1 //
2 //=======================================================================
3 // Copyright 2009 Trustees of Indiana University
4 // Authors: Jeremiah J. Willcock, Andrew Lumsdaine
5 //
6 // Distributed under the Boost Software License, Version 1.0. (See
7 // accompanying file LICENSE_1_0.txt or copy at
8 // http://www.boost.org/LICENSE_1_0.txt)
9 //=======================================================================
10 //
11 #ifndef BOOST_D_ARY_HEAP_HPP
12 #define BOOST_D_ARY_HEAP_HPP
13 
14 #include <vector>
15 #include <cstddef>
16 #include <algorithm>
17 #include <utility>
18 #include <boost/assert.hpp>
19 #include <boost/static_assert.hpp>
20 #include <boost/shared_array.hpp>
21 #include <boost/property_map/property_map.hpp>
22 
23 // WARNING: it is not safe to copy a d_ary_heap_indirect and then modify one of
24 // the copies.  The class is required to be copyable so it can be passed around
25 // (without move support from C++11), but it deep-copies the heap contents yet
26 // shallow-copies the index_in_heap_map.
27 
28 namespace boost {
29 
30   // Swap two elements in a property map without assuming they model
31   // LvaluePropertyMap -- currently not used
32   template <typename PropMap>
property_map_swap(PropMap prop_map,const typename boost::property_traits<PropMap>::key_type & ka,const typename boost::property_traits<PropMap>::key_type & kb)33   inline void property_map_swap(
34          PropMap prop_map,
35          const typename boost::property_traits<PropMap>::key_type& ka,
36          const typename boost::property_traits<PropMap>::key_type& kb) {
37     typename boost::property_traits<PropMap>::value_type va = get(prop_map, ka);
38     put(prop_map, ka, get(prop_map, kb));
39     put(prop_map, kb, va);
40   }
41 
42   namespace detail {
43     template <typename Value>
44     class fixed_max_size_vector {
45       boost::shared_array<Value> m_data;
46       std::size_t m_size;
47 
48       public:
49       typedef std::size_t size_type;
fixed_max_size_vector(std::size_t max_size)50       fixed_max_size_vector(std::size_t max_size)
51         : m_data(new Value[max_size]), m_size(0) {}
size() const52       std::size_t size() const {return m_size;}
empty() const53       bool empty() const {return m_size == 0;}
operator [](std::size_t i)54       Value& operator[](std::size_t i) {return m_data[i];}
operator [](std::size_t i) const55       const Value& operator[](std::size_t i) const {return m_data[i];}
push_back(Value v)56       void push_back(Value v) {m_data[m_size++] = v;}
pop_back()57       void pop_back() {--m_size;}
back()58       Value& back() {return m_data[m_size - 1];}
back() const59       const Value& back() const {return m_data[m_size - 1];}
60     };
61   }
62 
63   // D-ary heap using an indirect compare operator (use identity_property_map
64   // as DistanceMap to get a direct compare operator).  This heap appears to be
65   // commonly used for Dijkstra's algorithm for its good practical performance
66   // on some platforms; asymptotically, it has an O(lg N) decrease-key
67   // operation while that can be done in constant time on a relaxed heap.  The
68   // implementation is mostly based on the binary heap page on Wikipedia and
69   // online sources that state that the operations are the same for d-ary
70   // heaps.  This code is not based on the old Boost d-ary heap code.
71   //
72   // - d_ary_heap_indirect is a model of UpdatableQueue as is needed for
73   //   dijkstra_shortest_paths.
74   //
75   // - Value must model Assignable.
76   // - Arity must be at least 2 (optimal value appears to be 4, both in my and
77   //   third-party experiments).
78   // - IndexInHeapMap must be a ReadWritePropertyMap from Value to
79   //   Container::size_type (to store the index of each stored value within the
80   //   heap for decrease-key aka update).
81   // - DistanceMap must be a ReadablePropertyMap from Value to something
82   //   (typedef'ed as distance_type).
83   // - Compare must be a BinaryPredicate used as a less-than operator on
84   //   distance_type.
85   // - Container must be a random-access, contiguous container (in practice,
86   //   the operations used probably require that it is std::vector<Value>).
87   //
88   template <typename Value,
89             std::size_t Arity,
90             typename IndexInHeapPropertyMap,
91             typename DistanceMap,
92             typename Compare = std::less<Value>,
93             typename Container = std::vector<Value> >
94   class d_ary_heap_indirect {
95     BOOST_STATIC_ASSERT (Arity >= 2);
96 
97     public:
98     typedef typename Container::size_type size_type;
99     typedef Value value_type;
100     typedef typename boost::property_traits<DistanceMap>::value_type key_type;
101     typedef DistanceMap key_map;
102 
d_ary_heap_indirect(DistanceMap distance,IndexInHeapPropertyMap index_in_heap,const Compare & compare=Compare (),const Container & data=Container ())103     d_ary_heap_indirect(DistanceMap distance,
104                         IndexInHeapPropertyMap index_in_heap,
105                         const Compare& compare = Compare(),
106                         const Container& data = Container())
107       : compare(compare), data(data), distance(distance),
108         index_in_heap(index_in_heap) {}
109     /* Implicit copy constructor */
110     /* Implicit assignment operator */
111 
size() const112     size_type size() const {
113       return data.size();
114     }
115 
empty() const116     bool empty() const {
117       return data.empty();
118     }
119 
push(const Value & v)120     void push(const Value& v) {
121       size_type index = data.size();
122       data.push_back(v);
123       put(index_in_heap, v, index);
124       preserve_heap_property_up(index);
125       verify_heap();
126     }
127 
top()128     Value& top() {
129       BOOST_ASSERT (!this->empty());
130       return data[0];
131     }
132 
top() const133     const Value& top() const {
134       BOOST_ASSERT (!this->empty());
135       return data[0];
136     }
137 
pop()138     void pop() {
139       BOOST_ASSERT (!this->empty());
140       put(index_in_heap, data[0], (size_type)(-1));
141       if (data.size() != 1) {
142         data[0] = data.back();
143         put(index_in_heap, data[0], (size_type)(0));
144         data.pop_back();
145         preserve_heap_property_down();
146         verify_heap();
147       } else {
148         data.pop_back();
149       }
150     }
151 
152     // This function assumes the key has been updated (using an external write
153     // to the distance map or such)
154     // See http://coding.derkeiler.com/Archive/General/comp.theory/2007-05/msg00043.html
update(const Value & v)155     void update(const Value& v) { /* decrease-key */
156       size_type index = get(index_in_heap, v);
157       preserve_heap_property_up(index);
158       verify_heap();
159     }
160 
contains(const Value & v) const161     bool contains(const Value& v) const {
162       size_type index = get(index_in_heap, v);
163       return (index != (size_type)(-1));
164     }
165 
push_or_update(const Value & v)166     void push_or_update(const Value& v) { /* insert if not present, else update */
167       size_type index = get(index_in_heap, v);
168       if (index == (size_type)(-1)) {
169         index = data.size();
170         data.push_back(v);
171         put(index_in_heap, v, index);
172       }
173       preserve_heap_property_up(index);
174       verify_heap();
175     }
176 
keys() const177     DistanceMap keys() const {
178       return distance;
179     }
180 
181     private:
182     Compare compare;
183     Container data;
184     DistanceMap distance;
185     IndexInHeapPropertyMap index_in_heap;
186 
187     // The distances being compared using compare and that are stored in the
188     // distance map
189     typedef typename boost::property_traits<DistanceMap>::value_type distance_type;
190 
191     // Get the parent of a given node in the heap
parent(size_type index)192     static size_type parent(size_type index) {
193       return (index - 1) / Arity;
194     }
195 
196     // Get the child_idx'th child of a given node; 0 <= child_idx < Arity
child(size_type index,std::size_t child_idx)197     static size_type child(size_type index, std::size_t child_idx) {
198       return index * Arity + child_idx + 1;
199     }
200 
201     // Swap two elements in the heap by index, updating index_in_heap
swap_heap_elements(size_type index_a,size_type index_b)202     void swap_heap_elements(size_type index_a, size_type index_b) {
203       using std::swap;
204       Value value_a = data[index_a];
205       Value value_b = data[index_b];
206       data[index_a] = value_b;
207       data[index_b] = value_a;
208       put(index_in_heap, value_a, index_b);
209       put(index_in_heap, value_b, index_a);
210     }
211 
212     // Emulate the indirect_cmp that is now folded into this heap class
compare_indirect(const Value & a,const Value & b) const213     bool compare_indirect(const Value& a, const Value& b) const {
214       return compare(get(distance, a), get(distance, b));
215     }
216 
217     // Verify that the array forms a heap; commented out by default
verify_heap() const218     void verify_heap() const {
219       // This is a very expensive test so it should be disabled even when
220       // NDEBUG is not defined
221 #if 0
222       for (size_t i = 1; i < data.size(); ++i) {
223         if (compare_indirect(data[i], data[parent(i)])) {
224           BOOST_ASSERT (!"Element is smaller than its parent");
225         }
226       }
227 #endif
228     }
229 
230     // Starting at a node, move up the tree swapping elements to preserve the
231     // heap property
preserve_heap_property_up(size_type index)232     void preserve_heap_property_up(size_type index) {
233       size_type orig_index = index;
234       size_type num_levels_moved = 0;
235       // The first loop just saves swaps that need to be done in order to avoid
236       // aliasing issues in its search; there is a second loop that does the
237       // necessary swap operations
238       if (index == 0) return; // Do nothing on root
239       Value currently_being_moved = data[index];
240       distance_type currently_being_moved_dist =
241         get(distance, currently_being_moved);
242       for (;;) {
243         if (index == 0) break; // Stop at root
244         size_type parent_index = parent(index);
245         Value parent_value = data[parent_index];
246         if (compare(currently_being_moved_dist, get(distance, parent_value))) {
247           ++num_levels_moved;
248           index = parent_index;
249           continue;
250         } else {
251           break; // Heap property satisfied
252         }
253       }
254       // Actually do the moves -- move num_levels_moved elements down in the
255       // tree, then put currently_being_moved at the top
256       index = orig_index;
257       for (size_type i = 0; i < num_levels_moved; ++i) {
258         size_type parent_index = parent(index);
259         Value parent_value = data[parent_index];
260         put(index_in_heap, parent_value, index);
261         data[index] = parent_value;
262         index = parent_index;
263       }
264       data[index] = currently_being_moved;
265       put(index_in_heap, currently_being_moved, index);
266       verify_heap();
267     }
268 
269     // From the root, swap elements (each one with its smallest child) if there
270     // are any parent-child pairs that violate the heap property
preserve_heap_property_down()271     void preserve_heap_property_down() {
272       if (data.empty()) return;
273       size_type index = 0;
274       Value currently_being_moved = data[0];
275       distance_type currently_being_moved_dist =
276         get(distance, currently_being_moved);
277       size_type heap_size = data.size();
278       Value* data_ptr = &data[0];
279       for (;;) {
280         size_type first_child_index = child(index, 0);
281         if (first_child_index >= heap_size) break; /* No children */
282         Value* child_base_ptr = data_ptr + first_child_index;
283         size_type smallest_child_index = 0;
284         distance_type smallest_child_dist = get(distance, child_base_ptr[smallest_child_index]);
285         if (first_child_index + Arity <= heap_size) {
286           // Special case for a statically known loop count (common case)
287           for (size_t i = 1; i < Arity; ++i) {
288             Value i_value = child_base_ptr[i];
289             distance_type i_dist = get(distance, i_value);
290             if (compare(i_dist, smallest_child_dist)) {
291               smallest_child_index = i;
292               smallest_child_dist = i_dist;
293             }
294           }
295         } else {
296           for (size_t i = 1; i < heap_size - first_child_index; ++i) {
297             distance_type i_dist = get(distance, child_base_ptr[i]);
298             if (compare(i_dist, smallest_child_dist)) {
299               smallest_child_index = i;
300               smallest_child_dist = i_dist;
301             }
302           }
303         }
304         if (compare(smallest_child_dist, currently_being_moved_dist)) {
305           swap_heap_elements(smallest_child_index + first_child_index, index);
306           index = smallest_child_index + first_child_index;
307           continue;
308         } else {
309           break; // Heap property satisfied
310         }
311       }
312       verify_heap();
313     }
314 
315   };
316 
317 } // namespace boost
318 
319 #endif // BOOST_D_ARY_HEAP_HPP
320