column_family_);
4271 // e would not have been added to batch_edits if its corresponding
4272 // column family is dropped.
4273 assert(cfd);
4274 }
4275 if (cfd) {
4276 if (e->has_log_number_ && e->log_number_ > cfd->GetLogNumber()) {
4277 cfd->SetLogNumber(e->log_number_);
4278 }
4279 if (e->HasFullHistoryTsLow()) {
4280 cfd->SetFullHistoryTsLow(e->GetFullHistoryTsLow());
4281 }
4282 }
4283 if (e->has_min_log_number_to_keep_) {
4284 last_min_log_number_to_keep =
4285 std::max(last_min_log_number_to_keep, e->min_log_number_to_keep_);
4286 }
4287 }
4288
4289 if (last_min_log_number_to_keep != 0) {
4290 // Should only be set in 2PC mode.
4291 MarkMinLogNumberToKeep2PC(last_min_log_number_to_keep);
4292 }
4293
4294 for (int i = 0; i < static_cast<int>(versions.size()); ++i) {
4295 ColumnFamilyData* cfd = versions[i]->cfd_;
4296 AppendVersion(cfd, versions[i]);
4297 }
4298 }
4299 manifest_file_number_ = pending_manifest_file_number_;
4300 manifest_file_size_ = new_manifest_file_size;
4301 prev_log_number_ = first_writer.edit_list.front()->prev_log_number_;
4302 } else {
4303 std::string version_edits;
4304 for (auto& e : batch_edits) {
4305 version_edits += ("\n" + e->DebugString(true));
4306 }
4307 ROCKS_LOG_ERROR(db_options_->info_log,
4308 "Error in committing version edit to MANIFEST: %s",
4309 version_edits.c_str());
4310 for (auto v : versions) {
4311 delete v;
4312 }
4313 if (manifest_io_status.ok()) {
4314 manifest_file_number_ = pending_manifest_file_number_;
4315 manifest_file_size_ = new_manifest_file_size;
4316 }
4317 // If manifest append failed for whatever reason, the file could be
4318 // corrupted. So we need to force the next version update to start a
4319 // new manifest file.
4320 descriptor_log_.reset();
4321 // If manifest operations failed, then we know the CURRENT file still
4322 // points to the original MANIFEST. Therefore, we can safely delete the
4323 // new MANIFEST.
4324 // If manifest operations succeeded, and we are here, then it is possible
4325 // that renaming tmp file to CURRENT failed.
4326 //
4327 // On local POSIX-compliant FS, the CURRENT must point to the original
4328 // MANIFEST. We can delete the new MANIFEST for simplicity, but we can also
4329 // keep it. Future recovery will ignore this MANIFEST. It's also ok for the
4330 // process not to crash and continue using the db. Any future LogAndApply()
4331 // call will switch to a new MANIFEST and update CURRENT, still ignoring
4332 // this one.
4333 //
4334 // On non-local FS, it is
4335 // possible that the rename operation succeeded on the server (remote)
4336 // side, but the client somehow returns a non-ok status to RocksDB. Note
4337 // that this does not violate atomicity. Should we delete the new MANIFEST
4338 // successfully, a subsequent recovery attempt will likely see the CURRENT
4339 // pointing to the new MANIFEST, thus fail. We will not be able to open the
4340 // DB again. Therefore, if manifest operations succeed, we should keep the
4341 // the new MANIFEST. If the process proceeds, any future LogAndApply() call
4342 // will switch to a new MANIFEST and update CURRENT. If user tries to
4343 // re-open the DB,
4344 // a) CURRENT points to the new MANIFEST, and the new MANIFEST is present.
4345 // b) CURRENT points to the original MANIFEST, and the original MANIFEST
4346 // also exists.
4347 if (new_descriptor_log && !manifest_io_status.ok()) {
4348 ROCKS_LOG_INFO(db_options_->info_log,
4349 "Deleting manifest %" PRIu64 " current manifest %" PRIu64
4350 "\n",
4351 pending_manifest_file_number_, manifest_file_number_);
4352 Status manifest_del_status = env_->DeleteFile(
4353 DescriptorFileName(dbname_, pending_manifest_file_number_));
4354 if (!manifest_del_status.ok()) {
4355 ROCKS_LOG_WARN(db_options_->info_log,
4356 "Failed to delete manifest %" PRIu64 ": %s",
4357 pending_manifest_file_number_,
4358 manifest_del_status.ToString().c_str());
4359 }
4360 }
4361 }
4362
4363 pending_manifest_file_number_ = 0;
4364
4365 // wake up all the waiting writers
4366 while (true) {
4367 ManifestWriter* ready = manifest_writers_.front();
4368 manifest_writers_.pop_front();
4369 bool need_signal = true;
4370 for (const auto& w : writers) {
4371 if (&w == ready) {
4372 need_signal = false;
4373 break;
4374 }
4375 }
4376 ready->status = s;
4377 ready->done = true;
4378 if (ready->manifest_write_callback) {
4379 (ready->manifest_write_callback)(s);
4380 }
4381 if (need_signal) {
4382 ready->cv.Signal();
4383 }
4384 if (ready == last_writer) {
4385 break;
4386 }
4387 }
4388 if (!manifest_writers_.empty()) {
4389 manifest_writers_.front()->cv.Signal();
4390 }
4391 return s;
4392 }
4393
4394 // 'datas' is grammatically incorrect. We still use this notation to indicate
4395 // that this variable represents a collection of column_family_data.
LogAndApply(const autovector<ColumnFamilyData * > & column_family_datas,const autovector<const MutableCFOptions * > & mutable_cf_options_list,const autovector<autovector<VersionEdit * >> & edit_lists,InstrumentedMutex * mu,FSDirectory * db_directory,bool new_descriptor_log,const ColumnFamilyOptions * new_cf_options,const std::vector<std::function<void (const Status &)>> & manifest_wcbs)4396 Status VersionSet::LogAndApply(
4397 const autovector<ColumnFamilyData*>& column_family_datas,
4398 const autovector<const MutableCFOptions*>& mutable_cf_options_list,
4399 const autovector<autovector<VersionEdit*>>& edit_lists,
4400 InstrumentedMutex* mu, FSDirectory* db_directory, bool new_descriptor_log,
4401 const ColumnFamilyOptions* new_cf_options,
4402 const std::vector<std::function<void(const Status&)>>& manifest_wcbs) {
4403 mu->AssertHeld();
4404 int num_edits = 0;
4405 for (const auto& elist : edit_lists) {
4406 num_edits += static_cast<int>(elist.size());
4407 }
4408 if (num_edits == 0) {
4409 return Status::OK();
4410 } else if (num_edits > 1) {
4411 #ifndef NDEBUG
4412 for (const auto& edit_list : edit_lists) {
4413 for (const auto& edit : edit_list) {
4414 assert(!edit->IsColumnFamilyManipulation());
4415 }
4416 }
4417 #endif /* ! NDEBUG */
4418 }
4419
4420 int num_cfds = static_cast<int>(column_family_datas.size());
4421 if (num_cfds == 1 && column_family_datas[0] == nullptr) {
4422 assert(edit_lists.size() == 1 && edit_lists[0].size() == 1);
4423 assert(edit_lists[0][0]->is_column_family_add_);
4424 assert(new_cf_options != nullptr);
4425 }
4426 std::deque<ManifestWriter> writers;
4427 if (num_cfds > 0) {
4428 assert(static_cast<size_t>(num_cfds) == mutable_cf_options_list.size());
4429 assert(static_cast<size_t>(num_cfds) == edit_lists.size());
4430 }
4431 for (int i = 0; i < num_cfds; ++i) {
4432 const auto wcb =
4433 manifest_wcbs.empty() ? [](const Status&) {} : manifest_wcbs[i];
4434 writers.emplace_back(mu, column_family_datas[i],
4435 *mutable_cf_options_list[i], edit_lists[i], wcb);
4436 manifest_writers_.push_back(&writers[i]);
4437 }
4438 assert(!writers.empty());
4439 ManifestWriter& first_writer = writers.front();
4440 TEST_SYNC_POINT_CALLBACK("VersionSet::LogAndApply:BeforeWriterWaiting",
4441 nullptr);
4442 while (!first_writer.done && &first_writer != manifest_writers_.front()) {
4443 first_writer.cv.Wait();
4444 }
4445 if (first_writer.done) {
4446 // All non-CF-manipulation operations can be grouped together and committed
4447 // to MANIFEST. They should all have finished. The status code is stored in
4448 // the first manifest writer.
4449 #ifndef NDEBUG
4450 for (const auto& writer : writers) {
4451 assert(writer.done);
4452 }
4453 TEST_SYNC_POINT_CALLBACK("VersionSet::LogAndApply:WakeUpAndDone", mu);
4454 #endif /* !NDEBUG */
4455 return first_writer.status;
4456 }
4457
4458 int num_undropped_cfds = 0;
4459 for (auto cfd : column_family_datas) {
4460 // if cfd == nullptr, it is a column family add.
4461 if (cfd == nullptr || !cfd->IsDropped()) {
4462 ++num_undropped_cfds;
4463 }
4464 }
4465 if (0 == num_undropped_cfds) {
4466 for (int i = 0; i != num_cfds; ++i) {
4467 manifest_writers_.pop_front();
4468 }
4469 // Notify new head of manifest write queue.
4470 if (!manifest_writers_.empty()) {
4471 manifest_writers_.front()->cv.Signal();
4472 }
4473 return Status::ColumnFamilyDropped();
4474 }
4475
4476 return ProcessManifestWrites(writers, mu, db_directory, new_descriptor_log,
4477 new_cf_options);
4478 }
4479
LogAndApplyCFHelper(VersionEdit * edit)4480 void VersionSet::LogAndApplyCFHelper(VersionEdit* edit) {
4481 assert(edit->IsColumnFamilyManipulation());
4482 edit->SetNextFile(next_file_number_.load());
4483 // The log might have data that is not visible to memtbale and hence have not
4484 // updated the last_sequence_ yet. It is also possible that the log has is
4485 // expecting some new data that is not written yet. Since LastSequence is an
4486 // upper bound on the sequence, it is ok to record
4487 // last_allocated_sequence_ as the last sequence.
4488 edit->SetLastSequence(db_options_->two_write_queues ? last_allocated_sequence_
4489 : last_sequence_);
4490 if (edit->is_column_family_drop_) {
4491 // if we drop column family, we have to make sure to save max column family,
4492 // so that we don't reuse existing ID
4493 edit->SetMaxColumnFamily(column_family_set_->GetMaxColumnFamily());
4494 }
4495 }
4496
LogAndApplyHelper(ColumnFamilyData * cfd,VersionBuilder * builder,VersionEdit * edit,InstrumentedMutex * mu)4497 Status VersionSet::LogAndApplyHelper(ColumnFamilyData* cfd,
4498 VersionBuilder* builder, VersionEdit* edit,
4499 InstrumentedMutex* mu) {
4500 #ifdef NDEBUG
4501 (void)cfd;
4502 #endif
4503 mu->AssertHeld();
4504 assert(!edit->IsColumnFamilyManipulation());
4505
4506 if (edit->has_log_number_) {
4507 assert(edit->log_number_ >= cfd->GetLogNumber());
4508 assert(edit->log_number_ < next_file_number_.load());
4509 }
4510
4511 if (!edit->has_prev_log_number_) {
4512 edit->SetPrevLogNumber(prev_log_number_);
4513 }
4514 edit->SetNextFile(next_file_number_.load());
4515 // The log might have data that is not visible to memtbale and hence have not
4516 // updated the last_sequence_ yet. It is also possible that the log has is
4517 // expecting some new data that is not written yet. Since LastSequence is an
4518 // upper bound on the sequence, it is ok to record
4519 // last_allocated_sequence_ as the last sequence.
4520 edit->SetLastSequence(db_options_->two_write_queues ? last_allocated_sequence_
4521 : last_sequence_);
4522
4523 // The builder can be nullptr only if edit is WAL manipulation,
4524 // because WAL edits do not need to be applied to versions,
4525 // we return Status::OK() in this case.
4526 assert(builder || edit->IsWalManipulation());
4527 return builder ? builder->Apply(edit) : Status::OK();
4528 }
4529
GetCurrentManifestPath(const std::string & dbname,FileSystem * fs,std::string * manifest_path,uint64_t * manifest_file_number)4530 Status VersionSet::GetCurrentManifestPath(const std::string& dbname,
4531 FileSystem* fs,
4532 std::string* manifest_path,
4533 uint64_t* manifest_file_number) {
4534 assert(fs != nullptr);
4535 assert(manifest_path != nullptr);
4536 assert(manifest_file_number != nullptr);
4537
4538 std::string fname;
4539 Status s = ReadFileToString(fs, CurrentFileName(dbname), &fname);
4540 if (!s.ok()) {
4541 return s;
4542 }
4543 if (fname.empty() || fname.back() != '\n') {
4544 return Status::Corruption("CURRENT file does not end with newline");
4545 }
4546 // remove the trailing '\n'
4547 fname.resize(fname.size() - 1);
4548 FileType type;
4549 bool parse_ok = ParseFileName(fname, manifest_file_number, &type);
4550 if (!parse_ok || type != kDescriptorFile) {
4551 return Status::Corruption("CURRENT file corrupted");
4552 }
4553 *manifest_path = dbname;
4554 if (dbname.back() != '/') {
4555 manifest_path->push_back('/');
4556 }
4557 manifest_path->append(fname);
4558 return Status::OK();
4559 }
4560
Recover(const std::vector<ColumnFamilyDescriptor> & column_families,bool read_only,std::string * db_id)4561 Status VersionSet::Recover(
4562 const std::vector<ColumnFamilyDescriptor>& column_families, bool read_only,
4563 std::string* db_id) {
4564 // Read "CURRENT" file, which contains a pointer to the current manifest file
4565 std::string manifest_path;
4566 Status s = GetCurrentManifestPath(dbname_, fs_.get(), &manifest_path,
4567 &manifest_file_number_);
4568 if (!s.ok()) {
4569 return s;
4570 }
4571
4572 ROCKS_LOG_INFO(db_options_->info_log, "Recovering from manifest file: %s\n",
4573 manifest_path.c_str());
4574
4575 std::unique_ptr<SequentialFileReader> manifest_file_reader;
4576 {
4577 std::unique_ptr<FSSequentialFile> manifest_file;
4578 s = fs_->NewSequentialFile(manifest_path,
4579 fs_->OptimizeForManifestRead(file_options_),
4580 &manifest_file, nullptr);
4581 if (!s.ok()) {
4582 return s;
4583 }
4584 manifest_file_reader.reset(
4585 new SequentialFileReader(std::move(manifest_file), manifest_path,
4586 db_options_->log_readahead_size, io_tracer_));
4587 }
4588 uint64_t current_manifest_file_size = 0;
4589 uint64_t log_number = 0;
4590 {
4591 VersionSet::LogReporter reporter;
4592 Status log_read_status;
4593 reporter.status = &log_read_status;
4594 log::Reader reader(nullptr, std::move(manifest_file_reader), &reporter,
4595 true /* checksum */, 0 /* log_number */);
4596 VersionEditHandler handler(read_only, column_families,
4597 const_cast<VersionSet*>(this),
4598 /*track_missing_files=*/false,
4599 /*no_error_if_files_missing=*/false, io_tracer_);
4600 handler.Iterate(reader, &log_read_status);
4601 s = handler.status();
4602 if (s.ok()) {
4603 log_number = handler.GetVersionEditParams().log_number_;
4604 current_manifest_file_size = reader.GetReadOffset();
4605 assert(current_manifest_file_size != 0);
4606 handler.GetDbId(db_id);
4607 }
4608 }
4609
4610 if (s.ok()) {
4611 manifest_file_size_ = current_manifest_file_size;
4612 ROCKS_LOG_INFO(
4613 db_options_->info_log,
4614 "Recovered from manifest file:%s succeeded,"
4615 "manifest_file_number is %" PRIu64 ", next_file_number is %" PRIu64
4616 ", last_sequence is %" PRIu64 ", log_number is %" PRIu64
4617 ",prev_log_number is %" PRIu64 ",max_column_family is %" PRIu32
4618 ",min_log_number_to_keep is %" PRIu64 "\n",
4619 manifest_path.c_str(), manifest_file_number_, next_file_number_.load(),
4620 last_sequence_.load(), log_number, prev_log_number_,
4621 column_family_set_->GetMaxColumnFamily(), min_log_number_to_keep_2pc());
4622
4623 for (auto cfd : *column_family_set_) {
4624 if (cfd->IsDropped()) {
4625 continue;
4626 }
4627 ROCKS_LOG_INFO(db_options_->info_log,
4628 "Column family [%s] (ID %" PRIu32
4629 "), log number is %" PRIu64 "\n",
4630 cfd->GetName().c_str(), cfd->GetID(), cfd->GetLogNumber());
4631 }
4632 }
4633
4634 return s;
4635 }
4636
4637 namespace {
4638 class ManifestPicker {
4639 public:
4640 explicit ManifestPicker(const std::string& dbname,
4641 const std::vector<std::string>& files_in_dbname);
4642 // REQUIRES Valid() == true
4643 std::string GetNextManifest(uint64_t* file_number, std::string* file_name);
Valid() const4644 bool Valid() const { return manifest_file_iter_ != manifest_files_.end(); }
4645
4646 private:
4647 const std::string& dbname_;
4648 // MANIFEST file names(s)
4649 std::vector<std::string> manifest_files_;
4650 std::vector<std::string>::const_iterator manifest_file_iter_;
4651 };
4652
ManifestPicker(const std::string & dbname,const std::vector<std::string> & files_in_dbname)4653 ManifestPicker::ManifestPicker(const std::string& dbname,
4654 const std::vector<std::string>& files_in_dbname)
4655 : dbname_(dbname) {
4656 // populate manifest files
4657 assert(!files_in_dbname.empty());
4658 for (const auto& fname : files_in_dbname) {
4659 uint64_t file_num = 0;
4660 FileType file_type;
4661 bool parse_ok = ParseFileName(fname, &file_num, &file_type);
4662 if (parse_ok && file_type == kDescriptorFile) {
4663 manifest_files_.push_back(fname);
4664 }
4665 }
4666 // seek to first manifest
4667 std::sort(manifest_files_.begin(), manifest_files_.end(),
4668 [](const std::string& lhs, const std::string& rhs) {
4669 uint64_t num1 = 0;
4670 uint64_t num2 = 0;
4671 FileType type1;
4672 FileType type2;
4673 bool parse_ok1 = ParseFileName(lhs, &num1, &type1);
4674 bool parse_ok2 = ParseFileName(rhs, &num2, &type2);
4675 #ifndef NDEBUG
4676 assert(parse_ok1);
4677 assert(parse_ok2);
4678 #else
4679 (void)parse_ok1;
4680 (void)parse_ok2;
4681 #endif
4682 return num1 > num2;
4683 });
4684 manifest_file_iter_ = manifest_files_.begin();
4685 }
4686
GetNextManifest(uint64_t * number,std::string * file_name)4687 std::string ManifestPicker::GetNextManifest(uint64_t* number,
4688 std::string* file_name) {
4689 assert(Valid());
4690 std::string ret;
4691 if (manifest_file_iter_ != manifest_files_.end()) {
4692 ret.assign(dbname_);
4693 if (ret.back() != kFilePathSeparator) {
4694 ret.push_back(kFilePathSeparator);
4695 }
4696 ret.append(*manifest_file_iter_);
4697 if (number) {
4698 FileType type;
4699 bool parse = ParseFileName(*manifest_file_iter_, number, &type);
4700 assert(type == kDescriptorFile);
4701 #ifndef NDEBUG
4702 assert(parse);
4703 #else
4704 (void)parse;
4705 #endif
4706 }
4707 if (file_name) {
4708 *file_name = *manifest_file_iter_;
4709 }
4710 ++manifest_file_iter_;
4711 }
4712 return ret;
4713 }
4714 } // namespace
4715
TryRecover(const std::vector<ColumnFamilyDescriptor> & column_families,bool read_only,const std::vector<std::string> & files_in_dbname,std::string * db_id,bool * has_missing_table_file)4716 Status VersionSet::TryRecover(
4717 const std::vector<ColumnFamilyDescriptor>& column_families, bool read_only,
4718 const std::vector<std::string>& files_in_dbname, std::string* db_id,
4719 bool* has_missing_table_file) {
4720 ManifestPicker manifest_picker(dbname_, files_in_dbname);
4721 if (!manifest_picker.Valid()) {
4722 return Status::Corruption("Cannot locate MANIFEST file in " + dbname_);
4723 }
4724 Status s;
4725 std::string manifest_path =
4726 manifest_picker.GetNextManifest(&manifest_file_number_, nullptr);
4727 while (!manifest_path.empty()) {
4728 s = TryRecoverFromOneManifest(manifest_path, column_families, read_only,
4729 db_id, has_missing_table_file);
4730 if (s.ok() || !manifest_picker.Valid()) {
4731 break;
4732 }
4733 Reset();
4734 manifest_path =
4735 manifest_picker.GetNextManifest(&manifest_file_number_, nullptr);
4736 }
4737 return s;
4738 }
4739
TryRecoverFromOneManifest(const std::string & manifest_path,const std::vector<ColumnFamilyDescriptor> & column_families,bool read_only,std::string * db_id,bool * has_missing_table_file)4740 Status VersionSet::TryRecoverFromOneManifest(
4741 const std::string& manifest_path,
4742 const std::vector<ColumnFamilyDescriptor>& column_families, bool read_only,
4743 std::string* db_id, bool* has_missing_table_file) {
4744 ROCKS_LOG_INFO(db_options_->info_log, "Trying to recover from manifest: %s\n",
4745 manifest_path.c_str());
4746 std::unique_ptr<SequentialFileReader> manifest_file_reader;
4747 Status s;
4748 {
4749 std::unique_ptr<FSSequentialFile> manifest_file;
4750 s = fs_->NewSequentialFile(manifest_path,
4751 fs_->OptimizeForManifestRead(file_options_),
4752 &manifest_file, nullptr);
4753 if (!s.ok()) {
4754 return s;
4755 }
4756 manifest_file_reader.reset(
4757 new SequentialFileReader(std::move(manifest_file), manifest_path,
4758 db_options_->log_readahead_size, io_tracer_));
4759 }
4760
4761 assert(s.ok());
4762 VersionSet::LogReporter reporter;
4763 reporter.status = &s;
4764 log::Reader reader(nullptr, std::move(manifest_file_reader), &reporter,
4765 /*checksum=*/true, /*log_num=*/0);
4766 VersionEditHandlerPointInTime handler_pit(
4767 read_only, column_families, const_cast<VersionSet*>(this), io_tracer_);
4768
4769 handler_pit.Iterate(reader, &s);
4770
4771 handler_pit.GetDbId(db_id);
4772
4773 assert(nullptr != has_missing_table_file);
4774 *has_missing_table_file = handler_pit.HasMissingFiles();
4775
4776 return handler_pit.status();
4777 }
4778
ListColumnFamilies(std::vector<std::string> * column_families,const std::string & dbname,FileSystem * fs)4779 Status VersionSet::ListColumnFamilies(std::vector<std::string>* column_families,
4780 const std::string& dbname,
4781 FileSystem* fs) {
4782 // these are just for performance reasons, not correctness,
4783 // so we're fine using the defaults
4784 FileOptions soptions;
4785 // Read "CURRENT" file, which contains a pointer to the current manifest file
4786 std::string manifest_path;
4787 uint64_t manifest_file_number;
4788 Status s =
4789 GetCurrentManifestPath(dbname, fs, &manifest_path, &manifest_file_number);
4790 if (!s.ok()) {
4791 return s;
4792 }
4793
4794 std::unique_ptr<SequentialFileReader> file_reader;
4795 {
4796 std::unique_ptr<FSSequentialFile> file;
4797 s = fs->NewSequentialFile(manifest_path, soptions, &file, nullptr);
4798 if (!s.ok()) {
4799 return s;
4800 }
4801 file_reader.reset(new SequentialFileReader(std::move(file), manifest_path,
4802 nullptr /*IOTracer*/));
4803 }
4804
4805 VersionSet::LogReporter reporter;
4806 reporter.status = &s;
4807 log::Reader reader(nullptr, std::move(file_reader), &reporter,
4808 true /* checksum */, 0 /* log_number */);
4809
4810 ListColumnFamiliesHandler handler;
4811 handler.Iterate(reader, &s);
4812
4813 assert(column_families);
4814 column_families->clear();
4815 if (handler.status().ok()) {
4816 for (const auto& iter : handler.GetColumnFamilyNames()) {
4817 column_families->push_back(iter.second);
4818 }
4819 }
4820
4821 return handler.status();
4822 }
4823
4824 #ifndef ROCKSDB_LITE
ReduceNumberOfLevels(const std::string & dbname,const Options * options,const FileOptions & file_options,int new_levels)4825 Status VersionSet::ReduceNumberOfLevels(const std::string& dbname,
4826 const Options* options,
4827 const FileOptions& file_options,
4828 int new_levels) {
4829 if (new_levels <= 1) {
4830 return Status::InvalidArgument(
4831 "Number of levels needs to be bigger than 1");
4832 }
4833
4834 ImmutableDBOptions db_options(*options);
4835 ColumnFamilyOptions cf_options(*options);
4836 std::shared_ptr<Cache> tc(NewLRUCache(options->max_open_files - 10,
4837 options->table_cache_numshardbits));
4838 WriteController wc(options->delayed_write_rate);
4839 WriteBufferManager wb(options->db_write_buffer_size);
4840 VersionSet versions(dbname, &db_options, file_options, tc.get(), &wb, &wc,
4841 nullptr /*BlockCacheTracer*/, nullptr /*IOTracer*/);
4842 Status status;
4843
4844 std::vector<ColumnFamilyDescriptor> dummy;
4845 ColumnFamilyDescriptor dummy_descriptor(kDefaultColumnFamilyName,
4846 ColumnFamilyOptions(*options));
4847 dummy.push_back(dummy_descriptor);
4848 status = versions.Recover(dummy);
4849 if (!status.ok()) {
4850 return status;
4851 }
4852
4853 Version* current_version =
4854 versions.GetColumnFamilySet()->GetDefault()->current();
4855 auto* vstorage = current_version->storage_info();
4856 int current_levels = vstorage->num_levels();
4857
4858 if (current_levels <= new_levels) {
4859 return Status::OK();
4860 }
4861
4862 // Make sure there are file only on one level from
4863 // (new_levels-1) to (current_levels-1)
4864 int first_nonempty_level = -1;
4865 int first_nonempty_level_filenum = 0;
4866 for (int i = new_levels - 1; i < current_levels; i++) {
4867 int file_num = vstorage->NumLevelFiles(i);
4868 if (file_num != 0) {
4869 if (first_nonempty_level < 0) {
4870 first_nonempty_level = i;
4871 first_nonempty_level_filenum = file_num;
4872 } else {
4873 char msg[255];
4874 snprintf(msg, sizeof(msg),
4875 "Found at least two levels containing files: "
4876 "[%d:%d],[%d:%d].\n",
4877 first_nonempty_level, first_nonempty_level_filenum, i,
4878 file_num);
4879 return Status::InvalidArgument(msg);
4880 }
4881 }
4882 }
4883
4884 // we need to allocate an array with the old number of levels size to
4885 // avoid SIGSEGV in WriteCurrentStatetoManifest()
4886 // however, all levels bigger or equal to new_levels will be empty
4887 std::vector<FileMetaData*>* new_files_list =
4888 new std::vector<FileMetaData*>[current_levels];
4889 for (int i = 0; i < new_levels - 1; i++) {
4890 new_files_list[i] = vstorage->LevelFiles(i);
4891 }
4892
4893 if (first_nonempty_level > 0) {
4894 auto& new_last_level = new_files_list[new_levels - 1];
4895
4896 new_last_level = vstorage->LevelFiles(first_nonempty_level);
4897
4898 for (size_t i = 0; i < new_last_level.size(); ++i) {
4899 const FileMetaData* const meta = new_last_level[i];
4900 assert(meta);
4901
4902 const uint64_t file_number = meta->fd.GetNumber();
4903
4904 vstorage->file_locations_[file_number] =
4905 VersionStorageInfo::FileLocation(new_levels - 1, i);
4906 }
4907 }
4908
4909 delete[] vstorage -> files_;
4910 vstorage->files_ = new_files_list;
4911 vstorage->num_levels_ = new_levels;
4912
4913 MutableCFOptions mutable_cf_options(*options);
4914 VersionEdit ve;
4915 InstrumentedMutex dummy_mutex;
4916 InstrumentedMutexLock l(&dummy_mutex);
4917 return versions.LogAndApply(
4918 versions.GetColumnFamilySet()->GetDefault(),
4919 mutable_cf_options, &ve, &dummy_mutex, nullptr, true);
4920 }
4921
4922 // Get the checksum information including the checksum and checksum function
4923 // name of all SST and blob files in VersionSet. Store the information in
4924 // FileChecksumList which contains a map from file number to its checksum info.
4925 // If DB is not running, make sure call VersionSet::Recover() to load the file
4926 // metadata from Manifest to VersionSet before calling this function.
GetLiveFilesChecksumInfo(FileChecksumList * checksum_list)4927 Status VersionSet::GetLiveFilesChecksumInfo(FileChecksumList* checksum_list) {
4928 // Clean the previously stored checksum information if any.
4929 Status s;
4930 if (checksum_list == nullptr) {
4931 s = Status::InvalidArgument("checksum_list is nullptr");
4932 return s;
4933 }
4934 checksum_list->reset();
4935
4936 for (auto cfd : *column_family_set_) {
4937 if (cfd->IsDropped() || !cfd->initialized()) {
4938 continue;
4939 }
4940 /* SST files */
4941 for (int level = 0; level < cfd->NumberLevels(); level++) {
4942 for (const auto& file :
4943 cfd->current()->storage_info()->LevelFiles(level)) {
4944 s = checksum_list->InsertOneFileChecksum(file->fd.GetNumber(),
4945 file->file_checksum,
4946 file->file_checksum_func_name);
4947 if (!s.ok()) {
4948 return s;
4949 }
4950 }
4951 }
4952
4953 /* Blob files */
4954 const auto& blob_files = cfd->current()->storage_info()->GetBlobFiles();
4955 for (const auto& pair : blob_files) {
4956 const uint64_t blob_file_number = pair.first;
4957 const auto& meta = pair.second;
4958
4959 assert(meta);
4960 assert(blob_file_number == meta->GetBlobFileNumber());
4961
4962 std::string checksum_value = meta->GetChecksumValue();
4963 std::string checksum_method = meta->GetChecksumMethod();
4964 assert(checksum_value.empty() == checksum_method.empty());
4965 if (meta->GetChecksumMethod().empty()) {
4966 checksum_value = kUnknownFileChecksum;
4967 checksum_method = kUnknownFileChecksumFuncName;
4968 }
4969
4970 s = checksum_list->InsertOneFileChecksum(blob_file_number, checksum_value,
4971 checksum_method);
4972 if (!s.ok()) {
4973 return s;
4974 }
4975 }
4976 }
4977
4978 return s;
4979 }
4980
DumpManifest(Options & options,std::string & dscname,bool verbose,bool hex,bool json)4981 Status VersionSet::DumpManifest(Options& options, std::string& dscname,
4982 bool verbose, bool hex, bool json) {
4983 // Open the specified manifest file.
4984 std::unique_ptr<SequentialFileReader> file_reader;
4985 Status s;
4986 {
4987 std::unique_ptr<FSSequentialFile> file;
4988 const std::shared_ptr<FileSystem>& fs = options.env->GetFileSystem();
4989 s = fs->NewSequentialFile(
4990 dscname,
4991 fs->OptimizeForManifestRead(file_options_), &file,
4992 nullptr);
4993 if (!s.ok()) {
4994 return s;
4995 }
4996 file_reader.reset(new SequentialFileReader(
4997 std::move(file), dscname, db_options_->log_readahead_size, io_tracer_));
4998 }
4999
5000 std::vector<ColumnFamilyDescriptor> column_families(
5001 1, ColumnFamilyDescriptor(kDefaultColumnFamilyName, options));
5002 DumpManifestHandler handler(column_families, this, io_tracer_, verbose, hex,
5003 json);
5004 {
5005 VersionSet::LogReporter reporter;
5006 reporter.status = &s;
5007 log::Reader reader(nullptr, std::move(file_reader), &reporter,
5008 true /* checksum */, 0 /* log_number */);
5009 handler.Iterate(reader, &s);
5010 }
5011
5012 return handler.status();
5013 }
5014 #endif // ROCKSDB_LITE
5015
MarkFileNumberUsed(uint64_t number)5016 void VersionSet::MarkFileNumberUsed(uint64_t number) {
5017 // only called during recovery and repair which are single threaded, so this
5018 // works because there can't be concurrent calls
5019 if (next_file_number_.load(std::memory_order_relaxed) <= number) {
5020 next_file_number_.store(number + 1, std::memory_order_relaxed);
5021 }
5022 }
5023 // Called only either from ::LogAndApply which is protected by mutex or during
5024 // recovery which is single-threaded.
MarkMinLogNumberToKeep2PC(uint64_t number)5025 void VersionSet::MarkMinLogNumberToKeep2PC(uint64_t number) {
5026 if (min_log_number_to_keep_2pc_.load(std::memory_order_relaxed) < number) {
5027 min_log_number_to_keep_2pc_.store(number, std::memory_order_relaxed);
5028 }
5029 }
5030
WriteCurrentStateToManifest(const std::unordered_map<uint32_t,MutableCFState> & curr_state,const VersionEdit & wal_additions,log::Writer * log,IOStatus & io_s)5031 Status VersionSet::WriteCurrentStateToManifest(
5032 const std::unordered_map<uint32_t, MutableCFState>& curr_state,
5033 const VersionEdit& wal_additions, log::Writer* log, IOStatus& io_s) {
5034 // TODO: Break up into multiple records to reduce memory usage on recovery?
5035
5036 // WARNING: This method doesn't hold a mutex!!
5037
5038 // This is done without DB mutex lock held, but only within single-threaded
5039 // LogAndApply. Column family manipulations can only happen within LogAndApply
5040 // (the same single thread), so we're safe to iterate.
5041
5042 assert(io_s.ok());
5043 if (db_options_->write_dbid_to_manifest) {
5044 VersionEdit edit_for_db_id;
5045 assert(!db_id_.empty());
5046 edit_for_db_id.SetDBId(db_id_);
5047 std::string db_id_record;
5048 if (!edit_for_db_id.EncodeTo(&db_id_record)) {
5049 return Status::Corruption("Unable to Encode VersionEdit:" +
5050 edit_for_db_id.DebugString(true));
5051 }
5052 io_s = log->AddRecord(db_id_record);
5053 if (!io_s.ok()) {
5054 return io_s;
5055 }
5056 }
5057
5058 // Save WALs.
5059 if (!wal_additions.GetWalAdditions().empty()) {
5060 TEST_SYNC_POINT_CALLBACK("VersionSet::WriteCurrentStateToManifest:SaveWal",
5061 const_cast<VersionEdit*>(&wal_additions));
5062 std::string record;
5063 if (!wal_additions.EncodeTo(&record)) {
5064 return Status::Corruption("Unable to Encode VersionEdit: " +
5065 wal_additions.DebugString(true));
5066 }
5067 io_s = log->AddRecord(record);
5068 if (!io_s.ok()) {
5069 return io_s;
5070 }
5071 }
5072
5073 for (auto cfd : *column_family_set_) {
5074 assert(cfd);
5075
5076 if (cfd->IsDropped()) {
5077 continue;
5078 }
5079 assert(cfd->initialized());
5080 {
5081 // Store column family info
5082 VersionEdit edit;
5083 if (cfd->GetID() != 0) {
5084 // default column family is always there,
5085 // no need to explicitly write it
5086 edit.AddColumnFamily(cfd->GetName());
5087 edit.SetColumnFamily(cfd->GetID());
5088 }
5089 edit.SetComparatorName(
5090 cfd->internal_comparator().user_comparator()->Name());
5091 std::string record;
5092 if (!edit.EncodeTo(&record)) {
5093 return Status::Corruption(
5094 "Unable to Encode VersionEdit:" + edit.DebugString(true));
5095 }
5096 io_s = log->AddRecord(record);
5097 if (!io_s.ok()) {
5098 return io_s;
5099 }
5100 }
5101
5102 {
5103 // Save files
5104 VersionEdit edit;
5105 edit.SetColumnFamily(cfd->GetID());
5106
5107 assert(cfd->current());
5108 assert(cfd->current()->storage_info());
5109
5110 for (int level = 0; level < cfd->NumberLevels(); level++) {
5111 for (const auto& f :
5112 cfd->current()->storage_info()->LevelFiles(level)) {
5113 edit.AddFile(level, f->fd.GetNumber(), f->fd.GetPathId(),
5114 f->fd.GetFileSize(), f->smallest, f->largest,
5115 f->fd.smallest_seqno, f->fd.largest_seqno,
5116 f->marked_for_compaction, f->oldest_blob_file_number,
5117 f->oldest_ancester_time, f->file_creation_time,
5118 f->file_checksum, f->file_checksum_func_name);
5119 }
5120 }
5121
5122 const auto& blob_files = cfd->current()->storage_info()->GetBlobFiles();
5123 for (const auto& pair : blob_files) {
5124 const uint64_t blob_file_number = pair.first;
5125 const auto& meta = pair.second;
5126
5127 assert(meta);
5128 assert(blob_file_number == meta->GetBlobFileNumber());
5129
5130 edit.AddBlobFile(blob_file_number, meta->GetTotalBlobCount(),
5131 meta->GetTotalBlobBytes(), meta->GetChecksumMethod(),
5132 meta->GetChecksumValue());
5133 if (meta->GetGarbageBlobCount() > 0) {
5134 edit.AddBlobFileGarbage(blob_file_number, meta->GetGarbageBlobCount(),
5135 meta->GetGarbageBlobBytes());
5136 }
5137 }
5138
5139 const auto iter = curr_state.find(cfd->GetID());
5140 assert(iter != curr_state.end());
5141 uint64_t log_number = iter->second.log_number;
5142 edit.SetLogNumber(log_number);
5143
5144 if (cfd->GetID() == 0) {
5145 // min_log_number_to_keep is for the whole db, not for specific column family.
5146 // So it does not need to be set for every column family, just need to be set once.
5147 // Since default CF can never be dropped, we set the min_log to the default CF here.
5148 uint64_t min_log = min_log_number_to_keep_2pc();
5149 if (min_log != 0) {
5150 edit.SetMinLogNumberToKeep(min_log);
5151 }
5152 }
5153
5154 const std::string& full_history_ts_low = iter->second.full_history_ts_low;
5155 if (!full_history_ts_low.empty()) {
5156 edit.SetFullHistoryTsLow(full_history_ts_low);
5157 }
5158 std::string record;
5159 if (!edit.EncodeTo(&record)) {
5160 return Status::Corruption(
5161 "Unable to Encode VersionEdit:" + edit.DebugString(true));
5162 }
5163 io_s = log->AddRecord(record);
5164 if (!io_s.ok()) {
5165 return io_s;
5166 }
5167 }
5168 }
5169 return Status::OK();
5170 }
5171
5172 // TODO(aekmekji): in CompactionJob::GenSubcompactionBoundaries(), this
5173 // function is called repeatedly with consecutive pairs of slices. For example
5174 // if the slice list is [a, b, c, d] this function is called with arguments
5175 // (a,b) then (b,c) then (c,d). Knowing this, an optimization is possible where
5176 // we avoid doing binary search for the keys b and c twice and instead somehow
5177 // maintain state of where they first appear in the files.
ApproximateSize(const SizeApproximationOptions & options,Version * v,const Slice & start,const Slice & end,int start_level,int end_level,TableReaderCaller caller)5178 uint64_t VersionSet::ApproximateSize(const SizeApproximationOptions& options,
5179 Version* v, const Slice& start,
5180 const Slice& end, int start_level,
5181 int end_level, TableReaderCaller caller) {
5182 const auto& icmp = v->cfd_->internal_comparator();
5183
5184 // pre-condition
5185 assert(icmp.Compare(start, end) <= 0);
5186
5187 uint64_t total_full_size = 0;
5188 const auto* vstorage = v->storage_info();
5189 const int num_non_empty_levels = vstorage->num_non_empty_levels();
5190 end_level = (end_level == -1) ? num_non_empty_levels
5191 : std::min(end_level, num_non_empty_levels);
5192
5193 assert(start_level <= end_level);
5194
5195 // Outline of the optimization that uses options.files_size_error_margin.
5196 // When approximating the files total size that is used to store a keys range,
5197 // we first sum up the sizes of the files that fully fall into the range.
5198 // Then we sum up the sizes of all the files that may intersect with the range
5199 // (this includes all files in L0 as well). Then, if total_intersecting_size
5200 // is smaller than total_full_size * options.files_size_error_margin - we can
5201 // infer that the intersecting files have a sufficiently negligible
5202 // contribution to the total size, and we can approximate the storage required
5203 // for the keys in range as just half of the intersecting_files_size.
5204 // E.g., if the value of files_size_error_margin is 0.1, then the error of the
5205 // approximation is limited to only ~10% of the total size of files that fully
5206 // fall into the keys range. In such case, this helps to avoid a costly
5207 // process of binary searching the intersecting files that is required only
5208 // for a more precise calculation of the total size.
5209
5210 autovector<FdWithKeyRange*, 32> first_files;
5211 autovector<FdWithKeyRange*, 16> last_files;
5212
5213 // scan all the levels
5214 for (int level = start_level; level < end_level; ++level) {
5215 const LevelFilesBrief& files_brief = vstorage->LevelFilesBrief(level);
5216 if (files_brief.num_files == 0) {
5217 // empty level, skip exploration
5218 continue;
5219 }
5220
5221 if (level == 0) {
5222 // level 0 files are not in sorted order, we need to iterate through
5223 // the list to compute the total bytes that require scanning,
5224 // so handle the case explicitly (similarly to first_files case)
5225 for (size_t i = 0; i < files_brief.num_files; i++) {
5226 first_files.push_back(&files_brief.files[i]);
5227 }
5228 continue;
5229 }
5230
5231 assert(level > 0);
5232 assert(files_brief.num_files > 0);
5233
5234 // identify the file position for start key
5235 const int idx_start =
5236 FindFileInRange(icmp, files_brief, start, 0,
5237 static_cast<uint32_t>(files_brief.num_files - 1));
5238 assert(static_cast<size_t>(idx_start) < files_brief.num_files);
5239
5240 // identify the file position for end key
5241 int idx_end = idx_start;
5242 if (icmp.Compare(files_brief.files[idx_end].largest_key, end) < 0) {
5243 idx_end =
5244 FindFileInRange(icmp, files_brief, end, idx_start,
5245 static_cast<uint32_t>(files_brief.num_files - 1));
5246 }
5247 assert(idx_end >= idx_start &&
5248 static_cast<size_t>(idx_end) < files_brief.num_files);
5249
5250 // scan all files from the starting index to the ending index
5251 // (inferred from the sorted order)
5252
5253 // first scan all the intermediate full files (excluding first and last)
5254 for (int i = idx_start + 1; i < idx_end; ++i) {
5255 uint64_t file_size = files_brief.files[i].fd.GetFileSize();
5256 // The entire file falls into the range, so we can just take its size.
5257 assert(file_size ==
5258 ApproximateSize(v, files_brief.files[i], start, end, caller));
5259 total_full_size += file_size;
5260 }
5261
5262 // save the first and the last files (which may be the same file), so we
5263 // can scan them later.
5264 first_files.push_back(&files_brief.files[idx_start]);
5265 if (idx_start != idx_end) {
5266 // we need to estimate size for both files, only if they are different
5267 last_files.push_back(&files_brief.files[idx_end]);
5268 }
5269 }
5270
5271 // The sum of all file sizes that intersect the [start, end] keys range.
5272 uint64_t total_intersecting_size = 0;
5273 for (const auto* file_ptr : first_files) {
5274 total_intersecting_size += file_ptr->fd.GetFileSize();
5275 }
5276 for (const auto* file_ptr : last_files) {
5277 total_intersecting_size += file_ptr->fd.GetFileSize();
5278 }
5279
5280 // Now scan all the first & last files at each level, and estimate their size.
5281 // If the total_intersecting_size is less than X% of the total_full_size - we
5282 // want to approximate the result in order to avoid the costly binary search
5283 // inside ApproximateSize. We use half of file size as an approximation below.
5284
5285 const double margin = options.files_size_error_margin;
5286 if (margin > 0 && total_intersecting_size <
5287 static_cast<uint64_t>(total_full_size * margin)) {
5288 total_full_size += total_intersecting_size / 2;
5289 } else {
5290 // Estimate for all the first files (might also be last files), at each
5291 // level
5292 for (const auto file_ptr : first_files) {
5293 total_full_size += ApproximateSize(v, *file_ptr, start, end, caller);
5294 }
5295
5296 // Estimate for all the last files, at each level
5297 for (const auto file_ptr : last_files) {
5298 // We could use ApproximateSize here, but calling ApproximateOffsetOf
5299 // directly is just more efficient.
5300 total_full_size += ApproximateOffsetOf(v, *file_ptr, end, caller);
5301 }
5302 }
5303
5304 return total_full_size;
5305 }
5306
ApproximateOffsetOf(Version * v,const FdWithKeyRange & f,const Slice & key,TableReaderCaller caller)5307 uint64_t VersionSet::ApproximateOffsetOf(Version* v, const FdWithKeyRange& f,
5308 const Slice& key,
5309 TableReaderCaller caller) {
5310 // pre-condition
5311 assert(v);
5312 const auto& icmp = v->cfd_->internal_comparator();
5313
5314 uint64_t result = 0;
5315 if (icmp.Compare(f.largest_key, key) <= 0) {
5316 // Entire file is before "key", so just add the file size
5317 result = f.fd.GetFileSize();
5318 } else if (icmp.Compare(f.smallest_key, key) > 0) {
5319 // Entire file is after "key", so ignore
5320 result = 0;
5321 } else {
5322 // "key" falls in the range for this table. Add the
5323 // approximate offset of "key" within the table.
5324 TableCache* table_cache = v->cfd_->table_cache();
5325 if (table_cache != nullptr) {
5326 result = table_cache->ApproximateOffsetOf(
5327 key, f.file_metadata->fd, caller, icmp,
5328 v->GetMutableCFOptions().prefix_extractor.get());
5329 }
5330 }
5331 return result;
5332 }
5333
ApproximateSize(Version * v,const FdWithKeyRange & f,const Slice & start,const Slice & end,TableReaderCaller caller)5334 uint64_t VersionSet::ApproximateSize(Version* v, const FdWithKeyRange& f,
5335 const Slice& start, const Slice& end,
5336 TableReaderCaller caller) {
5337 // pre-condition
5338 assert(v);
5339 const auto& icmp = v->cfd_->internal_comparator();
5340 assert(icmp.Compare(start, end) <= 0);
5341
5342 if (icmp.Compare(f.largest_key, start) <= 0 ||
5343 icmp.Compare(f.smallest_key, end) > 0) {
5344 // Entire file is before or after the start/end keys range
5345 return 0;
5346 }
5347
5348 if (icmp.Compare(f.smallest_key, start) >= 0) {
5349 // Start of the range is before the file start - approximate by end offset
5350 return ApproximateOffsetOf(v, f, end, caller);
5351 }
5352
5353 if (icmp.Compare(f.largest_key, end) < 0) {
5354 // End of the range is after the file end - approximate by subtracting
5355 // start offset from the file size
5356 uint64_t start_offset = ApproximateOffsetOf(v, f, start, caller);
5357 assert(f.fd.GetFileSize() >= start_offset);
5358 return f.fd.GetFileSize() - start_offset;
5359 }
5360
5361 // The interval falls entirely in the range for this file.
5362 TableCache* table_cache = v->cfd_->table_cache();
5363 if (table_cache == nullptr) {
5364 return 0;
5365 }
5366 return table_cache->ApproximateSize(
5367 start, end, f.file_metadata->fd, caller, icmp,
5368 v->GetMutableCFOptions().prefix_extractor.get());
5369 }
5370
AddLiveFiles(std::vector<uint64_t> * live_table_files,std::vector<uint64_t> * live_blob_files) const5371 void VersionSet::AddLiveFiles(std::vector<uint64_t>* live_table_files,
5372 std::vector<uint64_t>* live_blob_files) const {
5373 assert(live_table_files);
5374 assert(live_blob_files);
5375
5376 // pre-calculate space requirement
5377 size_t total_table_files = 0;
5378 size_t total_blob_files = 0;
5379
5380 assert(column_family_set_);
5381 for (auto cfd : *column_family_set_) {
5382 assert(cfd);
5383
5384 if (!cfd->initialized()) {
5385 continue;
5386 }
5387
5388 Version* const dummy_versions = cfd->dummy_versions();
5389 assert(dummy_versions);
5390
5391 for (Version* v = dummy_versions->next_; v != dummy_versions;
5392 v = v->next_) {
5393 assert(v);
5394
5395 const auto* vstorage = v->storage_info();
5396 assert(vstorage);
5397
5398 for (int level = 0; level < vstorage->num_levels(); ++level) {
5399 total_table_files += vstorage->LevelFiles(level).size();
5400 }
5401
5402 total_blob_files += vstorage->GetBlobFiles().size();
5403 }
5404 }
5405
5406 // just one time extension to the right size
5407 live_table_files->reserve(live_table_files->size() + total_table_files);
5408 live_blob_files->reserve(live_blob_files->size() + total_blob_files);
5409
5410 assert(column_family_set_);
5411 for (auto cfd : *column_family_set_) {
5412 assert(cfd);
5413 if (!cfd->initialized()) {
5414 continue;
5415 }
5416
5417 auto* current = cfd->current();
5418 bool found_current = false;
5419
5420 Version* const dummy_versions = cfd->dummy_versions();
5421 assert(dummy_versions);
5422
5423 for (Version* v = dummy_versions->next_; v != dummy_versions;
5424 v = v->next_) {
5425 v->AddLiveFiles(live_table_files, live_blob_files);
5426 if (v == current) {
5427 found_current = true;
5428 }
5429 }
5430
5431 if (!found_current && current != nullptr) {
5432 // Should never happen unless it is a bug.
5433 assert(false);
5434 current->AddLiveFiles(live_table_files, live_blob_files);
5435 }
5436 }
5437 }
5438
MakeInputIterator(const ReadOptions & read_options,const Compaction * c,RangeDelAggregator * range_del_agg,const FileOptions & file_options_compactions)5439 InternalIterator* VersionSet::MakeInputIterator(
5440 const ReadOptions& read_options, const Compaction* c,
5441 RangeDelAggregator* range_del_agg,
5442 const FileOptions& file_options_compactions) {
5443 auto cfd = c->column_family_data();
5444 // Level-0 files have to be merged together. For other levels,
5445 // we will make a concatenating iterator per level.
5446 // TODO(opt): use concatenating iterator for level-0 if there is no overlap
5447 const size_t space = (c->level() == 0 ? c->input_levels(0)->num_files +
5448 c->num_input_levels() - 1
5449 : c->num_input_levels());
5450 InternalIterator** list = new InternalIterator* [space];
5451 size_t num = 0;
5452 for (size_t which = 0; which < c->num_input_levels(); which++) {
5453 if (c->input_levels(which)->num_files != 0) {
5454 if (c->level(which) == 0) {
5455 const LevelFilesBrief* flevel = c->input_levels(which);
5456 for (size_t i = 0; i < flevel->num_files; i++) {
5457 list[num++] = cfd->table_cache()->NewIterator(
5458 read_options, file_options_compactions,
5459 cfd->internal_comparator(), *flevel->files[i].file_metadata,
5460 range_del_agg, c->mutable_cf_options()->prefix_extractor.get(),
5461 /*table_reader_ptr=*/nullptr,
5462 /*file_read_hist=*/nullptr, TableReaderCaller::kCompaction,
5463 /*arena=*/nullptr,
5464 /*skip_filters=*/false,
5465 /*level=*/static_cast<int>(c->level(which)),
5466 MaxFileSizeForL0MetaPin(*c->mutable_cf_options()),
5467 /*smallest_compaction_key=*/nullptr,
5468 /*largest_compaction_key=*/nullptr,
5469 /*allow_unprepared_value=*/false);
5470 }
5471 } else {
5472 // Create concatenating iterator for the files from this level
5473 list[num++] = new LevelIterator(
5474 cfd->table_cache(), read_options, file_options_compactions,
5475 cfd->internal_comparator(), c->input_levels(which),
5476 c->mutable_cf_options()->prefix_extractor.get(),
5477 /*should_sample=*/false,
5478 /*no per level latency histogram=*/nullptr,
5479 TableReaderCaller::kCompaction, /*skip_filters=*/false,
5480 /*level=*/static_cast<int>(c->level(which)), range_del_agg,
5481 c->boundaries(which));
5482 }
5483 }
5484 }
5485 assert(num <= space);
5486 InternalIterator* result =
5487 NewMergingIterator(&c->column_family_data()->internal_comparator(), list,
5488 static_cast<int>(num));
5489 delete[] list;
5490 return result;
5491 }
5492
5493 // verify that the files listed in this compaction are present
5494 // in the current version
VerifyCompactionFileConsistency(Compaction * c)5495 bool VersionSet::VerifyCompactionFileConsistency(Compaction* c) {
5496 #ifndef NDEBUG
5497 Version* version = c->column_family_data()->current();
5498 const VersionStorageInfo* vstorage = version->storage_info();
5499 if (c->input_version() != version) {
5500 ROCKS_LOG_INFO(
5501 db_options_->info_log,
5502 "[%s] compaction output being applied to a different base version from"
5503 " input version",
5504 c->column_family_data()->GetName().c_str());
5505 }
5506
5507 for (size_t input = 0; input < c->num_input_levels(); ++input) {
5508 int level = c->level(input);
5509 for (size_t i = 0; i < c->num_input_files(input); ++i) {
5510 uint64_t number = c->input(input, i)->fd.GetNumber();
5511 bool found = false;
5512 for (size_t j = 0; j < vstorage->files_[level].size(); j++) {
5513 FileMetaData* f = vstorage->files_[level][j];
5514 if (f->fd.GetNumber() == number) {
5515 found = true;
5516 break;
5517 }
5518 }
5519 if (!found) {
5520 return false; // input files non existent in current version
5521 }
5522 }
5523 }
5524 #else
5525 (void)c;
5526 #endif
5527 return true; // everything good
5528 }
5529
GetMetadataForFile(uint64_t number,int * filelevel,FileMetaData ** meta,ColumnFamilyData ** cfd)5530 Status VersionSet::GetMetadataForFile(uint64_t number, int* filelevel,
5531 FileMetaData** meta,
5532 ColumnFamilyData** cfd) {
5533 for (auto cfd_iter : *column_family_set_) {
5534 if (!cfd_iter->initialized()) {
5535 continue;
5536 }
5537 Version* version = cfd_iter->current();
5538 const auto* vstorage = version->storage_info();
5539 for (int level = 0; level < vstorage->num_levels(); level++) {
5540 for (const auto& file : vstorage->LevelFiles(level)) {
5541 if (file->fd.GetNumber() == number) {
5542 *meta = file;
5543 *filelevel = level;
5544 *cfd = cfd_iter;
5545 return Status::OK();
5546 }
5547 }
5548 }
5549 }
5550 return Status::NotFound("File not present in any level");
5551 }
5552
GetLiveFilesMetaData(std::vector<LiveFileMetaData> * metadata)5553 void VersionSet::GetLiveFilesMetaData(std::vector<LiveFileMetaData>* metadata) {
5554 for (auto cfd : *column_family_set_) {
5555 if (cfd->IsDropped() || !cfd->initialized()) {
5556 continue;
5557 }
5558 for (int level = 0; level < cfd->NumberLevels(); level++) {
5559 for (const auto& file :
5560 cfd->current()->storage_info()->LevelFiles(level)) {
5561 LiveFileMetaData filemetadata;
5562 filemetadata.column_family_name = cfd->GetName();
5563 uint32_t path_id = file->fd.GetPathId();
5564 if (path_id < cfd->ioptions()->cf_paths.size()) {
5565 filemetadata.db_path = cfd->ioptions()->cf_paths[path_id].path;
5566 } else {
5567 assert(!cfd->ioptions()->cf_paths.empty());
5568 filemetadata.db_path = cfd->ioptions()->cf_paths.back().path;
5569 }
5570 const uint64_t file_number = file->fd.GetNumber();
5571 filemetadata.name = MakeTableFileName("", file_number);
5572 filemetadata.file_number = file_number;
5573 filemetadata.level = level;
5574 filemetadata.size = static_cast<size_t>(file->fd.GetFileSize());
5575 filemetadata.smallestkey = file->smallest.user_key().ToString();
5576 filemetadata.largestkey = file->largest.user_key().ToString();
5577 filemetadata.smallest_seqno = file->fd.smallest_seqno;
5578 filemetadata.largest_seqno = file->fd.largest_seqno;
5579 filemetadata.num_reads_sampled = file->stats.num_reads_sampled.load(
5580 std::memory_order_relaxed);
5581 filemetadata.being_compacted = file->being_compacted;
5582 filemetadata.num_entries = file->num_entries;
5583 filemetadata.num_deletions = file->num_deletions;
5584 filemetadata.oldest_blob_file_number = file->oldest_blob_file_number;
5585 filemetadata.file_checksum = file->file_checksum;
5586 filemetadata.file_checksum_func_name = file->file_checksum_func_name;
5587 metadata->push_back(filemetadata);
5588 }
5589 }
5590 }
5591 }
5592
GetObsoleteFiles(std::vector<ObsoleteFileInfo> * files,std::vector<ObsoleteBlobFileInfo> * blob_files,std::vector<std::string> * manifest_filenames,uint64_t min_pending_output)5593 void VersionSet::GetObsoleteFiles(std::vector<ObsoleteFileInfo>* files,
5594 std::vector<ObsoleteBlobFileInfo>* blob_files,
5595 std::vector<std::string>* manifest_filenames,
5596 uint64_t min_pending_output) {
5597 assert(files);
5598 assert(blob_files);
5599 assert(manifest_filenames);
5600 assert(files->empty());
5601 assert(blob_files->empty());
5602 assert(manifest_filenames->empty());
5603
5604 std::vector<ObsoleteFileInfo> pending_files;
5605 for (auto& f : obsolete_files_) {
5606 if (f.metadata->fd.GetNumber() < min_pending_output) {
5607 files->emplace_back(std::move(f));
5608 } else {
5609 pending_files.emplace_back(std::move(f));
5610 }
5611 }
5612 obsolete_files_.swap(pending_files);
5613
5614 std::vector<ObsoleteBlobFileInfo> pending_blob_files;
5615 for (auto& blob_file : obsolete_blob_files_) {
5616 if (blob_file.GetBlobFileNumber() < min_pending_output) {
5617 blob_files->emplace_back(std::move(blob_file));
5618 } else {
5619 pending_blob_files.emplace_back(std::move(blob_file));
5620 }
5621 }
5622 obsolete_blob_files_.swap(pending_blob_files);
5623
5624 obsolete_manifests_.swap(*manifest_filenames);
5625 }
5626
CreateColumnFamily(const ColumnFamilyOptions & cf_options,const VersionEdit * edit)5627 ColumnFamilyData* VersionSet::CreateColumnFamily(
5628 const ColumnFamilyOptions& cf_options, const VersionEdit* edit) {
5629 assert(edit->is_column_family_add_);
5630
5631 MutableCFOptions dummy_cf_options;
5632 Version* dummy_versions =
5633 new Version(nullptr, this, file_options_, dummy_cf_options, io_tracer_);
5634 // Ref() dummy version once so that later we can call Unref() to delete it
5635 // by avoiding calling "delete" explicitly (~Version is private)
5636 dummy_versions->Ref();
5637 auto new_cfd = column_family_set_->CreateColumnFamily(
5638 edit->column_family_name_, edit->column_family_, dummy_versions,
5639 cf_options);
5640
5641 Version* v = new Version(new_cfd, this, file_options_,
5642 *new_cfd->GetLatestMutableCFOptions(), io_tracer_,
5643 current_version_number_++);
5644
5645 // Fill level target base information.
5646 v->storage_info()->CalculateBaseBytes(*new_cfd->ioptions(),
5647 *new_cfd->GetLatestMutableCFOptions());
5648 AppendVersion(new_cfd, v);
5649 // GetLatestMutableCFOptions() is safe here without mutex since the
5650 // cfd is not available to client
5651 new_cfd->CreateNewMemtable(*new_cfd->GetLatestMutableCFOptions(),
5652 LastSequence());
5653 new_cfd->SetLogNumber(edit->log_number_);
5654 return new_cfd;
5655 }
5656
GetNumLiveVersions(Version * dummy_versions)5657 uint64_t VersionSet::GetNumLiveVersions(Version* dummy_versions) {
5658 uint64_t count = 0;
5659 for (Version* v = dummy_versions->next_; v != dummy_versions; v = v->next_) {
5660 count++;
5661 }
5662 return count;
5663 }
5664
GetTotalSstFilesSize(Version * dummy_versions)5665 uint64_t VersionSet::GetTotalSstFilesSize(Version* dummy_versions) {
5666 std::unordered_set<uint64_t> unique_files;
5667 uint64_t total_files_size = 0;
5668 for (Version* v = dummy_versions->next_; v != dummy_versions; v = v->next_) {
5669 VersionStorageInfo* storage_info = v->storage_info();
5670 for (int level = 0; level < storage_info->num_levels_; level++) {
5671 for (const auto& file_meta : storage_info->LevelFiles(level)) {
5672 if (unique_files.find(file_meta->fd.packed_number_and_path_id) ==
5673 unique_files.end()) {
5674 unique_files.insert(file_meta->fd.packed_number_and_path_id);
5675 total_files_size += file_meta->fd.GetFileSize();
5676 }
5677 }
5678 }
5679 }
5680 return total_files_size;
5681 }
5682
VerifyFileMetadata(const std::string & fpath,const FileMetaData & meta) const5683 Status VersionSet::VerifyFileMetadata(const std::string& fpath,
5684 const FileMetaData& meta) const {
5685 uint64_t fsize = 0;
5686 Status status = fs_->GetFileSize(fpath, IOOptions(), &fsize, nullptr);
5687 if (status.ok()) {
5688 if (fsize != meta.fd.GetFileSize()) {
5689 status = Status::Corruption("File size mismatch: " + fpath);
5690 }
5691 }
5692 return status;
5693 }
5694
ReactiveVersionSet(const std::string & dbname,const ImmutableDBOptions * _db_options,const FileOptions & _file_options,Cache * table_cache,WriteBufferManager * write_buffer_manager,WriteController * write_controller,const std::shared_ptr<IOTracer> & io_tracer)5695 ReactiveVersionSet::ReactiveVersionSet(
5696 const std::string& dbname, const ImmutableDBOptions* _db_options,
5697 const FileOptions& _file_options, Cache* table_cache,
5698 WriteBufferManager* write_buffer_manager, WriteController* write_controller,
5699 const std::shared_ptr<IOTracer>& io_tracer)
5700 : VersionSet(dbname, _db_options, _file_options, table_cache,
5701 write_buffer_manager, write_controller,
5702 /*block_cache_tracer=*/nullptr, io_tracer) {}
5703
~ReactiveVersionSet()5704 ReactiveVersionSet::~ReactiveVersionSet() {}
5705
Recover(const std::vector<ColumnFamilyDescriptor> & column_families,std::unique_ptr<log::FragmentBufferedReader> * manifest_reader,std::unique_ptr<log::Reader::Reporter> * manifest_reporter,std::unique_ptr<Status> * manifest_reader_status)5706 Status ReactiveVersionSet::Recover(
5707 const std::vector<ColumnFamilyDescriptor>& column_families,
5708 std::unique_ptr<log::FragmentBufferedReader>* manifest_reader,
5709 std::unique_ptr<log::Reader::Reporter>* manifest_reporter,
5710 std::unique_ptr<Status>* manifest_reader_status) {
5711 assert(manifest_reader != nullptr);
5712 assert(manifest_reporter != nullptr);
5713 assert(manifest_reader_status != nullptr);
5714
5715 manifest_reader_status->reset(new Status());
5716 manifest_reporter->reset(new LogReporter());
5717 static_cast_with_check<LogReporter>(manifest_reporter->get())->status =
5718 manifest_reader_status->get();
5719 Status s = MaybeSwitchManifest(manifest_reporter->get(), manifest_reader);
5720 log::Reader* reader = manifest_reader->get();
5721 assert(reader);
5722
5723 manifest_tailer_.reset(new ManifestTailer(
5724 column_families, const_cast<ReactiveVersionSet*>(this), io_tracer_));
5725
5726 manifest_tailer_->Iterate(*reader, manifest_reader_status->get());
5727
5728 return manifest_tailer_->status();
5729 }
5730
ReadAndApply(InstrumentedMutex * mu,std::unique_ptr<log::FragmentBufferedReader> * manifest_reader,Status * manifest_read_status,std::unordered_set<ColumnFamilyData * > * cfds_changed)5731 Status ReactiveVersionSet::ReadAndApply(
5732 InstrumentedMutex* mu,
5733 std::unique_ptr<log::FragmentBufferedReader>* manifest_reader,
5734 Status* manifest_read_status,
5735 std::unordered_set<ColumnFamilyData*>* cfds_changed) {
5736 assert(manifest_reader != nullptr);
5737 assert(cfds_changed != nullptr);
5738 mu->AssertHeld();
5739
5740 Status s;
5741 log::Reader* reader = manifest_reader->get();
5742 assert(reader);
5743 s = MaybeSwitchManifest(reader->GetReporter(), manifest_reader);
5744 if (!s.ok()) {
5745 return s;
5746 }
5747 manifest_tailer_->Iterate(*(manifest_reader->get()), manifest_read_status);
5748 s = manifest_tailer_->status();
5749 if (s.ok()) {
5750 *cfds_changed = std::move(manifest_tailer_->GetUpdatedColumnFamilies());
5751 }
5752
5753 return s;
5754 }
5755
MaybeSwitchManifest(log::Reader::Reporter * reporter,std::unique_ptr<log::FragmentBufferedReader> * manifest_reader)5756 Status ReactiveVersionSet::MaybeSwitchManifest(
5757 log::Reader::Reporter* reporter,
5758 std::unique_ptr<log::FragmentBufferedReader>* manifest_reader) {
5759 assert(manifest_reader != nullptr);
5760 Status s;
5761 do {
5762 std::string manifest_path;
5763 s = GetCurrentManifestPath(dbname_, fs_.get(), &manifest_path,
5764 &manifest_file_number_);
5765 std::unique_ptr<FSSequentialFile> manifest_file;
5766 if (s.ok()) {
5767 if (nullptr == manifest_reader->get() ||
5768 manifest_reader->get()->file()->file_name() != manifest_path) {
5769 TEST_SYNC_POINT(
5770 "ReactiveVersionSet::MaybeSwitchManifest:"
5771 "AfterGetCurrentManifestPath:0");
5772 TEST_SYNC_POINT(
5773 "ReactiveVersionSet::MaybeSwitchManifest:"
5774 "AfterGetCurrentManifestPath:1");
5775 s = fs_->NewSequentialFile(manifest_path,
5776 fs_->OptimizeForManifestRead(file_options_),
5777 &manifest_file, nullptr);
5778 } else {
5779 // No need to switch manifest.
5780 break;
5781 }
5782 }
5783 std::unique_ptr<SequentialFileReader> manifest_file_reader;
5784 if (s.ok()) {
5785 manifest_file_reader.reset(new SequentialFileReader(
5786 std::move(manifest_file), manifest_path,
5787 db_options_->log_readahead_size, io_tracer_));
5788 manifest_reader->reset(new log::FragmentBufferedReader(
5789 nullptr, std::move(manifest_file_reader), reporter,
5790 true /* checksum */, 0 /* log_number */));
5791 ROCKS_LOG_INFO(db_options_->info_log, "Switched to new manifest: %s\n",
5792 manifest_path.c_str());
5793 if (manifest_tailer_) {
5794 manifest_tailer_->PrepareToReadNewManifest();
5795 }
5796 }
5797 } while (s.IsPathNotFound());
5798 return s;
5799 }
5800
5801 #ifndef NDEBUG
TEST_read_edits_in_atomic_group() const5802 uint64_t ReactiveVersionSet::TEST_read_edits_in_atomic_group() const {
5803 assert(manifest_tailer_);
5804 return manifest_tailer_->GetReadBuffer().TEST_read_edits_in_atomic_group();
5805 }
5806 #endif // !NDEBUG
5807
replay_buffer()5808 std::vector<VersionEdit>& ReactiveVersionSet::replay_buffer() {
5809 assert(manifest_tailer_);
5810 return manifest_tailer_->GetReadBuffer().replay_buffer();
5811 }
5812
5813 } // namespace ROCKSDB_NAMESPACE
5814