1 /*-------------------------------------------------------------------------
2  *
3  * primnodes.h
4  *	  Definitions for "primitive" node types, those that are used in more
5  *	  than one of the parse/plan/execute stages of the query pipeline.
6  *	  Currently, these are mostly nodes for executable expressions
7  *	  and join trees.
8  *
9  *
10  * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
11  * Portions Copyright (c) 1994, Regents of the University of California
12  *
13  * src/include/nodes/primnodes.h
14  *
15  *-------------------------------------------------------------------------
16  */
17 #ifndef PRIMNODES_H
18 #define PRIMNODES_H
19 
20 #include "access/attnum.h"
21 #include "nodes/bitmapset.h"
22 #include "nodes/pg_list.h"
23 
24 
25 /* ----------------------------------------------------------------
26  *						node definitions
27  * ----------------------------------------------------------------
28  */
29 
30 /*
31  * Alias -
32  *	  specifies an alias for a range variable; the alias might also
33  *	  specify renaming of columns within the table.
34  *
35  * Note: colnames is a list of Value nodes (always strings).  In Alias structs
36  * associated with RTEs, there may be entries corresponding to dropped
37  * columns; these are normally empty strings ("").  See parsenodes.h for info.
38  */
39 typedef struct Alias
40 {
41 	NodeTag		type;
42 	char	   *aliasname;		/* aliased rel name (never qualified) */
43 	List	   *colnames;		/* optional list of column aliases */
44 } Alias;
45 
46 /* What to do at commit time for temporary relations */
47 typedef enum OnCommitAction
48 {
49 	ONCOMMIT_NOOP,				/* No ON COMMIT clause (do nothing) */
50 	ONCOMMIT_PRESERVE_ROWS,		/* ON COMMIT PRESERVE ROWS (do nothing) */
51 	ONCOMMIT_DELETE_ROWS,		/* ON COMMIT DELETE ROWS */
52 	ONCOMMIT_DROP				/* ON COMMIT DROP */
53 } OnCommitAction;
54 
55 /*
56  * RangeVar - range variable, used in FROM clauses
57  *
58  * Also used to represent table names in utility statements; there, the alias
59  * field is not used, and inh tells whether to apply the operation
60  * recursively to child tables.  In some contexts it is also useful to carry
61  * a TEMP table indication here.
62  */
63 typedef struct RangeVar
64 {
65 	NodeTag		type;
66 	char	   *catalogname;	/* the catalog (database) name, or NULL */
67 	char	   *schemaname;		/* the schema name, or NULL */
68 	char	   *relname;		/* the relation/sequence name */
69 	bool		inh;			/* expand rel by inheritance? recursively act
70 								 * on children? */
71 	char		relpersistence; /* see RELPERSISTENCE_* in pg_class.h */
72 	Alias	   *alias;			/* table alias & optional column aliases */
73 	int			location;		/* token location, or -1 if unknown */
74 } RangeVar;
75 
76 /*
77  * TableFunc - node for a table function, such as XMLTABLE.
78  *
79  * Entries in the ns_names list are either string Value nodes containing
80  * literal namespace names, or NULL pointers to represent DEFAULT.
81  */
82 typedef struct TableFunc
83 {
84 	NodeTag		type;
85 	List	   *ns_uris;		/* list of namespace URI expressions */
86 	List	   *ns_names;		/* list of namespace names or NULL */
87 	Node	   *docexpr;		/* input document expression */
88 	Node	   *rowexpr;		/* row filter expression */
89 	List	   *colnames;		/* column names (list of String) */
90 	List	   *coltypes;		/* OID list of column type OIDs */
91 	List	   *coltypmods;		/* integer list of column typmods */
92 	List	   *colcollations;	/* OID list of column collation OIDs */
93 	List	   *colexprs;		/* list of column filter expressions */
94 	List	   *coldefexprs;	/* list of column default expressions */
95 	Bitmapset  *notnulls;		/* nullability flag for each output column */
96 	int			ordinalitycol;	/* counts from 0; -1 if none specified */
97 	int			location;		/* token location, or -1 if unknown */
98 } TableFunc;
99 
100 /*
101  * IntoClause - target information for SELECT INTO, CREATE TABLE AS, and
102  * CREATE MATERIALIZED VIEW
103  *
104  * For CREATE MATERIALIZED VIEW, viewQuery is the parsed-but-not-rewritten
105  * SELECT Query for the view; otherwise it's NULL.  (Although it's actually
106  * Query*, we declare it as Node* to avoid a forward reference.)
107  */
108 typedef struct IntoClause
109 {
110 	NodeTag		type;
111 
112 	RangeVar   *rel;			/* target relation name */
113 	List	   *colNames;		/* column names to assign, or NIL */
114 	List	   *options;		/* options from WITH clause */
115 	OnCommitAction onCommit;	/* what do we do at COMMIT? */
116 	char	   *tableSpaceName; /* table space to use, or NULL */
117 	Node	   *viewQuery;		/* materialized view's SELECT query */
118 	bool		skipData;		/* true for WITH NO DATA */
119 } IntoClause;
120 
121 
122 /* ----------------------------------------------------------------
123  *					node types for executable expressions
124  * ----------------------------------------------------------------
125  */
126 
127 /*
128  * Expr - generic superclass for executable-expression nodes
129  *
130  * All node types that are used in executable expression trees should derive
131  * from Expr (that is, have Expr as their first field).  Since Expr only
132  * contains NodeTag, this is a formality, but it is an easy form of
133  * documentation.  See also the ExprState node types in execnodes.h.
134  */
135 typedef struct Expr
136 {
137 	NodeTag		type;
138 } Expr;
139 
140 /*
141  * Var - expression node representing a variable (ie, a table column)
142  *
143  * Note: during parsing/planning, varnoold/varoattno are always just copies
144  * of varno/varattno.  At the tail end of planning, Var nodes appearing in
145  * upper-level plan nodes are reassigned to point to the outputs of their
146  * subplans; for example, in a join node varno becomes INNER_VAR or OUTER_VAR
147  * and varattno becomes the index of the proper element of that subplan's
148  * target list.  Similarly, INDEX_VAR is used to identify Vars that reference
149  * an index column rather than a heap column.  (In ForeignScan and CustomScan
150  * plan nodes, INDEX_VAR is abused to signify references to columns of a
151  * custom scan tuple type.)  In all these cases, varnoold/varoattno hold the
152  * original values.  The code doesn't really need varnoold/varoattno, but they
153  * are very useful for debugging and interpreting completed plans, so we keep
154  * them around.
155  */
156 #define    INNER_VAR		65000	/* reference to inner subplan */
157 #define    OUTER_VAR		65001	/* reference to outer subplan */
158 #define    INDEX_VAR		65002	/* reference to index column */
159 
160 #define IS_SPECIAL_VARNO(varno)		((varno) >= INNER_VAR)
161 
162 /* Symbols for the indexes of the special RTE entries in rules */
163 #define    PRS2_OLD_VARNO			1
164 #define    PRS2_NEW_VARNO			2
165 
166 typedef struct Var
167 {
168 	Expr		xpr;
169 	Index		varno;			/* index of this var's relation in the range
170 								 * table, or INNER_VAR/OUTER_VAR/INDEX_VAR */
171 	AttrNumber	varattno;		/* attribute number of this var, or zero for
172 								 * all */
173 	Oid			vartype;		/* pg_type OID for the type of this var */
174 	int32		vartypmod;		/* pg_attribute typmod value */
175 	Oid			varcollid;		/* OID of collation, or InvalidOid if none */
176 	Index		varlevelsup;	/* for subquery variables referencing outer
177 								 * relations; 0 in a normal var, >0 means N
178 								 * levels up */
179 	Index		varnoold;		/* original value of varno, for debugging */
180 	AttrNumber	varoattno;		/* original value of varattno */
181 	int			location;		/* token location, or -1 if unknown */
182 } Var;
183 
184 /*
185  * Const
186  *
187  * Note: for varlena data types, we make a rule that a Const node's value
188  * must be in non-extended form (4-byte header, no compression or external
189  * references).  This ensures that the Const node is self-contained and makes
190  * it more likely that equal() will see logically identical values as equal.
191  */
192 typedef struct Const
193 {
194 	Expr		xpr;
195 	Oid			consttype;		/* pg_type OID of the constant's datatype */
196 	int32		consttypmod;	/* typmod value, if any */
197 	Oid			constcollid;	/* OID of collation, or InvalidOid if none */
198 	int			constlen;		/* typlen of the constant's datatype */
199 	Datum		constvalue;		/* the constant's value */
200 	bool		constisnull;	/* whether the constant is null (if true,
201 								 * constvalue is undefined) */
202 	bool		constbyval;		/* whether this datatype is passed by value.
203 								 * If true, then all the information is stored
204 								 * in the Datum. If false, then the Datum
205 								 * contains a pointer to the information. */
206 	int			location;		/* token location, or -1 if unknown */
207 } Const;
208 
209 /*
210  * Param
211  *
212  *		paramkind specifies the kind of parameter. The possible values
213  *		for this field are:
214  *
215  *		PARAM_EXTERN:  The parameter value is supplied from outside the plan.
216  *				Such parameters are numbered from 1 to n.
217  *
218  *		PARAM_EXEC:  The parameter is an internal executor parameter, used
219  *				for passing values into and out of sub-queries or from
220  *				nestloop joins to their inner scans.
221  *				For historical reasons, such parameters are numbered from 0.
222  *				These numbers are independent of PARAM_EXTERN numbers.
223  *
224  *		PARAM_SUBLINK:	The parameter represents an output column of a SubLink
225  *				node's sub-select.  The column number is contained in the
226  *				`paramid' field.  (This type of Param is converted to
227  *				PARAM_EXEC during planning.)
228  *
229  *		PARAM_MULTIEXPR:  Like PARAM_SUBLINK, the parameter represents an
230  *				output column of a SubLink node's sub-select, but here, the
231  *				SubLink is always a MULTIEXPR SubLink.  The high-order 16 bits
232  *				of the `paramid' field contain the SubLink's subLinkId, and
233  *				the low-order 16 bits contain the column number.  (This type
234  *				of Param is also converted to PARAM_EXEC during planning.)
235  */
236 typedef enum ParamKind
237 {
238 	PARAM_EXTERN,
239 	PARAM_EXEC,
240 	PARAM_SUBLINK,
241 	PARAM_MULTIEXPR
242 } ParamKind;
243 
244 typedef struct Param
245 {
246 	Expr		xpr;
247 	ParamKind	paramkind;		/* kind of parameter. See above */
248 	int			paramid;		/* numeric ID for parameter */
249 	Oid			paramtype;		/* pg_type OID of parameter's datatype */
250 	int32		paramtypmod;	/* typmod value, if known */
251 	Oid			paramcollid;	/* OID of collation, or InvalidOid if none */
252 	int			location;		/* token location, or -1 if unknown */
253 } Param;
254 
255 /*
256  * Aggref
257  *
258  * The aggregate's args list is a targetlist, ie, a list of TargetEntry nodes.
259  *
260  * For a normal (non-ordered-set) aggregate, the non-resjunk TargetEntries
261  * represent the aggregate's regular arguments (if any) and resjunk TLEs can
262  * be added at the end to represent ORDER BY expressions that are not also
263  * arguments.  As in a top-level Query, the TLEs can be marked with
264  * ressortgroupref indexes to let them be referenced by SortGroupClause
265  * entries in the aggorder and/or aggdistinct lists.  This represents ORDER BY
266  * and DISTINCT operations to be applied to the aggregate input rows before
267  * they are passed to the transition function.  The grammar only allows a
268  * simple "DISTINCT" specifier for the arguments, but we use the full
269  * query-level representation to allow more code sharing.
270  *
271  * For an ordered-set aggregate, the args list represents the WITHIN GROUP
272  * (aggregated) arguments, all of which will be listed in the aggorder list.
273  * DISTINCT is not supported in this case, so aggdistinct will be NIL.
274  * The direct arguments appear in aggdirectargs (as a list of plain
275  * expressions, not TargetEntry nodes).
276  *
277  * aggtranstype is the data type of the state transition values for this
278  * aggregate (resolved to an actual type, if agg's transtype is polymorphic).
279  * This is determined during planning and is InvalidOid before that.
280  *
281  * aggargtypes is an OID list of the data types of the direct and regular
282  * arguments.  Normally it's redundant with the aggdirectargs and args lists,
283  * but in a combining aggregate, it's not because the args list has been
284  * replaced with a single argument representing the partial-aggregate
285  * transition values.
286  *
287  * aggsplit indicates the expected partial-aggregation mode for the Aggref's
288  * parent plan node.  It's always set to AGGSPLIT_SIMPLE in the parser, but
289  * the planner might change it to something else.  We use this mainly as
290  * a crosscheck that the Aggrefs match the plan; but note that when aggsplit
291  * indicates a non-final mode, aggtype reflects the transition data type
292  * not the SQL-level output type of the aggregate.
293  */
294 typedef struct Aggref
295 {
296 	Expr		xpr;
297 	Oid			aggfnoid;		/* pg_proc Oid of the aggregate */
298 	Oid			aggtype;		/* type Oid of result of the aggregate */
299 	Oid			aggcollid;		/* OID of collation of result */
300 	Oid			inputcollid;	/* OID of collation that function should use */
301 	Oid			aggtranstype;	/* type Oid of aggregate's transition value */
302 	List	   *aggargtypes;	/* type Oids of direct and aggregated args */
303 	List	   *aggdirectargs;	/* direct arguments, if an ordered-set agg */
304 	List	   *args;			/* aggregated arguments and sort expressions */
305 	List	   *aggorder;		/* ORDER BY (list of SortGroupClause) */
306 	List	   *aggdistinct;	/* DISTINCT (list of SortGroupClause) */
307 	Expr	   *aggfilter;		/* FILTER expression, if any */
308 	bool		aggstar;		/* TRUE if argument list was really '*' */
309 	bool		aggvariadic;	/* true if variadic arguments have been
310 								 * combined into an array last argument */
311 	char		aggkind;		/* aggregate kind (see pg_aggregate.h) */
312 	Index		agglevelsup;	/* > 0 if agg belongs to outer query */
313 	AggSplit	aggsplit;		/* expected agg-splitting mode of parent Agg */
314 	int			location;		/* token location, or -1 if unknown */
315 } Aggref;
316 
317 /*
318  * GroupingFunc
319  *
320  * A GroupingFunc is a GROUPING(...) expression, which behaves in many ways
321  * like an aggregate function (e.g. it "belongs" to a specific query level,
322  * which might not be the one immediately containing it), but also differs in
323  * an important respect: it never evaluates its arguments, they merely
324  * designate expressions from the GROUP BY clause of the query level to which
325  * it belongs.
326  *
327  * The spec defines the evaluation of GROUPING() purely by syntactic
328  * replacement, but we make it a real expression for optimization purposes so
329  * that one Agg node can handle multiple grouping sets at once.  Evaluating the
330  * result only needs the column positions to check against the grouping set
331  * being projected.  However, for EXPLAIN to produce meaningful output, we have
332  * to keep the original expressions around, since expression deparse does not
333  * give us any feasible way to get at the GROUP BY clause.
334  *
335  * Also, we treat two GroupingFunc nodes as equal if they have equal arguments
336  * lists and agglevelsup, without comparing the refs and cols annotations.
337  *
338  * In raw parse output we have only the args list; parse analysis fills in the
339  * refs list, and the planner fills in the cols list.
340  */
341 typedef struct GroupingFunc
342 {
343 	Expr		xpr;
344 	List	   *args;			/* arguments, not evaluated but kept for
345 								 * benefit of EXPLAIN etc. */
346 	List	   *refs;			/* ressortgrouprefs of arguments */
347 	List	   *cols;			/* actual column positions set by planner */
348 	Index		agglevelsup;	/* same as Aggref.agglevelsup */
349 	int			location;		/* token location */
350 } GroupingFunc;
351 
352 /*
353  * WindowFunc
354  */
355 typedef struct WindowFunc
356 {
357 	Expr		xpr;
358 	Oid			winfnoid;		/* pg_proc Oid of the function */
359 	Oid			wintype;		/* type Oid of result of the window function */
360 	Oid			wincollid;		/* OID of collation of result */
361 	Oid			inputcollid;	/* OID of collation that function should use */
362 	List	   *args;			/* arguments to the window function */
363 	Expr	   *aggfilter;		/* FILTER expression, if any */
364 	Index		winref;			/* index of associated WindowClause */
365 	bool		winstar;		/* TRUE if argument list was really '*' */
366 	bool		winagg;			/* is function a simple aggregate? */
367 	int			location;		/* token location, or -1 if unknown */
368 } WindowFunc;
369 
370 /* ----------------
371  *	ArrayRef: describes an array subscripting operation
372  *
373  * An ArrayRef can describe fetching a single element from an array,
374  * fetching a subarray (array slice), storing a single element into
375  * an array, or storing a slice.  The "store" cases work with an
376  * initial array value and a source value that is inserted into the
377  * appropriate part of the array; the result of the operation is an
378  * entire new modified array value.
379  *
380  * If reflowerindexpr = NIL, then we are fetching or storing a single array
381  * element at the subscripts given by refupperindexpr.  Otherwise we are
382  * fetching or storing an array slice, that is a rectangular subarray
383  * with lower and upper bounds given by the index expressions.
384  * reflowerindexpr must be the same length as refupperindexpr when it
385  * is not NIL.
386  *
387  * In the slice case, individual expressions in the subscript lists can be
388  * NULL, meaning "substitute the array's current lower or upper bound".
389  *
390  * Note: the result datatype is the element type when fetching a single
391  * element; but it is the array type when doing subarray fetch or either
392  * type of store.
393  *
394  * Note: for the cases where an array is returned, if refexpr yields a R/W
395  * expanded array, then the implementation is allowed to modify that object
396  * in-place and return the same object.)
397  * ----------------
398  */
399 typedef struct ArrayRef
400 {
401 	Expr		xpr;
402 	Oid			refarraytype;	/* type of the array proper */
403 	Oid			refelemtype;	/* type of the array elements */
404 	int32		reftypmod;		/* typmod of the array (and elements too) */
405 	Oid			refcollid;		/* OID of collation, or InvalidOid if none */
406 	List	   *refupperindexpr;	/* expressions that evaluate to upper
407 									 * array indexes */
408 	List	   *reflowerindexpr;	/* expressions that evaluate to lower
409 									 * array indexes, or NIL for single array
410 									 * element */
411 	Expr	   *refexpr;		/* the expression that evaluates to an array
412 								 * value */
413 	Expr	   *refassgnexpr;	/* expression for the source value, or NULL if
414 								 * fetch */
415 } ArrayRef;
416 
417 /*
418  * CoercionContext - distinguishes the allowed set of type casts
419  *
420  * NB: ordering of the alternatives is significant; later (larger) values
421  * allow more casts than earlier ones.
422  */
423 typedef enum CoercionContext
424 {
425 	COERCION_IMPLICIT,			/* coercion in context of expression */
426 	COERCION_ASSIGNMENT,		/* coercion in context of assignment */
427 	COERCION_EXPLICIT			/* explicit cast operation */
428 } CoercionContext;
429 
430 /*
431  * CoercionForm - how to display a node that could have come from a cast
432  *
433  * NB: equal() ignores CoercionForm fields, therefore this *must* not carry
434  * any semantically significant information.  We need that behavior so that
435  * the planner will consider equivalent implicit and explicit casts to be
436  * equivalent.  In cases where those actually behave differently, the coercion
437  * function's arguments will be different.
438  */
439 typedef enum CoercionForm
440 {
441 	COERCE_EXPLICIT_CALL,		/* display as a function call */
442 	COERCE_EXPLICIT_CAST,		/* display as an explicit cast */
443 	COERCE_IMPLICIT_CAST		/* implicit cast, so hide it */
444 } CoercionForm;
445 
446 /*
447  * FuncExpr - expression node for a function call
448  */
449 typedef struct FuncExpr
450 {
451 	Expr		xpr;
452 	Oid			funcid;			/* PG_PROC OID of the function */
453 	Oid			funcresulttype; /* PG_TYPE OID of result value */
454 	bool		funcretset;		/* true if function returns set */
455 	bool		funcvariadic;	/* true if variadic arguments have been
456 								 * combined into an array last argument */
457 	CoercionForm funcformat;	/* how to display this function call */
458 	Oid			funccollid;		/* OID of collation of result */
459 	Oid			inputcollid;	/* OID of collation that function should use */
460 	List	   *args;			/* arguments to the function */
461 	int			location;		/* token location, or -1 if unknown */
462 } FuncExpr;
463 
464 /*
465  * NamedArgExpr - a named argument of a function
466  *
467  * This node type can only appear in the args list of a FuncCall or FuncExpr
468  * node.  We support pure positional call notation (no named arguments),
469  * named notation (all arguments are named), and mixed notation (unnamed
470  * arguments followed by named ones).
471  *
472  * Parse analysis sets argnumber to the positional index of the argument,
473  * but doesn't rearrange the argument list.
474  *
475  * The planner will convert argument lists to pure positional notation
476  * during expression preprocessing, so execution never sees a NamedArgExpr.
477  */
478 typedef struct NamedArgExpr
479 {
480 	Expr		xpr;
481 	Expr	   *arg;			/* the argument expression */
482 	char	   *name;			/* the name */
483 	int			argnumber;		/* argument's number in positional notation */
484 	int			location;		/* argument name location, or -1 if unknown */
485 } NamedArgExpr;
486 
487 /*
488  * OpExpr - expression node for an operator invocation
489  *
490  * Semantically, this is essentially the same as a function call.
491  *
492  * Note that opfuncid is not necessarily filled in immediately on creation
493  * of the node.  The planner makes sure it is valid before passing the node
494  * tree to the executor, but during parsing/planning opfuncid can be 0.
495  */
496 typedef struct OpExpr
497 {
498 	Expr		xpr;
499 	Oid			opno;			/* PG_OPERATOR OID of the operator */
500 	Oid			opfuncid;		/* PG_PROC OID of underlying function */
501 	Oid			opresulttype;	/* PG_TYPE OID of result value */
502 	bool		opretset;		/* true if operator returns set */
503 	Oid			opcollid;		/* OID of collation of result */
504 	Oid			inputcollid;	/* OID of collation that operator should use */
505 	List	   *args;			/* arguments to the operator (1 or 2) */
506 	int			location;		/* token location, or -1 if unknown */
507 } OpExpr;
508 
509 /*
510  * DistinctExpr - expression node for "x IS DISTINCT FROM y"
511  *
512  * Except for the nodetag, this is represented identically to an OpExpr
513  * referencing the "=" operator for x and y.
514  * We use "=", not the more obvious "<>", because more datatypes have "="
515  * than "<>".  This means the executor must invert the operator result.
516  * Note that the operator function won't be called at all if either input
517  * is NULL, since then the result can be determined directly.
518  */
519 typedef OpExpr DistinctExpr;
520 
521 /*
522  * NullIfExpr - a NULLIF expression
523  *
524  * Like DistinctExpr, this is represented the same as an OpExpr referencing
525  * the "=" operator for x and y.
526  */
527 typedef OpExpr NullIfExpr;
528 
529 /*
530  * ScalarArrayOpExpr - expression node for "scalar op ANY/ALL (array)"
531  *
532  * The operator must yield boolean.  It is applied to the left operand
533  * and each element of the righthand array, and the results are combined
534  * with OR or AND (for ANY or ALL respectively).  The node representation
535  * is almost the same as for the underlying operator, but we need a useOr
536  * flag to remember whether it's ANY or ALL, and we don't have to store
537  * the result type (or the collation) because it must be boolean.
538  */
539 typedef struct ScalarArrayOpExpr
540 {
541 	Expr		xpr;
542 	Oid			opno;			/* PG_OPERATOR OID of the operator */
543 	Oid			opfuncid;		/* PG_PROC OID of underlying function */
544 	bool		useOr;			/* true for ANY, false for ALL */
545 	Oid			inputcollid;	/* OID of collation that operator should use */
546 	List	   *args;			/* the scalar and array operands */
547 	int			location;		/* token location, or -1 if unknown */
548 } ScalarArrayOpExpr;
549 
550 /*
551  * BoolExpr - expression node for the basic Boolean operators AND, OR, NOT
552  *
553  * Notice the arguments are given as a List.  For NOT, of course the list
554  * must always have exactly one element.  For AND and OR, there can be two
555  * or more arguments.
556  */
557 typedef enum BoolExprType
558 {
559 	AND_EXPR, OR_EXPR, NOT_EXPR
560 } BoolExprType;
561 
562 typedef struct BoolExpr
563 {
564 	Expr		xpr;
565 	BoolExprType boolop;
566 	List	   *args;			/* arguments to this expression */
567 	int			location;		/* token location, or -1 if unknown */
568 } BoolExpr;
569 
570 /*
571  * SubLink
572  *
573  * A SubLink represents a subselect appearing in an expression, and in some
574  * cases also the combining operator(s) just above it.  The subLinkType
575  * indicates the form of the expression represented:
576  *	EXISTS_SUBLINK		EXISTS(SELECT ...)
577  *	ALL_SUBLINK			(lefthand) op ALL (SELECT ...)
578  *	ANY_SUBLINK			(lefthand) op ANY (SELECT ...)
579  *	ROWCOMPARE_SUBLINK	(lefthand) op (SELECT ...)
580  *	EXPR_SUBLINK		(SELECT with single targetlist item ...)
581  *	MULTIEXPR_SUBLINK	(SELECT with multiple targetlist items ...)
582  *	ARRAY_SUBLINK		ARRAY(SELECT with single targetlist item ...)
583  *	CTE_SUBLINK			WITH query (never actually part of an expression)
584  * For ALL, ANY, and ROWCOMPARE, the lefthand is a list of expressions of the
585  * same length as the subselect's targetlist.  ROWCOMPARE will *always* have
586  * a list with more than one entry; if the subselect has just one target
587  * then the parser will create an EXPR_SUBLINK instead (and any operator
588  * above the subselect will be represented separately).
589  * ROWCOMPARE, EXPR, and MULTIEXPR require the subselect to deliver at most
590  * one row (if it returns no rows, the result is NULL).
591  * ALL, ANY, and ROWCOMPARE require the combining operators to deliver boolean
592  * results.  ALL and ANY combine the per-row results using AND and OR
593  * semantics respectively.
594  * ARRAY requires just one target column, and creates an array of the target
595  * column's type using any number of rows resulting from the subselect.
596  *
597  * SubLink is classed as an Expr node, but it is not actually executable;
598  * it must be replaced in the expression tree by a SubPlan node during
599  * planning.
600  *
601  * NOTE: in the raw output of gram.y, testexpr contains just the raw form
602  * of the lefthand expression (if any), and operName is the String name of
603  * the combining operator.  Also, subselect is a raw parsetree.  During parse
604  * analysis, the parser transforms testexpr into a complete boolean expression
605  * that compares the lefthand value(s) to PARAM_SUBLINK nodes representing the
606  * output columns of the subselect.  And subselect is transformed to a Query.
607  * This is the representation seen in saved rules and in the rewriter.
608  *
609  * In EXISTS, EXPR, MULTIEXPR, and ARRAY SubLinks, testexpr and operName
610  * are unused and are always null.
611  *
612  * subLinkId is currently used only for MULTIEXPR SubLinks, and is zero in
613  * other SubLinks.  This number identifies different multiple-assignment
614  * subqueries within an UPDATE statement's SET list.  It is unique only
615  * within a particular targetlist.  The output column(s) of the MULTIEXPR
616  * are referenced by PARAM_MULTIEXPR Params appearing elsewhere in the tlist.
617  *
618  * The CTE_SUBLINK case never occurs in actual SubLink nodes, but it is used
619  * in SubPlans generated for WITH subqueries.
620  */
621 typedef enum SubLinkType
622 {
623 	EXISTS_SUBLINK,
624 	ALL_SUBLINK,
625 	ANY_SUBLINK,
626 	ROWCOMPARE_SUBLINK,
627 	EXPR_SUBLINK,
628 	MULTIEXPR_SUBLINK,
629 	ARRAY_SUBLINK,
630 	CTE_SUBLINK					/* for SubPlans only */
631 } SubLinkType;
632 
633 
634 typedef struct SubLink
635 {
636 	Expr		xpr;
637 	SubLinkType subLinkType;	/* see above */
638 	int			subLinkId;		/* ID (1..n); 0 if not MULTIEXPR */
639 	Node	   *testexpr;		/* outer-query test for ALL/ANY/ROWCOMPARE */
640 	List	   *operName;		/* originally specified operator name */
641 	Node	   *subselect;		/* subselect as Query* or raw parsetree */
642 	int			location;		/* token location, or -1 if unknown */
643 } SubLink;
644 
645 /*
646  * SubPlan - executable expression node for a subplan (sub-SELECT)
647  *
648  * The planner replaces SubLink nodes in expression trees with SubPlan
649  * nodes after it has finished planning the subquery.  SubPlan references
650  * a sub-plantree stored in the subplans list of the toplevel PlannedStmt.
651  * (We avoid a direct link to make it easier to copy expression trees
652  * without causing multiple processing of the subplan.)
653  *
654  * In an ordinary subplan, testexpr points to an executable expression
655  * (OpExpr, an AND/OR tree of OpExprs, or RowCompareExpr) for the combining
656  * operator(s); the left-hand arguments are the original lefthand expressions,
657  * and the right-hand arguments are PARAM_EXEC Param nodes representing the
658  * outputs of the sub-select.  (NOTE: runtime coercion functions may be
659  * inserted as well.)  This is just the same expression tree as testexpr in
660  * the original SubLink node, but the PARAM_SUBLINK nodes are replaced by
661  * suitably numbered PARAM_EXEC nodes.
662  *
663  * If the sub-select becomes an initplan rather than a subplan, the executable
664  * expression is part of the outer plan's expression tree (and the SubPlan
665  * node itself is not, but rather is found in the outer plan's initPlan
666  * list).  In this case testexpr is NULL to avoid duplication.
667  *
668  * The planner also derives lists of the values that need to be passed into
669  * and out of the subplan.  Input values are represented as a list "args" of
670  * expressions to be evaluated in the outer-query context (currently these
671  * args are always just Vars, but in principle they could be any expression).
672  * The values are assigned to the global PARAM_EXEC params indexed by parParam
673  * (the parParam and args lists must have the same ordering).  setParam is a
674  * list of the PARAM_EXEC params that are computed by the sub-select, if it
675  * is an initplan; they are listed in order by sub-select output column
676  * position.  (parParam and setParam are integer Lists, not Bitmapsets,
677  * because their ordering is significant.)
678  *
679  * Also, the planner computes startup and per-call costs for use of the
680  * SubPlan.  Note that these include the cost of the subquery proper,
681  * evaluation of the testexpr if any, and any hashtable management overhead.
682  */
683 typedef struct SubPlan
684 {
685 	Expr		xpr;
686 	/* Fields copied from original SubLink: */
687 	SubLinkType subLinkType;	/* see above */
688 	/* The combining operators, transformed to an executable expression: */
689 	Node	   *testexpr;		/* OpExpr or RowCompareExpr expression tree */
690 	List	   *paramIds;		/* IDs of Params embedded in the above */
691 	/* Identification of the Plan tree to use: */
692 	int			plan_id;		/* Index (from 1) in PlannedStmt.subplans */
693 	/* Identification of the SubPlan for EXPLAIN and debugging purposes: */
694 	char	   *plan_name;		/* A name assigned during planning */
695 	/* Extra data useful for determining subplan's output type: */
696 	Oid			firstColType;	/* Type of first column of subplan result */
697 	int32		firstColTypmod; /* Typmod of first column of subplan result */
698 	Oid			firstColCollation;	/* Collation of first column of subplan
699 									 * result */
700 	/* Information about execution strategy: */
701 	bool		useHashTable;	/* TRUE to store subselect output in a hash
702 								 * table (implies we are doing "IN") */
703 	bool		unknownEqFalse; /* TRUE if it's okay to return FALSE when the
704 								 * spec result is UNKNOWN; this allows much
705 								 * simpler handling of null values */
706 	bool		parallel_safe;	/* is the subplan parallel-safe? */
707 	/* Note: parallel_safe does not consider contents of testexpr or args */
708 	/* Information for passing params into and out of the subselect: */
709 	/* setParam and parParam are lists of integers (param IDs) */
710 	List	   *setParam;		/* initplan subqueries have to set these
711 								 * Params for parent plan */
712 	List	   *parParam;		/* indices of input Params from parent plan */
713 	List	   *args;			/* exprs to pass as parParam values */
714 	/* Estimated execution costs: */
715 	Cost		startup_cost;	/* one-time setup cost */
716 	Cost		per_call_cost;	/* cost for each subplan evaluation */
717 } SubPlan;
718 
719 /*
720  * AlternativeSubPlan - expression node for a choice among SubPlans
721  *
722  * The subplans are given as a List so that the node definition need not
723  * change if there's ever more than two alternatives.  For the moment,
724  * though, there are always exactly two; and the first one is the fast-start
725  * plan.
726  */
727 typedef struct AlternativeSubPlan
728 {
729 	Expr		xpr;
730 	List	   *subplans;		/* SubPlan(s) with equivalent results */
731 } AlternativeSubPlan;
732 
733 /* ----------------
734  * FieldSelect
735  *
736  * FieldSelect represents the operation of extracting one field from a tuple
737  * value.  At runtime, the input expression is expected to yield a rowtype
738  * Datum.  The specified field number is extracted and returned as a Datum.
739  * ----------------
740  */
741 
742 typedef struct FieldSelect
743 {
744 	Expr		xpr;
745 	Expr	   *arg;			/* input expression */
746 	AttrNumber	fieldnum;		/* attribute number of field to extract */
747 	Oid			resulttype;		/* type of the field (result type of this
748 								 * node) */
749 	int32		resulttypmod;	/* output typmod (usually -1) */
750 	Oid			resultcollid;	/* OID of collation of the field */
751 } FieldSelect;
752 
753 /* ----------------
754  * FieldStore
755  *
756  * FieldStore represents the operation of modifying one field in a tuple
757  * value, yielding a new tuple value (the input is not touched!).  Like
758  * the assign case of ArrayRef, this is used to implement UPDATE of a
759  * portion of a column.
760  *
761  * A single FieldStore can actually represent updates of several different
762  * fields.  The parser only generates FieldStores with single-element lists,
763  * but the planner will collapse multiple updates of the same base column
764  * into one FieldStore.
765  * ----------------
766  */
767 
768 typedef struct FieldStore
769 {
770 	Expr		xpr;
771 	Expr	   *arg;			/* input tuple value */
772 	List	   *newvals;		/* new value(s) for field(s) */
773 	List	   *fieldnums;		/* integer list of field attnums */
774 	Oid			resulttype;		/* type of result (same as type of arg) */
775 	/* Like RowExpr, we deliberately omit a typmod and collation here */
776 } FieldStore;
777 
778 /* ----------------
779  * RelabelType
780  *
781  * RelabelType represents a "dummy" type coercion between two binary-
782  * compatible datatypes, such as reinterpreting the result of an OID
783  * expression as an int4.  It is a no-op at runtime; we only need it
784  * to provide a place to store the correct type to be attributed to
785  * the expression result during type resolution.  (We can't get away
786  * with just overwriting the type field of the input expression node,
787  * so we need a separate node to show the coercion's result type.)
788  * ----------------
789  */
790 
791 typedef struct RelabelType
792 {
793 	Expr		xpr;
794 	Expr	   *arg;			/* input expression */
795 	Oid			resulttype;		/* output type of coercion expression */
796 	int32		resulttypmod;	/* output typmod (usually -1) */
797 	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
798 	CoercionForm relabelformat; /* how to display this node */
799 	int			location;		/* token location, or -1 if unknown */
800 } RelabelType;
801 
802 /* ----------------
803  * CoerceViaIO
804  *
805  * CoerceViaIO represents a type coercion between two types whose textual
806  * representations are compatible, implemented by invoking the source type's
807  * typoutput function then the destination type's typinput function.
808  * ----------------
809  */
810 
811 typedef struct CoerceViaIO
812 {
813 	Expr		xpr;
814 	Expr	   *arg;			/* input expression */
815 	Oid			resulttype;		/* output type of coercion */
816 	/* output typmod is not stored, but is presumed -1 */
817 	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
818 	CoercionForm coerceformat;	/* how to display this node */
819 	int			location;		/* token location, or -1 if unknown */
820 } CoerceViaIO;
821 
822 /* ----------------
823  * ArrayCoerceExpr
824  *
825  * ArrayCoerceExpr represents a type coercion from one array type to another,
826  * which is implemented by applying the indicated element-type coercion
827  * function to each element of the source array.  If elemfuncid is InvalidOid
828  * then the element types are binary-compatible, but the coercion still
829  * requires some effort (we have to fix the element type ID stored in the
830  * array header).
831  * ----------------
832  */
833 
834 typedef struct ArrayCoerceExpr
835 {
836 	Expr		xpr;
837 	Expr	   *arg;			/* input expression (yields an array) */
838 	Oid			elemfuncid;		/* OID of element coercion function, or 0 */
839 	Oid			resulttype;		/* output type of coercion (an array type) */
840 	int32		resulttypmod;	/* output typmod (also element typmod) */
841 	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
842 	bool		isExplicit;		/* conversion semantics flag to pass to func */
843 	CoercionForm coerceformat;	/* how to display this node */
844 	int			location;		/* token location, or -1 if unknown */
845 } ArrayCoerceExpr;
846 
847 /* ----------------
848  * ConvertRowtypeExpr
849  *
850  * ConvertRowtypeExpr represents a type coercion from one composite type
851  * to another, where the source type is guaranteed to contain all the columns
852  * needed for the destination type plus possibly others; the columns need not
853  * be in the same positions, but are matched up by name.  This is primarily
854  * used to convert a whole-row value of an inheritance child table into a
855  * valid whole-row value of its parent table's rowtype.
856  * ----------------
857  */
858 
859 typedef struct ConvertRowtypeExpr
860 {
861 	Expr		xpr;
862 	Expr	   *arg;			/* input expression */
863 	Oid			resulttype;		/* output type (always a composite type) */
864 	/* Like RowExpr, we deliberately omit a typmod and collation here */
865 	CoercionForm convertformat; /* how to display this node */
866 	int			location;		/* token location, or -1 if unknown */
867 } ConvertRowtypeExpr;
868 
869 /*----------
870  * CollateExpr - COLLATE
871  *
872  * The planner replaces CollateExpr with RelabelType during expression
873  * preprocessing, so execution never sees a CollateExpr.
874  *----------
875  */
876 typedef struct CollateExpr
877 {
878 	Expr		xpr;
879 	Expr	   *arg;			/* input expression */
880 	Oid			collOid;		/* collation's OID */
881 	int			location;		/* token location, or -1 if unknown */
882 } CollateExpr;
883 
884 /*----------
885  * CaseExpr - a CASE expression
886  *
887  * We support two distinct forms of CASE expression:
888  *		CASE WHEN boolexpr THEN expr [ WHEN boolexpr THEN expr ... ]
889  *		CASE testexpr WHEN compexpr THEN expr [ WHEN compexpr THEN expr ... ]
890  * These are distinguishable by the "arg" field being NULL in the first case
891  * and the testexpr in the second case.
892  *
893  * In the raw grammar output for the second form, the condition expressions
894  * of the WHEN clauses are just the comparison values.  Parse analysis
895  * converts these to valid boolean expressions of the form
896  *		CaseTestExpr '=' compexpr
897  * where the CaseTestExpr node is a placeholder that emits the correct
898  * value at runtime.  This structure is used so that the testexpr need be
899  * evaluated only once.  Note that after parse analysis, the condition
900  * expressions always yield boolean.
901  *
902  * Note: we can test whether a CaseExpr has been through parse analysis
903  * yet by checking whether casetype is InvalidOid or not.
904  *----------
905  */
906 typedef struct CaseExpr
907 {
908 	Expr		xpr;
909 	Oid			casetype;		/* type of expression result */
910 	Oid			casecollid;		/* OID of collation, or InvalidOid if none */
911 	Expr	   *arg;			/* implicit equality comparison argument */
912 	List	   *args;			/* the arguments (list of WHEN clauses) */
913 	Expr	   *defresult;		/* the default result (ELSE clause) */
914 	int			location;		/* token location, or -1 if unknown */
915 } CaseExpr;
916 
917 /*
918  * CaseWhen - one arm of a CASE expression
919  */
920 typedef struct CaseWhen
921 {
922 	Expr		xpr;
923 	Expr	   *expr;			/* condition expression */
924 	Expr	   *result;			/* substitution result */
925 	int			location;		/* token location, or -1 if unknown */
926 } CaseWhen;
927 
928 /*
929  * Placeholder node for the test value to be processed by a CASE expression.
930  * This is effectively like a Param, but can be implemented more simply
931  * since we need only one replacement value at a time.
932  *
933  * We also use this in nested UPDATE expressions.
934  * See transformAssignmentIndirection().
935  */
936 typedef struct CaseTestExpr
937 {
938 	Expr		xpr;
939 	Oid			typeId;			/* type for substituted value */
940 	int32		typeMod;		/* typemod for substituted value */
941 	Oid			collation;		/* collation for the substituted value */
942 } CaseTestExpr;
943 
944 /*
945  * ArrayExpr - an ARRAY[] expression
946  *
947  * Note: if multidims is false, the constituent expressions all yield the
948  * scalar type identified by element_typeid.  If multidims is true, the
949  * constituent expressions all yield arrays of element_typeid (ie, the same
950  * type as array_typeid); at runtime we must check for compatible subscripts.
951  */
952 typedef struct ArrayExpr
953 {
954 	Expr		xpr;
955 	Oid			array_typeid;	/* type of expression result */
956 	Oid			array_collid;	/* OID of collation, or InvalidOid if none */
957 	Oid			element_typeid; /* common type of array elements */
958 	List	   *elements;		/* the array elements or sub-arrays */
959 	bool		multidims;		/* true if elements are sub-arrays */
960 	int			location;		/* token location, or -1 if unknown */
961 } ArrayExpr;
962 
963 /*
964  * RowExpr - a ROW() expression
965  *
966  * Note: the list of fields must have a one-for-one correspondence with
967  * physical fields of the associated rowtype, although it is okay for it
968  * to be shorter than the rowtype.  That is, the N'th list element must
969  * match up with the N'th physical field.  When the N'th physical field
970  * is a dropped column (attisdropped) then the N'th list element can just
971  * be a NULL constant.  (This case can only occur for named composite types,
972  * not RECORD types, since those are built from the RowExpr itself rather
973  * than vice versa.)  It is important not to assume that length(args) is
974  * the same as the number of columns logically present in the rowtype.
975  *
976  * colnames provides field names in cases where the names can't easily be
977  * obtained otherwise.  Names *must* be provided if row_typeid is RECORDOID.
978  * If row_typeid identifies a known composite type, colnames can be NIL to
979  * indicate the type's cataloged field names apply.  Note that colnames can
980  * be non-NIL even for a composite type, and typically is when the RowExpr
981  * was created by expanding a whole-row Var.  This is so that we can retain
982  * the column alias names of the RTE that the Var referenced (which would
983  * otherwise be very difficult to extract from the parsetree).  Like the
984  * args list, colnames is one-for-one with physical fields of the rowtype.
985  */
986 typedef struct RowExpr
987 {
988 	Expr		xpr;
989 	List	   *args;			/* the fields */
990 	Oid			row_typeid;		/* RECORDOID or a composite type's ID */
991 
992 	/*
993 	 * Note: we deliberately do NOT store a typmod.  Although a typmod will be
994 	 * associated with specific RECORD types at runtime, it will differ for
995 	 * different backends, and so cannot safely be stored in stored
996 	 * parsetrees.  We must assume typmod -1 for a RowExpr node.
997 	 *
998 	 * We don't need to store a collation either.  The result type is
999 	 * necessarily composite, and composite types never have a collation.
1000 	 */
1001 	CoercionForm row_format;	/* how to display this node */
1002 	List	   *colnames;		/* list of String, or NIL */
1003 	int			location;		/* token location, or -1 if unknown */
1004 } RowExpr;
1005 
1006 /*
1007  * RowCompareExpr - row-wise comparison, such as (a, b) <= (1, 2)
1008  *
1009  * We support row comparison for any operator that can be determined to
1010  * act like =, <>, <, <=, >, or >= (we determine this by looking for the
1011  * operator in btree opfamilies).  Note that the same operator name might
1012  * map to a different operator for each pair of row elements, since the
1013  * element datatypes can vary.
1014  *
1015  * A RowCompareExpr node is only generated for the < <= > >= cases;
1016  * the = and <> cases are translated to simple AND or OR combinations
1017  * of the pairwise comparisons.  However, we include = and <> in the
1018  * RowCompareType enum for the convenience of parser logic.
1019  */
1020 typedef enum RowCompareType
1021 {
1022 	/* Values of this enum are chosen to match btree strategy numbers */
1023 	ROWCOMPARE_LT = 1,			/* BTLessStrategyNumber */
1024 	ROWCOMPARE_LE = 2,			/* BTLessEqualStrategyNumber */
1025 	ROWCOMPARE_EQ = 3,			/* BTEqualStrategyNumber */
1026 	ROWCOMPARE_GE = 4,			/* BTGreaterEqualStrategyNumber */
1027 	ROWCOMPARE_GT = 5,			/* BTGreaterStrategyNumber */
1028 	ROWCOMPARE_NE = 6			/* no such btree strategy */
1029 } RowCompareType;
1030 
1031 typedef struct RowCompareExpr
1032 {
1033 	Expr		xpr;
1034 	RowCompareType rctype;		/* LT LE GE or GT, never EQ or NE */
1035 	List	   *opnos;			/* OID list of pairwise comparison ops */
1036 	List	   *opfamilies;		/* OID list of containing operator families */
1037 	List	   *inputcollids;	/* OID list of collations for comparisons */
1038 	List	   *largs;			/* the left-hand input arguments */
1039 	List	   *rargs;			/* the right-hand input arguments */
1040 } RowCompareExpr;
1041 
1042 /*
1043  * CoalesceExpr - a COALESCE expression
1044  */
1045 typedef struct CoalesceExpr
1046 {
1047 	Expr		xpr;
1048 	Oid			coalescetype;	/* type of expression result */
1049 	Oid			coalescecollid; /* OID of collation, or InvalidOid if none */
1050 	List	   *args;			/* the arguments */
1051 	int			location;		/* token location, or -1 if unknown */
1052 } CoalesceExpr;
1053 
1054 /*
1055  * MinMaxExpr - a GREATEST or LEAST function
1056  */
1057 typedef enum MinMaxOp
1058 {
1059 	IS_GREATEST,
1060 	IS_LEAST
1061 } MinMaxOp;
1062 
1063 typedef struct MinMaxExpr
1064 {
1065 	Expr		xpr;
1066 	Oid			minmaxtype;		/* common type of arguments and result */
1067 	Oid			minmaxcollid;	/* OID of collation of result */
1068 	Oid			inputcollid;	/* OID of collation that function should use */
1069 	MinMaxOp	op;				/* function to execute */
1070 	List	   *args;			/* the arguments */
1071 	int			location;		/* token location, or -1 if unknown */
1072 } MinMaxExpr;
1073 
1074 /*
1075  * SQLValueFunction - parameterless functions with special grammar productions
1076  *
1077  * The SQL standard categorizes some of these as <datetime value function>
1078  * and others as <general value specification>.  We call 'em SQLValueFunctions
1079  * for lack of a better term.  We store type and typmod of the result so that
1080  * some code doesn't need to know each function individually, and because
1081  * we would need to store typmod anyway for some of the datetime functions.
1082  * Note that currently, all variants return non-collating datatypes, so we do
1083  * not need a collation field; also, all these functions are stable.
1084  */
1085 typedef enum SQLValueFunctionOp
1086 {
1087 	SVFOP_CURRENT_DATE,
1088 	SVFOP_CURRENT_TIME,
1089 	SVFOP_CURRENT_TIME_N,
1090 	SVFOP_CURRENT_TIMESTAMP,
1091 	SVFOP_CURRENT_TIMESTAMP_N,
1092 	SVFOP_LOCALTIME,
1093 	SVFOP_LOCALTIME_N,
1094 	SVFOP_LOCALTIMESTAMP,
1095 	SVFOP_LOCALTIMESTAMP_N,
1096 	SVFOP_CURRENT_ROLE,
1097 	SVFOP_CURRENT_USER,
1098 	SVFOP_USER,
1099 	SVFOP_SESSION_USER,
1100 	SVFOP_CURRENT_CATALOG,
1101 	SVFOP_CURRENT_SCHEMA
1102 } SQLValueFunctionOp;
1103 
1104 typedef struct SQLValueFunction
1105 {
1106 	Expr		xpr;
1107 	SQLValueFunctionOp op;		/* which function this is */
1108 	Oid			type;			/* result type/typmod */
1109 	int32		typmod;
1110 	int			location;		/* token location, or -1 if unknown */
1111 } SQLValueFunction;
1112 
1113 /*
1114  * XmlExpr - various SQL/XML functions requiring special grammar productions
1115  *
1116  * 'name' carries the "NAME foo" argument (already XML-escaped).
1117  * 'named_args' and 'arg_names' represent an xml_attribute list.
1118  * 'args' carries all other arguments.
1119  *
1120  * Note: result type/typmod/collation are not stored, but can be deduced
1121  * from the XmlExprOp.  The type/typmod fields are just used for display
1122  * purposes, and are NOT necessarily the true result type of the node.
1123  */
1124 typedef enum XmlExprOp
1125 {
1126 	IS_XMLCONCAT,				/* XMLCONCAT(args) */
1127 	IS_XMLELEMENT,				/* XMLELEMENT(name, xml_attributes, args) */
1128 	IS_XMLFOREST,				/* XMLFOREST(xml_attributes) */
1129 	IS_XMLPARSE,				/* XMLPARSE(text, is_doc, preserve_ws) */
1130 	IS_XMLPI,					/* XMLPI(name [, args]) */
1131 	IS_XMLROOT,					/* XMLROOT(xml, version, standalone) */
1132 	IS_XMLSERIALIZE,			/* XMLSERIALIZE(is_document, xmlval) */
1133 	IS_DOCUMENT					/* xmlval IS DOCUMENT */
1134 } XmlExprOp;
1135 
1136 typedef enum
1137 {
1138 	XMLOPTION_DOCUMENT,
1139 	XMLOPTION_CONTENT
1140 } XmlOptionType;
1141 
1142 typedef struct XmlExpr
1143 {
1144 	Expr		xpr;
1145 	XmlExprOp	op;				/* xml function ID */
1146 	char	   *name;			/* name in xml(NAME foo ...) syntaxes */
1147 	List	   *named_args;		/* non-XML expressions for xml_attributes */
1148 	List	   *arg_names;		/* parallel list of Value strings */
1149 	List	   *args;			/* list of expressions */
1150 	XmlOptionType xmloption;	/* DOCUMENT or CONTENT */
1151 	Oid			type;			/* target type/typmod for XMLSERIALIZE */
1152 	int32		typmod;
1153 	int			location;		/* token location, or -1 if unknown */
1154 } XmlExpr;
1155 
1156 /* ----------------
1157  * NullTest
1158  *
1159  * NullTest represents the operation of testing a value for NULLness.
1160  * The appropriate test is performed and returned as a boolean Datum.
1161  *
1162  * When argisrow is false, this simply represents a test for the null value.
1163  *
1164  * When argisrow is true, the input expression must yield a rowtype, and
1165  * the node implements "row IS [NOT] NULL" per the SQL standard.  This
1166  * includes checking individual fields for NULLness when the row datum
1167  * itself isn't NULL.
1168  *
1169  * NOTE: the combination of a rowtype input and argisrow==false does NOT
1170  * correspond to the SQL notation "row IS [NOT] NULL"; instead, this case
1171  * represents the SQL notation "row IS [NOT] DISTINCT FROM NULL".
1172  * ----------------
1173  */
1174 
1175 typedef enum NullTestType
1176 {
1177 	IS_NULL, IS_NOT_NULL
1178 } NullTestType;
1179 
1180 typedef struct NullTest
1181 {
1182 	Expr		xpr;
1183 	Expr	   *arg;			/* input expression */
1184 	NullTestType nulltesttype;	/* IS NULL, IS NOT NULL */
1185 	bool		argisrow;		/* T to perform field-by-field null checks */
1186 	int			location;		/* token location, or -1 if unknown */
1187 } NullTest;
1188 
1189 /*
1190  * BooleanTest
1191  *
1192  * BooleanTest represents the operation of determining whether a boolean
1193  * is TRUE, FALSE, or UNKNOWN (ie, NULL).  All six meaningful combinations
1194  * are supported.  Note that a NULL input does *not* cause a NULL result.
1195  * The appropriate test is performed and returned as a boolean Datum.
1196  */
1197 
1198 typedef enum BoolTestType
1199 {
1200 	IS_TRUE, IS_NOT_TRUE, IS_FALSE, IS_NOT_FALSE, IS_UNKNOWN, IS_NOT_UNKNOWN
1201 } BoolTestType;
1202 
1203 typedef struct BooleanTest
1204 {
1205 	Expr		xpr;
1206 	Expr	   *arg;			/* input expression */
1207 	BoolTestType booltesttype;	/* test type */
1208 	int			location;		/* token location, or -1 if unknown */
1209 } BooleanTest;
1210 
1211 /*
1212  * CoerceToDomain
1213  *
1214  * CoerceToDomain represents the operation of coercing a value to a domain
1215  * type.  At runtime (and not before) the precise set of constraints to be
1216  * checked will be determined.  If the value passes, it is returned as the
1217  * result; if not, an error is raised.  Note that this is equivalent to
1218  * RelabelType in the scenario where no constraints are applied.
1219  */
1220 typedef struct CoerceToDomain
1221 {
1222 	Expr		xpr;
1223 	Expr	   *arg;			/* input expression */
1224 	Oid			resulttype;		/* domain type ID (result type) */
1225 	int32		resulttypmod;	/* output typmod (currently always -1) */
1226 	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
1227 	CoercionForm coercionformat;	/* how to display this node */
1228 	int			location;		/* token location, or -1 if unknown */
1229 } CoerceToDomain;
1230 
1231 /*
1232  * Placeholder node for the value to be processed by a domain's check
1233  * constraint.  This is effectively like a Param, but can be implemented more
1234  * simply since we need only one replacement value at a time.
1235  *
1236  * Note: the typeId/typeMod/collation will be set from the domain's base type,
1237  * not the domain itself.  This is because we shouldn't consider the value
1238  * to be a member of the domain if we haven't yet checked its constraints.
1239  */
1240 typedef struct CoerceToDomainValue
1241 {
1242 	Expr		xpr;
1243 	Oid			typeId;			/* type for substituted value */
1244 	int32		typeMod;		/* typemod for substituted value */
1245 	Oid			collation;		/* collation for the substituted value */
1246 	int			location;		/* token location, or -1 if unknown */
1247 } CoerceToDomainValue;
1248 
1249 /*
1250  * Placeholder node for a DEFAULT marker in an INSERT or UPDATE command.
1251  *
1252  * This is not an executable expression: it must be replaced by the actual
1253  * column default expression during rewriting.  But it is convenient to
1254  * treat it as an expression node during parsing and rewriting.
1255  */
1256 typedef struct SetToDefault
1257 {
1258 	Expr		xpr;
1259 	Oid			typeId;			/* type for substituted value */
1260 	int32		typeMod;		/* typemod for substituted value */
1261 	Oid			collation;		/* collation for the substituted value */
1262 	int			location;		/* token location, or -1 if unknown */
1263 } SetToDefault;
1264 
1265 /*
1266  * Node representing [WHERE] CURRENT OF cursor_name
1267  *
1268  * CURRENT OF is a bit like a Var, in that it carries the rangetable index
1269  * of the target relation being constrained; this aids placing the expression
1270  * correctly during planning.  We can assume however that its "levelsup" is
1271  * always zero, due to the syntactic constraints on where it can appear.
1272  *
1273  * The referenced cursor can be represented either as a hardwired string
1274  * or as a reference to a run-time parameter of type REFCURSOR.  The latter
1275  * case is for the convenience of plpgsql.
1276  */
1277 typedef struct CurrentOfExpr
1278 {
1279 	Expr		xpr;
1280 	Index		cvarno;			/* RT index of target relation */
1281 	char	   *cursor_name;	/* name of referenced cursor, or NULL */
1282 	int			cursor_param;	/* refcursor parameter number, or 0 */
1283 } CurrentOfExpr;
1284 
1285 /*
1286  * NextValueExpr - get next value from sequence
1287  *
1288  * This has the same effect as calling the nextval() function, but it does not
1289  * check permissions on the sequence.  This is used for identity columns,
1290  * where the sequence is an implicit dependency without its own permissions.
1291  */
1292 typedef struct NextValueExpr
1293 {
1294 	Expr		xpr;
1295 	Oid			seqid;
1296 	Oid			typeId;
1297 } NextValueExpr;
1298 
1299 /*
1300  * InferenceElem - an element of a unique index inference specification
1301  *
1302  * This mostly matches the structure of IndexElems, but having a dedicated
1303  * primnode allows for a clean separation between the use of index parameters
1304  * by utility commands, and this node.
1305  */
1306 typedef struct InferenceElem
1307 {
1308 	Expr		xpr;
1309 	Node	   *expr;			/* expression to infer from, or NULL */
1310 	Oid			infercollid;	/* OID of collation, or InvalidOid */
1311 	Oid			inferopclass;	/* OID of att opclass, or InvalidOid */
1312 } InferenceElem;
1313 
1314 /*--------------------
1315  * TargetEntry -
1316  *	   a target entry (used in query target lists)
1317  *
1318  * Strictly speaking, a TargetEntry isn't an expression node (since it can't
1319  * be evaluated by ExecEvalExpr).  But we treat it as one anyway, since in
1320  * very many places it's convenient to process a whole query targetlist as a
1321  * single expression tree.
1322  *
1323  * In a SELECT's targetlist, resno should always be equal to the item's
1324  * ordinal position (counting from 1).  However, in an INSERT or UPDATE
1325  * targetlist, resno represents the attribute number of the destination
1326  * column for the item; so there may be missing or out-of-order resnos.
1327  * It is even legal to have duplicated resnos; consider
1328  *		UPDATE table SET arraycol[1] = ..., arraycol[2] = ..., ...
1329  * The two meanings come together in the executor, because the planner
1330  * transforms INSERT/UPDATE tlists into a normalized form with exactly
1331  * one entry for each column of the destination table.  Before that's
1332  * happened, however, it is risky to assume that resno == position.
1333  * Generally get_tle_by_resno() should be used rather than list_nth()
1334  * to fetch tlist entries by resno, and only in SELECT should you assume
1335  * that resno is a unique identifier.
1336  *
1337  * resname is required to represent the correct column name in non-resjunk
1338  * entries of top-level SELECT targetlists, since it will be used as the
1339  * column title sent to the frontend.  In most other contexts it is only
1340  * a debugging aid, and may be wrong or even NULL.  (In particular, it may
1341  * be wrong in a tlist from a stored rule, if the referenced column has been
1342  * renamed by ALTER TABLE since the rule was made.  Also, the planner tends
1343  * to store NULL rather than look up a valid name for tlist entries in
1344  * non-toplevel plan nodes.)  In resjunk entries, resname should be either
1345  * a specific system-generated name (such as "ctid") or NULL; anything else
1346  * risks confusing ExecGetJunkAttribute!
1347  *
1348  * ressortgroupref is used in the representation of ORDER BY, GROUP BY, and
1349  * DISTINCT items.  Targetlist entries with ressortgroupref=0 are not
1350  * sort/group items.  If ressortgroupref>0, then this item is an ORDER BY,
1351  * GROUP BY, and/or DISTINCT target value.  No two entries in a targetlist
1352  * may have the same nonzero ressortgroupref --- but there is no particular
1353  * meaning to the nonzero values, except as tags.  (For example, one must
1354  * not assume that lower ressortgroupref means a more significant sort key.)
1355  * The order of the associated SortGroupClause lists determine the semantics.
1356  *
1357  * resorigtbl/resorigcol identify the source of the column, if it is a
1358  * simple reference to a column of a base table (or view).  If it is not
1359  * a simple reference, these fields are zeroes.
1360  *
1361  * If resjunk is true then the column is a working column (such as a sort key)
1362  * that should be removed from the final output of the query.  Resjunk columns
1363  * must have resnos that cannot duplicate any regular column's resno.  Also
1364  * note that there are places that assume resjunk columns come after non-junk
1365  * columns.
1366  *--------------------
1367  */
1368 typedef struct TargetEntry
1369 {
1370 	Expr		xpr;
1371 	Expr	   *expr;			/* expression to evaluate */
1372 	AttrNumber	resno;			/* attribute number (see notes above) */
1373 	char	   *resname;		/* name of the column (could be NULL) */
1374 	Index		ressortgroupref;	/* nonzero if referenced by a sort/group
1375 									 * clause */
1376 	Oid			resorigtbl;		/* OID of column's source table */
1377 	AttrNumber	resorigcol;		/* column's number in source table */
1378 	bool		resjunk;		/* set to true to eliminate the attribute from
1379 								 * final target list */
1380 } TargetEntry;
1381 
1382 
1383 /* ----------------------------------------------------------------
1384  *					node types for join trees
1385  *
1386  * The leaves of a join tree structure are RangeTblRef nodes.  Above
1387  * these, JoinExpr nodes can appear to denote a specific kind of join
1388  * or qualified join.  Also, FromExpr nodes can appear to denote an
1389  * ordinary cross-product join ("FROM foo, bar, baz WHERE ...").
1390  * FromExpr is like a JoinExpr of jointype JOIN_INNER, except that it
1391  * may have any number of child nodes, not just two.
1392  *
1393  * NOTE: the top level of a Query's jointree is always a FromExpr.
1394  * Even if the jointree contains no rels, there will be a FromExpr.
1395  *
1396  * NOTE: the qualification expressions present in JoinExpr nodes are
1397  * *in addition to* the query's main WHERE clause, which appears as the
1398  * qual of the top-level FromExpr.  The reason for associating quals with
1399  * specific nodes in the jointree is that the position of a qual is critical
1400  * when outer joins are present.  (If we enforce a qual too soon or too late,
1401  * that may cause the outer join to produce the wrong set of NULL-extended
1402  * rows.)  If all joins are inner joins then all the qual positions are
1403  * semantically interchangeable.
1404  *
1405  * NOTE: in the raw output of gram.y, a join tree contains RangeVar,
1406  * RangeSubselect, and RangeFunction nodes, which are all replaced by
1407  * RangeTblRef nodes during the parse analysis phase.  Also, the top-level
1408  * FromExpr is added during parse analysis; the grammar regards FROM and
1409  * WHERE as separate.
1410  * ----------------------------------------------------------------
1411  */
1412 
1413 /*
1414  * RangeTblRef - reference to an entry in the query's rangetable
1415  *
1416  * We could use direct pointers to the RT entries and skip having these
1417  * nodes, but multiple pointers to the same node in a querytree cause
1418  * lots of headaches, so it seems better to store an index into the RT.
1419  */
1420 typedef struct RangeTblRef
1421 {
1422 	NodeTag		type;
1423 	int			rtindex;
1424 } RangeTblRef;
1425 
1426 /*----------
1427  * JoinExpr - for SQL JOIN expressions
1428  *
1429  * isNatural, usingClause, and quals are interdependent.  The user can write
1430  * only one of NATURAL, USING(), or ON() (this is enforced by the grammar).
1431  * If he writes NATURAL then parse analysis generates the equivalent USING()
1432  * list, and from that fills in "quals" with the right equality comparisons.
1433  * If he writes USING() then "quals" is filled with equality comparisons.
1434  * If he writes ON() then only "quals" is set.  Note that NATURAL/USING
1435  * are not equivalent to ON() since they also affect the output column list.
1436  *
1437  * alias is an Alias node representing the AS alias-clause attached to the
1438  * join expression, or NULL if no clause.  NB: presence or absence of the
1439  * alias has a critical impact on semantics, because a join with an alias
1440  * restricts visibility of the tables/columns inside it.
1441  *
1442  * During parse analysis, an RTE is created for the Join, and its index
1443  * is filled into rtindex.  This RTE is present mainly so that Vars can
1444  * be created that refer to the outputs of the join.  The planner sometimes
1445  * generates JoinExprs internally; these can have rtindex = 0 if there are
1446  * no join alias variables referencing such joins.
1447  *----------
1448  */
1449 typedef struct JoinExpr
1450 {
1451 	NodeTag		type;
1452 	JoinType	jointype;		/* type of join */
1453 	bool		isNatural;		/* Natural join? Will need to shape table */
1454 	Node	   *larg;			/* left subtree */
1455 	Node	   *rarg;			/* right subtree */
1456 	List	   *usingClause;	/* USING clause, if any (list of String) */
1457 	Node	   *quals;			/* qualifiers on join, if any */
1458 	Alias	   *alias;			/* user-written alias clause, if any */
1459 	int			rtindex;		/* RT index assigned for join, or 0 */
1460 } JoinExpr;
1461 
1462 /*----------
1463  * FromExpr - represents a FROM ... WHERE ... construct
1464  *
1465  * This is both more flexible than a JoinExpr (it can have any number of
1466  * children, including zero) and less so --- we don't need to deal with
1467  * aliases and so on.  The output column set is implicitly just the union
1468  * of the outputs of the children.
1469  *----------
1470  */
1471 typedef struct FromExpr
1472 {
1473 	NodeTag		type;
1474 	List	   *fromlist;		/* List of join subtrees */
1475 	Node	   *quals;			/* qualifiers on join, if any */
1476 } FromExpr;
1477 
1478 /*----------
1479  * OnConflictExpr - represents an ON CONFLICT DO ... expression
1480  *
1481  * The optimizer requires a list of inference elements, and optionally a WHERE
1482  * clause to infer a unique index.  The unique index (or, occasionally,
1483  * indexes) inferred are used to arbitrate whether or not the alternative ON
1484  * CONFLICT path is taken.
1485  *----------
1486  */
1487 typedef struct OnConflictExpr
1488 {
1489 	NodeTag		type;
1490 	OnConflictAction action;	/* DO NOTHING or UPDATE? */
1491 
1492 	/* Arbiter */
1493 	List	   *arbiterElems;	/* unique index arbiter list (of
1494 								 * InferenceElem's) */
1495 	Node	   *arbiterWhere;	/* unique index arbiter WHERE clause */
1496 	Oid			constraint;		/* pg_constraint OID for arbiter */
1497 
1498 	/* ON CONFLICT UPDATE */
1499 	List	   *onConflictSet;	/* List of ON CONFLICT SET TargetEntrys */
1500 	Node	   *onConflictWhere;	/* qualifiers to restrict UPDATE to */
1501 	int			exclRelIndex;	/* RT index of 'excluded' relation */
1502 	List	   *exclRelTlist;	/* tlist of the EXCLUDED pseudo relation */
1503 } OnConflictExpr;
1504 
1505 #endif							/* PRIMNODES_H */
1506