1 /*	$OpenBSD: rijndael.c,v 1.6 2000/12/09 18:51:34 markus Exp $ */
2 
3 /* contrib/pgcrypto/rijndael.c */
4 
5 /* This is an independent implementation of the encryption algorithm:	*/
6 /*																		*/
7 /*		   RIJNDAEL by Joan Daemen and Vincent Rijmen					*/
8 /*																		*/
9 /* which is a candidate algorithm in the Advanced Encryption Standard	*/
10 /* programme of the US National Institute of Standards and Technology.  */
11 /*																		*/
12 /* Copyright in this implementation is held by Dr B R Gladman but I		*/
13 /* hereby give permission for its free direct or derivative use subject */
14 /* to acknowledgment of its origin and compliance with any conditions	*/
15 /* that the originators of the algorithm place on its exploitation.     */
16 /*																		*/
17 /* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999		*/
18 
19 /* Timing data for Rijndael (rijndael.c)
20 
21 Algorithm: rijndael (rijndael.c)
22 
23 128 bit key:
24 Key Setup:	  305/1389 cycles (encrypt/decrypt)
25 Encrypt:	   374 cycles =    68.4 mbits/sec
26 Decrypt:	   352 cycles =    72.7 mbits/sec
27 Mean:		   363 cycles =    70.5 mbits/sec
28 
29 192 bit key:
30 Key Setup:	  277/1595 cycles (encrypt/decrypt)
31 Encrypt:	   439 cycles =    58.3 mbits/sec
32 Decrypt:	   425 cycles =    60.2 mbits/sec
33 Mean:		   432 cycles =    59.3 mbits/sec
34 
35 256 bit key:
36 Key Setup:	  374/1960 cycles (encrypt/decrypt)
37 Encrypt:	   502 cycles =    51.0 mbits/sec
38 Decrypt:	   498 cycles =    51.4 mbits/sec
39 Mean:		   500 cycles =    51.2 mbits/sec
40 
41 */
42 
43 #include "postgres.h"
44 
45 #include <sys/param.h>
46 
47 #include "px.h"
48 #include "rijndael.h"
49 
50 #define PRE_CALC_TABLES
51 #define LARGE_TABLES
52 
53 static void gen_tabs(void);
54 
55 /* 3. Basic macros for speeding up generic operations				*/
56 
57 /* Circular rotate of 32 bit values									*/
58 
59 #define rotr(x,n)	(((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
60 #define rotl(x,n)	(((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))
61 
62 /* Invert byte order in a 32 bit variable							*/
63 
64 #define bswap(x)	((rotl((x), 8) & 0x00ff00ff) | (rotr((x), 8) & 0xff00ff00))
65 
66 /* Extract byte from a 32 bit quantity (little endian notation)		*/
67 
68 #define byte(x,n)	((u1byte)((x) >> (8 * (n))))
69 
70 #ifdef WORDS_BIGENDIAN
71 #define io_swap(x)	bswap(x)
72 #else
73 #define io_swap(x)	(x)
74 #endif
75 
76 #ifdef PRINT_TABS
77 #undef PRE_CALC_TABLES
78 #endif
79 
80 #ifdef PRE_CALC_TABLES
81 
82 #include "rijndael.tbl"
83 #define tab_gen		1
84 #else							/* !PRE_CALC_TABLES */
85 
86 static u1byte pow_tab[256];
87 static u1byte log_tab[256];
88 static u1byte sbx_tab[256];
89 static u1byte isb_tab[256];
90 static u4byte rco_tab[10];
91 static u4byte ft_tab[4][256];
92 static u4byte it_tab[4][256];
93 
94 #ifdef	LARGE_TABLES
95 static u4byte fl_tab[4][256];
96 static u4byte il_tab[4][256];
97 #endif
98 
99 static u4byte tab_gen = 0;
100 #endif							/* !PRE_CALC_TABLES */
101 
102 #define ff_mult(a,b)	((a) && (b) ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)
103 
104 #define f_rn(bo, bi, n, k)								\
105 	(bo)[n] =  ft_tab[0][byte((bi)[n],0)] ^				\
106 			 ft_tab[1][byte((bi)[((n) + 1) & 3],1)] ^	\
107 			 ft_tab[2][byte((bi)[((n) + 2) & 3],2)] ^	\
108 			 ft_tab[3][byte((bi)[((n) + 3) & 3],3)] ^ *((k) + (n))
109 
110 #define i_rn(bo, bi, n, k)							\
111 	(bo)[n] =  it_tab[0][byte((bi)[n],0)] ^				\
112 			 it_tab[1][byte((bi)[((n) + 3) & 3],1)] ^	\
113 			 it_tab[2][byte((bi)[((n) + 2) & 3],2)] ^	\
114 			 it_tab[3][byte((bi)[((n) + 1) & 3],3)] ^ *((k) + (n))
115 
116 #ifdef LARGE_TABLES
117 
118 #define ls_box(x)				 \
119 	( fl_tab[0][byte(x, 0)] ^	 \
120 	  fl_tab[1][byte(x, 1)] ^	 \
121 	  fl_tab[2][byte(x, 2)] ^	 \
122 	  fl_tab[3][byte(x, 3)] )
123 
124 #define f_rl(bo, bi, n, k)								\
125 	(bo)[n] =  fl_tab[0][byte((bi)[n],0)] ^				\
126 			 fl_tab[1][byte((bi)[((n) + 1) & 3],1)] ^	\
127 			 fl_tab[2][byte((bi)[((n) + 2) & 3],2)] ^	\
128 			 fl_tab[3][byte((bi)[((n) + 3) & 3],3)] ^ *((k) + (n))
129 
130 #define i_rl(bo, bi, n, k)								\
131 	(bo)[n] =  il_tab[0][byte((bi)[n],0)] ^				\
132 			 il_tab[1][byte((bi)[((n) + 3) & 3],1)] ^	\
133 			 il_tab[2][byte((bi)[((n) + 2) & 3],2)] ^	\
134 			 il_tab[3][byte((bi)[((n) + 1) & 3],3)] ^ *((k) + (n))
135 #else
136 
137 #define ls_box(x)							 \
138 	((u4byte)sbx_tab[byte(x, 0)] <<  0) ^	 \
139 	((u4byte)sbx_tab[byte(x, 1)] <<  8) ^	 \
140 	((u4byte)sbx_tab[byte(x, 2)] << 16) ^	 \
141 	((u4byte)sbx_tab[byte(x, 3)] << 24)
142 
143 #define f_rl(bo, bi, n, k)											\
144 	(bo)[n] = (u4byte)sbx_tab[byte((bi)[n],0)] ^					\
145 		rotl(((u4byte)sbx_tab[byte((bi)[((n) + 1) & 3],1)]),  8) ^	\
146 		rotl(((u4byte)sbx_tab[byte((bi)[((n) + 2) & 3],2)]), 16) ^	\
147 		rotl(((u4byte)sbx_tab[byte((bi)[((n) + 3) & 3],3)]), 24) ^ *((k) + (n))
148 
149 #define i_rl(bo, bi, n, k)											\
150 	(bo)[n] = (u4byte)isb_tab[byte((bi)[n],0)] ^					\
151 		rotl(((u4byte)isb_tab[byte((bi)[((n) + 3) & 3],1)]),  8) ^	\
152 		rotl(((u4byte)isb_tab[byte((bi)[((n) + 2) & 3],2)]), 16) ^	\
153 		rotl(((u4byte)isb_tab[byte((bi)[((n) + 1) & 3],3)]), 24) ^ *((k) + (n))
154 #endif
155 
156 static void
gen_tabs(void)157 gen_tabs(void)
158 {
159 #ifndef PRE_CALC_TABLES
160 	u4byte		i,
161 				t;
162 	u1byte		p,
163 				q;
164 
165 	/* log and power tables for GF(2**8) finite field with	*/
166 	/* 0x11b as modular polynomial - the simplest prmitive	*/
167 	/* root is 0x11, used here to generate the tables		*/
168 
169 	for (i = 0, p = 1; i < 256; ++i)
170 	{
171 		pow_tab[i] = (u1byte) p;
172 		log_tab[p] = (u1byte) i;
173 
174 		p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0);
175 	}
176 
177 	log_tab[1] = 0;
178 	p = 1;
179 
180 	for (i = 0; i < 10; ++i)
181 	{
182 		rco_tab[i] = p;
183 
184 		p = (p << 1) ^ (p & 0x80 ? 0x1b : 0);
185 	}
186 
187 	/* note that the affine byte transformation matrix in	*/
188 	/* rijndael specification is in big endian format with	*/
189 	/* bit 0 as the most significant bit. In the remainder	*/
190 	/* of the specification the bits are numbered from the	*/
191 	/* least significant end of a byte.                     */
192 
193 	for (i = 0; i < 256; ++i)
194 	{
195 		p = (i ? pow_tab[255 - log_tab[i]] : 0);
196 		q = p;
197 		q = (q >> 7) | (q << 1);
198 		p ^= q;
199 		q = (q >> 7) | (q << 1);
200 		p ^= q;
201 		q = (q >> 7) | (q << 1);
202 		p ^= q;
203 		q = (q >> 7) | (q << 1);
204 		p ^= q ^ 0x63;
205 		sbx_tab[i] = (u1byte) p;
206 		isb_tab[p] = (u1byte) i;
207 	}
208 
209 	for (i = 0; i < 256; ++i)
210 	{
211 		p = sbx_tab[i];
212 
213 #ifdef	LARGE_TABLES
214 
215 		t = p;
216 		fl_tab[0][i] = t;
217 		fl_tab[1][i] = rotl(t, 8);
218 		fl_tab[2][i] = rotl(t, 16);
219 		fl_tab[3][i] = rotl(t, 24);
220 #endif
221 		t = ((u4byte) ff_mult(2, p)) |
222 			((u4byte) p << 8) |
223 			((u4byte) p << 16) |
224 			((u4byte) ff_mult(3, p) << 24);
225 
226 		ft_tab[0][i] = t;
227 		ft_tab[1][i] = rotl(t, 8);
228 		ft_tab[2][i] = rotl(t, 16);
229 		ft_tab[3][i] = rotl(t, 24);
230 
231 		p = isb_tab[i];
232 
233 #ifdef	LARGE_TABLES
234 
235 		t = p;
236 		il_tab[0][i] = t;
237 		il_tab[1][i] = rotl(t, 8);
238 		il_tab[2][i] = rotl(t, 16);
239 		il_tab[3][i] = rotl(t, 24);
240 #endif
241 		t = ((u4byte) ff_mult(14, p)) |
242 			((u4byte) ff_mult(9, p) << 8) |
243 			((u4byte) ff_mult(13, p) << 16) |
244 			((u4byte) ff_mult(11, p) << 24);
245 
246 		it_tab[0][i] = t;
247 		it_tab[1][i] = rotl(t, 8);
248 		it_tab[2][i] = rotl(t, 16);
249 		it_tab[3][i] = rotl(t, 24);
250 	}
251 
252 	tab_gen = 1;
253 #endif							/* !PRE_CALC_TABLES */
254 }
255 
256 
257 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
258 
259 #define imix_col(y,x)		\
260 do { \
261 	u	= star_x(x);		\
262 	v	= star_x(u);		\
263 	w	= star_x(v);		\
264 	t	= w ^ (x);			\
265    (y)	= u ^ v ^ w;		\
266    (y) ^= rotr(u ^ t,  8) ^ \
267 		  rotr(v ^ t, 16) ^ \
268 		  rotr(t,24);		\
269 } while (0)
270 
271 /* initialise the key schedule from the user supplied key	*/
272 
273 #define loop4(i)									\
274 do {   t = ls_box(rotr(t,  8)) ^ rco_tab[i];		   \
275 	t ^= e_key[4 * i];	   e_key[4 * i + 4] = t;	\
276 	t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t;	\
277 	t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t;	\
278 	t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t;	\
279 } while (0)
280 
281 #define loop6(i)									\
282 do {   t = ls_box(rotr(t,  8)) ^ rco_tab[i];		   \
283 	t ^= e_key[6 * (i)];	   e_key[6 * (i) + 6] = t;	\
284 	t ^= e_key[6 * (i) + 1]; e_key[6 * (i) + 7] = t;	\
285 	t ^= e_key[6 * (i) + 2]; e_key[6 * (i) + 8] = t;	\
286 	t ^= e_key[6 * (i) + 3]; e_key[6 * (i) + 9] = t;	\
287 	t ^= e_key[6 * (i) + 4]; e_key[6 * (i) + 10] = t;	\
288 	t ^= e_key[6 * (i) + 5]; e_key[6 * (i) + 11] = t;	\
289 } while (0)
290 
291 #define loop8(i)									\
292 do {   t = ls_box(rotr(t,  8)) ^ rco_tab[i];		   \
293 	t ^= e_key[8 * (i)];	 e_key[8 * (i) + 8] = t;	\
294 	t ^= e_key[8 * (i) + 1]; e_key[8 * (i) + 9] = t;	\
295 	t ^= e_key[8 * (i) + 2]; e_key[8 * (i) + 10] = t;	\
296 	t ^= e_key[8 * (i) + 3]; e_key[8 * (i) + 11] = t;	\
297 	t  = e_key[8 * (i) + 4] ^ ls_box(t);				\
298 	e_key[8 * (i) + 12] = t;							\
299 	t ^= e_key[8 * (i) + 5]; e_key[8 * (i) + 13] = t;	\
300 	t ^= e_key[8 * (i) + 6]; e_key[8 * (i) + 14] = t;	\
301 	t ^= e_key[8 * (i) + 7]; e_key[8 * (i) + 15] = t;	\
302 } while (0)
303 
304 rijndael_ctx *
rijndael_set_key(rijndael_ctx * ctx,const u4byte * in_key,const u4byte key_len,int encrypt)305 rijndael_set_key(rijndael_ctx *ctx, const u4byte *in_key, const u4byte key_len,
306 				 int encrypt)
307 {
308 	u4byte		i,
309 				t,
310 				u,
311 				v,
312 				w;
313 	u4byte	   *e_key = ctx->e_key;
314 	u4byte	   *d_key = ctx->d_key;
315 
316 	ctx->decrypt = !encrypt;
317 
318 	if (!tab_gen)
319 		gen_tabs();
320 
321 	ctx->k_len = (key_len + 31) / 32;
322 
323 	e_key[0] = io_swap(in_key[0]);
324 	e_key[1] = io_swap(in_key[1]);
325 	e_key[2] = io_swap(in_key[2]);
326 	e_key[3] = io_swap(in_key[3]);
327 
328 	switch (ctx->k_len)
329 	{
330 		case 4:
331 			t = e_key[3];
332 			for (i = 0; i < 10; ++i)
333 				loop4(i);
334 			break;
335 
336 		case 6:
337 			e_key[4] = io_swap(in_key[4]);
338 			t = e_key[5] = io_swap(in_key[5]);
339 			for (i = 0; i < 8; ++i)
340 				loop6(i);
341 			break;
342 
343 		case 8:
344 			e_key[4] = io_swap(in_key[4]);
345 			e_key[5] = io_swap(in_key[5]);
346 			e_key[6] = io_swap(in_key[6]);
347 			t = e_key[7] = io_swap(in_key[7]);
348 			for (i = 0; i < 7; ++i)
349 				loop8(i);
350 			break;
351 	}
352 
353 	if (!encrypt)
354 	{
355 		d_key[0] = e_key[0];
356 		d_key[1] = e_key[1];
357 		d_key[2] = e_key[2];
358 		d_key[3] = e_key[3];
359 
360 		for (i = 4; i < 4 * ctx->k_len + 24; ++i)
361 			imix_col(d_key[i], e_key[i]);
362 	}
363 
364 	return ctx;
365 }
366 
367 /* encrypt a block of text	*/
368 
369 #define f_nround(bo, bi, k) \
370 do { \
371 	f_rn(bo, bi, 0, k);		\
372 	f_rn(bo, bi, 1, k);		\
373 	f_rn(bo, bi, 2, k);		\
374 	f_rn(bo, bi, 3, k);		\
375 	k += 4;					\
376 } while (0)
377 
378 #define f_lround(bo, bi, k) \
379 do { \
380 	f_rl(bo, bi, 0, k);		\
381 	f_rl(bo, bi, 1, k);		\
382 	f_rl(bo, bi, 2, k);		\
383 	f_rl(bo, bi, 3, k);		\
384 } while (0)
385 
386 void
rijndael_encrypt(rijndael_ctx * ctx,const u4byte * in_blk,u4byte * out_blk)387 rijndael_encrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
388 {
389 	u4byte		k_len = ctx->k_len;
390 	u4byte	   *e_key = ctx->e_key;
391 	u4byte		b0[4],
392 				b1[4],
393 			   *kp;
394 
395 	b0[0] = io_swap(in_blk[0]) ^ e_key[0];
396 	b0[1] = io_swap(in_blk[1]) ^ e_key[1];
397 	b0[2] = io_swap(in_blk[2]) ^ e_key[2];
398 	b0[3] = io_swap(in_blk[3]) ^ e_key[3];
399 
400 	kp = e_key + 4;
401 
402 	if (k_len > 6)
403 	{
404 		f_nround(b1, b0, kp);
405 		f_nround(b0, b1, kp);
406 	}
407 
408 	if (k_len > 4)
409 	{
410 		f_nround(b1, b0, kp);
411 		f_nround(b0, b1, kp);
412 	}
413 
414 	f_nround(b1, b0, kp);
415 	f_nround(b0, b1, kp);
416 	f_nround(b1, b0, kp);
417 	f_nround(b0, b1, kp);
418 	f_nround(b1, b0, kp);
419 	f_nround(b0, b1, kp);
420 	f_nround(b1, b0, kp);
421 	f_nround(b0, b1, kp);
422 	f_nround(b1, b0, kp);
423 	f_lround(b0, b1, kp);
424 
425 	out_blk[0] = io_swap(b0[0]);
426 	out_blk[1] = io_swap(b0[1]);
427 	out_blk[2] = io_swap(b0[2]);
428 	out_blk[3] = io_swap(b0[3]);
429 }
430 
431 /* decrypt a block of text	*/
432 
433 #define i_nround(bo, bi, k) \
434 do { \
435 	i_rn(bo, bi, 0, k);		\
436 	i_rn(bo, bi, 1, k);		\
437 	i_rn(bo, bi, 2, k);		\
438 	i_rn(bo, bi, 3, k);		\
439 	k -= 4;					\
440 } while (0)
441 
442 #define i_lround(bo, bi, k) \
443 do { \
444 	i_rl(bo, bi, 0, k);		\
445 	i_rl(bo, bi, 1, k);		\
446 	i_rl(bo, bi, 2, k);		\
447 	i_rl(bo, bi, 3, k);		\
448 } while (0)
449 
450 void
rijndael_decrypt(rijndael_ctx * ctx,const u4byte * in_blk,u4byte * out_blk)451 rijndael_decrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
452 {
453 	u4byte		b0[4],
454 				b1[4],
455 			   *kp;
456 	u4byte		k_len = ctx->k_len;
457 	u4byte	   *e_key = ctx->e_key;
458 	u4byte	   *d_key = ctx->d_key;
459 
460 	b0[0] = io_swap(in_blk[0]) ^ e_key[4 * k_len + 24];
461 	b0[1] = io_swap(in_blk[1]) ^ e_key[4 * k_len + 25];
462 	b0[2] = io_swap(in_blk[2]) ^ e_key[4 * k_len + 26];
463 	b0[3] = io_swap(in_blk[3]) ^ e_key[4 * k_len + 27];
464 
465 	kp = d_key + 4 * (k_len + 5);
466 
467 	if (k_len > 6)
468 	{
469 		i_nround(b1, b0, kp);
470 		i_nround(b0, b1, kp);
471 	}
472 
473 	if (k_len > 4)
474 	{
475 		i_nround(b1, b0, kp);
476 		i_nround(b0, b1, kp);
477 	}
478 
479 	i_nround(b1, b0, kp);
480 	i_nround(b0, b1, kp);
481 	i_nround(b1, b0, kp);
482 	i_nround(b0, b1, kp);
483 	i_nround(b1, b0, kp);
484 	i_nround(b0, b1, kp);
485 	i_nround(b1, b0, kp);
486 	i_nround(b0, b1, kp);
487 	i_nround(b1, b0, kp);
488 	i_lround(b0, b1, kp);
489 
490 	out_blk[0] = io_swap(b0[0]);
491 	out_blk[1] = io_swap(b0[1]);
492 	out_blk[2] = io_swap(b0[2]);
493 	out_blk[3] = io_swap(b0[3]);
494 }
495 
496 /*
497  * conventional interface
498  *
499  * ATM it hopes all data is 4-byte aligned - which
500  * should be true for PX.  -marko
501  */
502 
503 void
aes_set_key(rijndael_ctx * ctx,const uint8 * key,unsigned keybits,int enc)504 aes_set_key(rijndael_ctx *ctx, const uint8 *key, unsigned keybits, int enc)
505 {
506 	uint32	   *k;
507 
508 	k = (uint32 *) key;
509 	rijndael_set_key(ctx, k, keybits, enc);
510 }
511 
512 void
aes_ecb_encrypt(rijndael_ctx * ctx,uint8 * data,unsigned len)513 aes_ecb_encrypt(rijndael_ctx *ctx, uint8 *data, unsigned len)
514 {
515 	unsigned	bs = 16;
516 	uint32	   *d;
517 
518 	while (len >= bs)
519 	{
520 		d = (uint32 *) data;
521 		rijndael_encrypt(ctx, d, d);
522 
523 		len -= bs;
524 		data += bs;
525 	}
526 }
527 
528 void
aes_ecb_decrypt(rijndael_ctx * ctx,uint8 * data,unsigned len)529 aes_ecb_decrypt(rijndael_ctx *ctx, uint8 *data, unsigned len)
530 {
531 	unsigned	bs = 16;
532 	uint32	   *d;
533 
534 	while (len >= bs)
535 	{
536 		d = (uint32 *) data;
537 		rijndael_decrypt(ctx, d, d);
538 
539 		len -= bs;
540 		data += bs;
541 	}
542 }
543 
544 void
aes_cbc_encrypt(rijndael_ctx * ctx,uint8 * iva,uint8 * data,unsigned len)545 aes_cbc_encrypt(rijndael_ctx *ctx, uint8 *iva, uint8 *data, unsigned len)
546 {
547 	uint32	   *iv = (uint32 *) iva;
548 	uint32	   *d = (uint32 *) data;
549 	unsigned	bs = 16;
550 
551 	while (len >= bs)
552 	{
553 		d[0] ^= iv[0];
554 		d[1] ^= iv[1];
555 		d[2] ^= iv[2];
556 		d[3] ^= iv[3];
557 
558 		rijndael_encrypt(ctx, d, d);
559 
560 		iv = d;
561 		d += bs / 4;
562 		len -= bs;
563 	}
564 }
565 
566 void
aes_cbc_decrypt(rijndael_ctx * ctx,uint8 * iva,uint8 * data,unsigned len)567 aes_cbc_decrypt(rijndael_ctx *ctx, uint8 *iva, uint8 *data, unsigned len)
568 {
569 	uint32	   *d = (uint32 *) data;
570 	unsigned	bs = 16;
571 	uint32		buf[4],
572 				iv[4];
573 
574 	memcpy(iv, iva, bs);
575 	while (len >= bs)
576 	{
577 		buf[0] = d[0];
578 		buf[1] = d[1];
579 		buf[2] = d[2];
580 		buf[3] = d[3];
581 
582 		rijndael_decrypt(ctx, buf, d);
583 
584 		d[0] ^= iv[0];
585 		d[1] ^= iv[1];
586 		d[2] ^= iv[2];
587 		d[3] ^= iv[3];
588 
589 		iv[0] = buf[0];
590 		iv[1] = buf[1];
591 		iv[2] = buf[2];
592 		iv[3] = buf[3];
593 		d += 4;
594 		len -= bs;
595 	}
596 }
597 
598 /*
599  * pre-calculate tables.
600  *
601  * On i386 lifts 17k from .bss to .rodata
602  * and avoids 1k code and setup time.
603  *	  -marko
604  */
605 #ifdef PRINT_TABS
606 
607 static void
show256u8(char * name,uint8 * data)608 show256u8(char *name, uint8 *data)
609 {
610 	int			i;
611 
612 	printf("static const u1byte  %s[256] = {\n  ", name);
613 	for (i = 0; i < 256;)
614 	{
615 		printf("%u", pow_tab[i++]);
616 		if (i < 256)
617 			printf(i % 16 ? ", " : ",\n  ");
618 	}
619 	printf("\n};\n\n");
620 }
621 
622 
623 static void
show4x256u32(char * name,uint32 data[4][256])624 show4x256u32(char *name, uint32 data[4][256])
625 {
626 	int			i,
627 				j;
628 
629 	printf("static const u4byte  %s[4][256] = {\n{\n  ", name);
630 	for (i = 0; i < 4; i++)
631 	{
632 		for (j = 0; j < 256;)
633 		{
634 			printf("0x%08x", data[i][j]);
635 			j++;
636 			if (j < 256)
637 				printf(j % 4 ? ", " : ",\n  ");
638 		}
639 		printf(i < 3 ? "\n}, {\n  " : "\n}\n");
640 	}
641 	printf("};\n\n");
642 }
643 
644 int
main()645 main()
646 {
647 	int			i;
648 	char	   *hdr = "/* Generated by rijndael.c */\n\n";
649 
650 	gen_tabs();
651 
652 	printf(hdr);
653 	show256u8("pow_tab", pow_tab);
654 	show256u8("log_tab", log_tab);
655 	show256u8("sbx_tab", sbx_tab);
656 	show256u8("isb_tab", isb_tab);
657 
658 	show4x256u32("ft_tab", ft_tab);
659 	show4x256u32("it_tab", it_tab);
660 #ifdef LARGE_TABLES
661 	show4x256u32("fl_tab", fl_tab);
662 	show4x256u32("il_tab", il_tab);
663 #endif
664 	printf("static const u4byte rco_tab[10] = {\n  ");
665 	for (i = 0; i < 10; i++)
666 	{
667 		printf("0x%08x", rco_tab[i]);
668 		if (i < 9)
669 			printf(", ");
670 		if (i == 4)
671 			printf("\n  ");
672 	}
673 	printf("\n};\n\n");
674 	return 0;
675 }
676 
677 #endif
678