1 /*-------------------------------------------------------------------------
2 *
3 * pathnode.c
4 * Routines to manipulate pathlists and create path nodes
5 *
6 * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/optimizer/util/pathnode.c
12 *
13 *-------------------------------------------------------------------------
14 */
15 #include "postgres.h"
16
17 #include <math.h>
18
19 #include "miscadmin.h"
20 #include "nodes/nodeFuncs.h"
21 #include "optimizer/clauses.h"
22 #include "optimizer/cost.h"
23 #include "optimizer/pathnode.h"
24 #include "optimizer/paths.h"
25 #include "optimizer/planmain.h"
26 #include "optimizer/restrictinfo.h"
27 #include "optimizer/var.h"
28 #include "parser/parsetree.h"
29 #include "utils/lsyscache.h"
30 #include "utils/selfuncs.h"
31
32
33 typedef enum
34 {
35 COSTS_EQUAL, /* path costs are fuzzily equal */
36 COSTS_BETTER1, /* first path is cheaper than second */
37 COSTS_BETTER2, /* second path is cheaper than first */
38 COSTS_DIFFERENT /* neither path dominates the other on cost */
39 } PathCostComparison;
40
41 /*
42 * STD_FUZZ_FACTOR is the normal fuzz factor for compare_path_costs_fuzzily.
43 * XXX is it worth making this user-controllable? It provides a tradeoff
44 * between planner runtime and the accuracy of path cost comparisons.
45 */
46 #define STD_FUZZ_FACTOR 1.01
47
48 static List *translate_sub_tlist(List *tlist, int relid);
49
50
51 /*****************************************************************************
52 * MISC. PATH UTILITIES
53 *****************************************************************************/
54
55 /*
56 * compare_path_costs
57 * Return -1, 0, or +1 according as path1 is cheaper, the same cost,
58 * or more expensive than path2 for the specified criterion.
59 */
60 int
compare_path_costs(Path * path1,Path * path2,CostSelector criterion)61 compare_path_costs(Path *path1, Path *path2, CostSelector criterion)
62 {
63 if (criterion == STARTUP_COST)
64 {
65 if (path1->startup_cost < path2->startup_cost)
66 return -1;
67 if (path1->startup_cost > path2->startup_cost)
68 return +1;
69
70 /*
71 * If paths have the same startup cost (not at all unlikely), order
72 * them by total cost.
73 */
74 if (path1->total_cost < path2->total_cost)
75 return -1;
76 if (path1->total_cost > path2->total_cost)
77 return +1;
78 }
79 else
80 {
81 if (path1->total_cost < path2->total_cost)
82 return -1;
83 if (path1->total_cost > path2->total_cost)
84 return +1;
85
86 /*
87 * If paths have the same total cost, order them by startup cost.
88 */
89 if (path1->startup_cost < path2->startup_cost)
90 return -1;
91 if (path1->startup_cost > path2->startup_cost)
92 return +1;
93 }
94 return 0;
95 }
96
97 /*
98 * compare_path_fractional_costs
99 * Return -1, 0, or +1 according as path1 is cheaper, the same cost,
100 * or more expensive than path2 for fetching the specified fraction
101 * of the total tuples.
102 *
103 * If fraction is <= 0 or > 1, we interpret it as 1, ie, we select the
104 * path with the cheaper total_cost.
105 */
106 int
compare_fractional_path_costs(Path * path1,Path * path2,double fraction)107 compare_fractional_path_costs(Path *path1, Path *path2,
108 double fraction)
109 {
110 Cost cost1,
111 cost2;
112
113 if (fraction <= 0.0 || fraction >= 1.0)
114 return compare_path_costs(path1, path2, TOTAL_COST);
115 cost1 = path1->startup_cost +
116 fraction * (path1->total_cost - path1->startup_cost);
117 cost2 = path2->startup_cost +
118 fraction * (path2->total_cost - path2->startup_cost);
119 if (cost1 < cost2)
120 return -1;
121 if (cost1 > cost2)
122 return +1;
123 return 0;
124 }
125
126 /*
127 * compare_path_costs_fuzzily
128 * Compare the costs of two paths to see if either can be said to
129 * dominate the other.
130 *
131 * We use fuzzy comparisons so that add_path() can avoid keeping both of
132 * a pair of paths that really have insignificantly different cost.
133 *
134 * The fuzz_factor argument must be 1.0 plus delta, where delta is the
135 * fraction of the smaller cost that is considered to be a significant
136 * difference. For example, fuzz_factor = 1.01 makes the fuzziness limit
137 * be 1% of the smaller cost.
138 *
139 * The two paths are said to have "equal" costs if both startup and total
140 * costs are fuzzily the same. Path1 is said to be better than path2 if
141 * it has fuzzily better startup cost and fuzzily no worse total cost,
142 * or if it has fuzzily better total cost and fuzzily no worse startup cost.
143 * Path2 is better than path1 if the reverse holds. Finally, if one path
144 * is fuzzily better than the other on startup cost and fuzzily worse on
145 * total cost, we just say that their costs are "different", since neither
146 * dominates the other across the whole performance spectrum.
147 *
148 * This function also enforces a policy rule that paths for which the relevant
149 * one of parent->consider_startup and parent->consider_param_startup is false
150 * cannot survive comparisons solely on the grounds of good startup cost, so
151 * we never return COSTS_DIFFERENT when that is true for the total-cost loser.
152 * (But if total costs are fuzzily equal, we compare startup costs anyway,
153 * in hopes of eliminating one path or the other.)
154 */
155 static PathCostComparison
compare_path_costs_fuzzily(Path * path1,Path * path2,double fuzz_factor)156 compare_path_costs_fuzzily(Path *path1, Path *path2, double fuzz_factor)
157 {
158 #define CONSIDER_PATH_STARTUP_COST(p) \
159 ((p)->param_info == NULL ? (p)->parent->consider_startup : (p)->parent->consider_param_startup)
160
161 /*
162 * Check total cost first since it's more likely to be different; many
163 * paths have zero startup cost.
164 */
165 if (path1->total_cost > path2->total_cost * fuzz_factor)
166 {
167 /* path1 fuzzily worse on total cost */
168 if (CONSIDER_PATH_STARTUP_COST(path1) &&
169 path2->startup_cost > path1->startup_cost * fuzz_factor)
170 {
171 /* ... but path2 fuzzily worse on startup, so DIFFERENT */
172 return COSTS_DIFFERENT;
173 }
174 /* else path2 dominates */
175 return COSTS_BETTER2;
176 }
177 if (path2->total_cost > path1->total_cost * fuzz_factor)
178 {
179 /* path2 fuzzily worse on total cost */
180 if (CONSIDER_PATH_STARTUP_COST(path2) &&
181 path1->startup_cost > path2->startup_cost * fuzz_factor)
182 {
183 /* ... but path1 fuzzily worse on startup, so DIFFERENT */
184 return COSTS_DIFFERENT;
185 }
186 /* else path1 dominates */
187 return COSTS_BETTER1;
188 }
189 /* fuzzily the same on total cost ... */
190 if (path1->startup_cost > path2->startup_cost * fuzz_factor)
191 {
192 /* ... but path1 fuzzily worse on startup, so path2 wins */
193 return COSTS_BETTER2;
194 }
195 if (path2->startup_cost > path1->startup_cost * fuzz_factor)
196 {
197 /* ... but path2 fuzzily worse on startup, so path1 wins */
198 return COSTS_BETTER1;
199 }
200 /* fuzzily the same on both costs */
201 return COSTS_EQUAL;
202
203 #undef CONSIDER_PATH_STARTUP_COST
204 }
205
206 /*
207 * set_cheapest
208 * Find the minimum-cost paths from among a relation's paths,
209 * and save them in the rel's cheapest-path fields.
210 *
211 * cheapest_total_path is normally the cheapest-total-cost unparameterized
212 * path; but if there are no unparameterized paths, we assign it to be the
213 * best (cheapest least-parameterized) parameterized path. However, only
214 * unparameterized paths are considered candidates for cheapest_startup_path,
215 * so that will be NULL if there are no unparameterized paths.
216 *
217 * The cheapest_parameterized_paths list collects all parameterized paths
218 * that have survived the add_path() tournament for this relation. (Since
219 * add_path ignores pathkeys for a parameterized path, these will be paths
220 * that have best cost or best row count for their parameterization. We
221 * may also have both a parallel-safe and a non-parallel-safe path in some
222 * cases for the same parameterization in some cases, but this should be
223 * relatively rare since, most typically, all paths for the same relation
224 * will be parallel-safe or none of them will.)
225 *
226 * cheapest_parameterized_paths always includes the cheapest-total
227 * unparameterized path, too, if there is one; the users of that list find
228 * it more convenient if that's included.
229 *
230 * This is normally called only after we've finished constructing the path
231 * list for the rel node.
232 */
233 void
set_cheapest(RelOptInfo * parent_rel)234 set_cheapest(RelOptInfo *parent_rel)
235 {
236 Path *cheapest_startup_path;
237 Path *cheapest_total_path;
238 Path *best_param_path;
239 List *parameterized_paths;
240 ListCell *p;
241
242 Assert(IsA(parent_rel, RelOptInfo));
243
244 if (parent_rel->pathlist == NIL)
245 elog(ERROR, "could not devise a query plan for the given query");
246
247 cheapest_startup_path = cheapest_total_path = best_param_path = NULL;
248 parameterized_paths = NIL;
249
250 foreach(p, parent_rel->pathlist)
251 {
252 Path *path = (Path *) lfirst(p);
253 int cmp;
254
255 if (path->param_info)
256 {
257 /* Parameterized path, so add it to parameterized_paths */
258 parameterized_paths = lappend(parameterized_paths, path);
259
260 /*
261 * If we have an unparameterized cheapest-total, we no longer care
262 * about finding the best parameterized path, so move on.
263 */
264 if (cheapest_total_path)
265 continue;
266
267 /*
268 * Otherwise, track the best parameterized path, which is the one
269 * with least total cost among those of the minimum
270 * parameterization.
271 */
272 if (best_param_path == NULL)
273 best_param_path = path;
274 else
275 {
276 switch (bms_subset_compare(PATH_REQ_OUTER(path),
277 PATH_REQ_OUTER(best_param_path)))
278 {
279 case BMS_EQUAL:
280 /* keep the cheaper one */
281 if (compare_path_costs(path, best_param_path,
282 TOTAL_COST) < 0)
283 best_param_path = path;
284 break;
285 case BMS_SUBSET1:
286 /* new path is less-parameterized */
287 best_param_path = path;
288 break;
289 case BMS_SUBSET2:
290 /* old path is less-parameterized, keep it */
291 break;
292 case BMS_DIFFERENT:
293
294 /*
295 * This means that neither path has the least possible
296 * parameterization for the rel. We'll sit on the old
297 * path until something better comes along.
298 */
299 break;
300 }
301 }
302 }
303 else
304 {
305 /* Unparameterized path, so consider it for cheapest slots */
306 if (cheapest_total_path == NULL)
307 {
308 cheapest_startup_path = cheapest_total_path = path;
309 continue;
310 }
311
312 /*
313 * If we find two paths of identical costs, try to keep the
314 * better-sorted one. The paths might have unrelated sort
315 * orderings, in which case we can only guess which might be
316 * better to keep, but if one is superior then we definitely
317 * should keep that one.
318 */
319 cmp = compare_path_costs(cheapest_startup_path, path, STARTUP_COST);
320 if (cmp > 0 ||
321 (cmp == 0 &&
322 compare_pathkeys(cheapest_startup_path->pathkeys,
323 path->pathkeys) == PATHKEYS_BETTER2))
324 cheapest_startup_path = path;
325
326 cmp = compare_path_costs(cheapest_total_path, path, TOTAL_COST);
327 if (cmp > 0 ||
328 (cmp == 0 &&
329 compare_pathkeys(cheapest_total_path->pathkeys,
330 path->pathkeys) == PATHKEYS_BETTER2))
331 cheapest_total_path = path;
332 }
333 }
334
335 /* Add cheapest unparameterized path, if any, to parameterized_paths */
336 if (cheapest_total_path)
337 parameterized_paths = lcons(cheapest_total_path, parameterized_paths);
338
339 /*
340 * If there is no unparameterized path, use the best parameterized path as
341 * cheapest_total_path (but not as cheapest_startup_path).
342 */
343 if (cheapest_total_path == NULL)
344 cheapest_total_path = best_param_path;
345 Assert(cheapest_total_path != NULL);
346
347 parent_rel->cheapest_startup_path = cheapest_startup_path;
348 parent_rel->cheapest_total_path = cheapest_total_path;
349 parent_rel->cheapest_unique_path = NULL; /* computed only if needed */
350 parent_rel->cheapest_parameterized_paths = parameterized_paths;
351 }
352
353 /*
354 * add_path
355 * Consider a potential implementation path for the specified parent rel,
356 * and add it to the rel's pathlist if it is worthy of consideration.
357 * A path is worthy if it has a better sort order (better pathkeys) or
358 * cheaper cost (on either dimension), or generates fewer rows, than any
359 * existing path that has the same or superset parameterization rels.
360 * We also consider parallel-safe paths more worthy than others.
361 *
362 * We also remove from the rel's pathlist any old paths that are dominated
363 * by new_path --- that is, new_path is cheaper, at least as well ordered,
364 * generates no more rows, requires no outer rels not required by the old
365 * path, and is no less parallel-safe.
366 *
367 * In most cases, a path with a superset parameterization will generate
368 * fewer rows (since it has more join clauses to apply), so that those two
369 * figures of merit move in opposite directions; this means that a path of
370 * one parameterization can seldom dominate a path of another. But such
371 * cases do arise, so we make the full set of checks anyway.
372 *
373 * There are two policy decisions embedded in this function, along with
374 * its sibling add_path_precheck. First, we treat all parameterized paths
375 * as having NIL pathkeys, so that they cannot win comparisons on the
376 * basis of sort order. This is to reduce the number of parameterized
377 * paths that are kept; see discussion in src/backend/optimizer/README.
378 *
379 * Second, we only consider cheap startup cost to be interesting if
380 * parent_rel->consider_startup is true for an unparameterized path, or
381 * parent_rel->consider_param_startup is true for a parameterized one.
382 * Again, this allows discarding useless paths sooner.
383 *
384 * The pathlist is kept sorted by total_cost, with cheaper paths
385 * at the front. Within this routine, that's simply a speed hack:
386 * doing it that way makes it more likely that we will reject an inferior
387 * path after a few comparisons, rather than many comparisons.
388 * However, add_path_precheck relies on this ordering to exit early
389 * when possible.
390 *
391 * NOTE: discarded Path objects are immediately pfree'd to reduce planner
392 * memory consumption. We dare not try to free the substructure of a Path,
393 * since much of it may be shared with other Paths or the query tree itself;
394 * but just recycling discarded Path nodes is a very useful savings in
395 * a large join tree. We can recycle the List nodes of pathlist, too.
396 *
397 * As noted in optimizer/README, deleting a previously-accepted Path is
398 * safe because we know that Paths of this rel cannot yet be referenced
399 * from any other rel, such as a higher-level join. However, in some cases
400 * it is possible that a Path is referenced by another Path for its own
401 * rel; we must not delete such a Path, even if it is dominated by the new
402 * Path. Currently this occurs only for IndexPath objects, which may be
403 * referenced as children of BitmapHeapPaths as well as being paths in
404 * their own right. Hence, we don't pfree IndexPaths when rejecting them.
405 *
406 * 'parent_rel' is the relation entry to which the path corresponds.
407 * 'new_path' is a potential path for parent_rel.
408 *
409 * Returns nothing, but modifies parent_rel->pathlist.
410 */
411 void
add_path(RelOptInfo * parent_rel,Path * new_path)412 add_path(RelOptInfo *parent_rel, Path *new_path)
413 {
414 bool accept_new = true; /* unless we find a superior old path */
415 ListCell *insert_after = NULL; /* where to insert new item */
416 List *new_path_pathkeys;
417 ListCell *p1;
418 ListCell *p1_prev;
419 ListCell *p1_next;
420
421 /*
422 * This is a convenient place to check for query cancel --- no part of the
423 * planner goes very long without calling add_path().
424 */
425 CHECK_FOR_INTERRUPTS();
426
427 /* Pretend parameterized paths have no pathkeys, per comment above */
428 new_path_pathkeys = new_path->param_info ? NIL : new_path->pathkeys;
429
430 /*
431 * Loop to check proposed new path against old paths. Note it is possible
432 * for more than one old path to be tossed out because new_path dominates
433 * it.
434 *
435 * We can't use foreach here because the loop body may delete the current
436 * list cell.
437 */
438 p1_prev = NULL;
439 for (p1 = list_head(parent_rel->pathlist); p1 != NULL; p1 = p1_next)
440 {
441 Path *old_path = (Path *) lfirst(p1);
442 bool remove_old = false; /* unless new proves superior */
443 PathCostComparison costcmp;
444 PathKeysComparison keyscmp;
445 BMS_Comparison outercmp;
446
447 p1_next = lnext(p1);
448
449 /*
450 * Do a fuzzy cost comparison with standard fuzziness limit.
451 */
452 costcmp = compare_path_costs_fuzzily(new_path, old_path,
453 STD_FUZZ_FACTOR);
454
455 /*
456 * If the two paths compare differently for startup and total cost,
457 * then we want to keep both, and we can skip comparing pathkeys and
458 * required_outer rels. If they compare the same, proceed with the
459 * other comparisons. Row count is checked last. (We make the tests
460 * in this order because the cost comparison is most likely to turn
461 * out "different", and the pathkeys comparison next most likely. As
462 * explained above, row count very seldom makes a difference, so even
463 * though it's cheap to compare there's not much point in checking it
464 * earlier.)
465 */
466 if (costcmp != COSTS_DIFFERENT)
467 {
468 /* Similarly check to see if either dominates on pathkeys */
469 List *old_path_pathkeys;
470
471 old_path_pathkeys = old_path->param_info ? NIL : old_path->pathkeys;
472 keyscmp = compare_pathkeys(new_path_pathkeys,
473 old_path_pathkeys);
474 if (keyscmp != PATHKEYS_DIFFERENT)
475 {
476 switch (costcmp)
477 {
478 case COSTS_EQUAL:
479 outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
480 PATH_REQ_OUTER(old_path));
481 if (keyscmp == PATHKEYS_BETTER1)
482 {
483 if ((outercmp == BMS_EQUAL ||
484 outercmp == BMS_SUBSET1) &&
485 new_path->rows <= old_path->rows &&
486 new_path->parallel_safe >= old_path->parallel_safe)
487 remove_old = true; /* new dominates old */
488 }
489 else if (keyscmp == PATHKEYS_BETTER2)
490 {
491 if ((outercmp == BMS_EQUAL ||
492 outercmp == BMS_SUBSET2) &&
493 new_path->rows >= old_path->rows &&
494 new_path->parallel_safe <= old_path->parallel_safe)
495 accept_new = false; /* old dominates new */
496 }
497 else /* keyscmp == PATHKEYS_EQUAL */
498 {
499 if (outercmp == BMS_EQUAL)
500 {
501 /*
502 * Same pathkeys and outer rels, and fuzzily
503 * the same cost, so keep just one; to decide
504 * which, first check parallel-safety, then
505 * rows, then do a fuzzy cost comparison with
506 * very small fuzz limit. (We used to do an
507 * exact cost comparison, but that results in
508 * annoying platform-specific plan variations
509 * due to roundoff in the cost estimates.) If
510 * things are still tied, arbitrarily keep
511 * only the old path. Notice that we will
512 * keep only the old path even if the
513 * less-fuzzy comparison decides the startup
514 * and total costs compare differently.
515 */
516 if (new_path->parallel_safe >
517 old_path->parallel_safe)
518 remove_old = true; /* new dominates old */
519 else if (new_path->parallel_safe <
520 old_path->parallel_safe)
521 accept_new = false; /* old dominates new */
522 else if (new_path->rows < old_path->rows)
523 remove_old = true; /* new dominates old */
524 else if (new_path->rows > old_path->rows)
525 accept_new = false; /* old dominates new */
526 else if (compare_path_costs_fuzzily(new_path,
527 old_path,
528 1.0000000001) == COSTS_BETTER1)
529 remove_old = true; /* new dominates old */
530 else
531 accept_new = false; /* old equals or
532 * dominates new */
533 }
534 else if (outercmp == BMS_SUBSET1 &&
535 new_path->rows <= old_path->rows &&
536 new_path->parallel_safe >= old_path->parallel_safe)
537 remove_old = true; /* new dominates old */
538 else if (outercmp == BMS_SUBSET2 &&
539 new_path->rows >= old_path->rows &&
540 new_path->parallel_safe <= old_path->parallel_safe)
541 accept_new = false; /* old dominates new */
542 /* else different parameterizations, keep both */
543 }
544 break;
545 case COSTS_BETTER1:
546 if (keyscmp != PATHKEYS_BETTER2)
547 {
548 outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
549 PATH_REQ_OUTER(old_path));
550 if ((outercmp == BMS_EQUAL ||
551 outercmp == BMS_SUBSET1) &&
552 new_path->rows <= old_path->rows &&
553 new_path->parallel_safe >= old_path->parallel_safe)
554 remove_old = true; /* new dominates old */
555 }
556 break;
557 case COSTS_BETTER2:
558 if (keyscmp != PATHKEYS_BETTER1)
559 {
560 outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
561 PATH_REQ_OUTER(old_path));
562 if ((outercmp == BMS_EQUAL ||
563 outercmp == BMS_SUBSET2) &&
564 new_path->rows >= old_path->rows &&
565 new_path->parallel_safe <= old_path->parallel_safe)
566 accept_new = false; /* old dominates new */
567 }
568 break;
569 case COSTS_DIFFERENT:
570
571 /*
572 * can't get here, but keep this case to keep compiler
573 * quiet
574 */
575 break;
576 }
577 }
578 }
579
580 /*
581 * Remove current element from pathlist if dominated by new.
582 */
583 if (remove_old)
584 {
585 parent_rel->pathlist = list_delete_cell(parent_rel->pathlist,
586 p1, p1_prev);
587
588 /*
589 * Delete the data pointed-to by the deleted cell, if possible
590 */
591 if (!IsA(old_path, IndexPath))
592 pfree(old_path);
593 /* p1_prev does not advance */
594 }
595 else
596 {
597 /* new belongs after this old path if it has cost >= old's */
598 if (new_path->total_cost >= old_path->total_cost)
599 insert_after = p1;
600 /* p1_prev advances */
601 p1_prev = p1;
602 }
603
604 /*
605 * If we found an old path that dominates new_path, we can quit
606 * scanning the pathlist; we will not add new_path, and we assume
607 * new_path cannot dominate any other elements of the pathlist.
608 */
609 if (!accept_new)
610 break;
611 }
612
613 if (accept_new)
614 {
615 /* Accept the new path: insert it at proper place in pathlist */
616 if (insert_after)
617 lappend_cell(parent_rel->pathlist, insert_after, new_path);
618 else
619 parent_rel->pathlist = lcons(new_path, parent_rel->pathlist);
620 }
621 else
622 {
623 /* Reject and recycle the new path */
624 if (!IsA(new_path, IndexPath))
625 pfree(new_path);
626 }
627 }
628
629 /*
630 * add_path_precheck
631 * Check whether a proposed new path could possibly get accepted.
632 * We assume we know the path's pathkeys and parameterization accurately,
633 * and have lower bounds for its costs.
634 *
635 * Note that we do not know the path's rowcount, since getting an estimate for
636 * that is too expensive to do before prechecking. We assume here that paths
637 * of a superset parameterization will generate fewer rows; if that holds,
638 * then paths with different parameterizations cannot dominate each other
639 * and so we can simply ignore existing paths of another parameterization.
640 * (In the infrequent cases where that rule of thumb fails, add_path will
641 * get rid of the inferior path.)
642 *
643 * At the time this is called, we haven't actually built a Path structure,
644 * so the required information has to be passed piecemeal.
645 */
646 bool
add_path_precheck(RelOptInfo * parent_rel,Cost startup_cost,Cost total_cost,List * pathkeys,Relids required_outer)647 add_path_precheck(RelOptInfo *parent_rel,
648 Cost startup_cost, Cost total_cost,
649 List *pathkeys, Relids required_outer)
650 {
651 List *new_path_pathkeys;
652 bool consider_startup;
653 ListCell *p1;
654
655 /* Pretend parameterized paths have no pathkeys, per add_path policy */
656 new_path_pathkeys = required_outer ? NIL : pathkeys;
657
658 /* Decide whether new path's startup cost is interesting */
659 consider_startup = required_outer ? parent_rel->consider_param_startup : parent_rel->consider_startup;
660
661 foreach(p1, parent_rel->pathlist)
662 {
663 Path *old_path = (Path *) lfirst(p1);
664 PathKeysComparison keyscmp;
665
666 /*
667 * We are looking for an old_path with the same parameterization (and
668 * by assumption the same rowcount) that dominates the new path on
669 * pathkeys as well as both cost metrics. If we find one, we can
670 * reject the new path.
671 *
672 * Cost comparisons here should match compare_path_costs_fuzzily.
673 */
674 if (total_cost > old_path->total_cost * STD_FUZZ_FACTOR)
675 {
676 /* new path can win on startup cost only if consider_startup */
677 if (startup_cost > old_path->startup_cost * STD_FUZZ_FACTOR ||
678 !consider_startup)
679 {
680 /* new path loses on cost, so check pathkeys... */
681 List *old_path_pathkeys;
682
683 old_path_pathkeys = old_path->param_info ? NIL : old_path->pathkeys;
684 keyscmp = compare_pathkeys(new_path_pathkeys,
685 old_path_pathkeys);
686 if (keyscmp == PATHKEYS_EQUAL ||
687 keyscmp == PATHKEYS_BETTER2)
688 {
689 /* new path does not win on pathkeys... */
690 if (bms_equal(required_outer, PATH_REQ_OUTER(old_path)))
691 {
692 /* Found an old path that dominates the new one */
693 return false;
694 }
695 }
696 }
697 }
698 else
699 {
700 /*
701 * Since the pathlist is sorted by total_cost, we can stop looking
702 * once we reach a path with a total_cost larger than the new
703 * path's.
704 */
705 break;
706 }
707 }
708
709 return true;
710 }
711
712 /*
713 * add_partial_path
714 * Like add_path, our goal here is to consider whether a path is worthy
715 * of being kept around, but the considerations here are a bit different.
716 * A partial path is one which can be executed in any number of workers in
717 * parallel such that each worker will generate a subset of the path's
718 * overall result.
719 *
720 * As in add_path, the partial_pathlist is kept sorted with the cheapest
721 * total path in front. This is depended on by multiple places, which
722 * just take the front entry as the cheapest path without searching.
723 *
724 * We don't generate parameterized partial paths for several reasons. Most
725 * importantly, they're not safe to execute, because there's nothing to
726 * make sure that a parallel scan within the parameterized portion of the
727 * plan is running with the same value in every worker at the same time.
728 * Fortunately, it seems unlikely to be worthwhile anyway, because having
729 * each worker scan the entire outer relation and a subset of the inner
730 * relation will generally be a terrible plan. The inner (parameterized)
731 * side of the plan will be small anyway. There could be rare cases where
732 * this wins big - e.g. if join order constraints put a 1-row relation on
733 * the outer side of the topmost join with a parameterized plan on the inner
734 * side - but we'll have to be content not to handle such cases until
735 * somebody builds an executor infrastructure that can cope with them.
736 *
737 * Because we don't consider parameterized paths here, we also don't
738 * need to consider the row counts as a measure of quality: every path will
739 * produce the same number of rows. Neither do we need to consider startup
740 * costs: parallelism is only used for plans that will be run to completion.
741 * Therefore, this routine is much simpler than add_path: it needs to
742 * consider only pathkeys and total cost.
743 *
744 * As with add_path, we pfree paths that are found to be dominated by
745 * another partial path; this requires that there be no other references to
746 * such paths yet. Hence, GatherPaths must not be created for a rel until
747 * we're done creating all partial paths for it. Unlike add_path, we don't
748 * take an exception for IndexPaths as partial index paths won't be
749 * referenced by partial BitmapHeapPaths.
750 */
751 void
add_partial_path(RelOptInfo * parent_rel,Path * new_path)752 add_partial_path(RelOptInfo *parent_rel, Path *new_path)
753 {
754 bool accept_new = true; /* unless we find a superior old path */
755 ListCell *insert_after = NULL; /* where to insert new item */
756 ListCell *p1;
757 ListCell *p1_prev;
758 ListCell *p1_next;
759
760 /* Check for query cancel. */
761 CHECK_FOR_INTERRUPTS();
762
763 /*
764 * As in add_path, throw out any paths which are dominated by the new
765 * path, but throw out the new path if some existing path dominates it.
766 */
767 p1_prev = NULL;
768 for (p1 = list_head(parent_rel->partial_pathlist); p1 != NULL;
769 p1 = p1_next)
770 {
771 Path *old_path = (Path *) lfirst(p1);
772 bool remove_old = false; /* unless new proves superior */
773 PathKeysComparison keyscmp;
774
775 p1_next = lnext(p1);
776
777 /* Compare pathkeys. */
778 keyscmp = compare_pathkeys(new_path->pathkeys, old_path->pathkeys);
779
780 /* Unless pathkeys are incompable, keep just one of the two paths. */
781 if (keyscmp != PATHKEYS_DIFFERENT)
782 {
783 if (new_path->total_cost > old_path->total_cost * STD_FUZZ_FACTOR)
784 {
785 /* New path costs more; keep it only if pathkeys are better. */
786 if (keyscmp != PATHKEYS_BETTER1)
787 accept_new = false;
788 }
789 else if (old_path->total_cost > new_path->total_cost
790 * STD_FUZZ_FACTOR)
791 {
792 /* Old path costs more; keep it only if pathkeys are better. */
793 if (keyscmp != PATHKEYS_BETTER2)
794 remove_old = true;
795 }
796 else if (keyscmp == PATHKEYS_BETTER1)
797 {
798 /* Costs are about the same, new path has better pathkeys. */
799 remove_old = true;
800 }
801 else if (keyscmp == PATHKEYS_BETTER2)
802 {
803 /* Costs are about the same, old path has better pathkeys. */
804 accept_new = false;
805 }
806 else if (old_path->total_cost > new_path->total_cost * 1.0000000001)
807 {
808 /* Pathkeys are the same, and the old path costs more. */
809 remove_old = true;
810 }
811 else
812 {
813 /*
814 * Pathkeys are the same, and new path isn't materially
815 * cheaper.
816 */
817 accept_new = false;
818 }
819 }
820
821 /*
822 * Remove current element from partial_pathlist if dominated by new.
823 */
824 if (remove_old)
825 {
826 parent_rel->partial_pathlist =
827 list_delete_cell(parent_rel->partial_pathlist, p1, p1_prev);
828 pfree(old_path);
829 /* p1_prev does not advance */
830 }
831 else
832 {
833 /* new belongs after this old path if it has cost >= old's */
834 if (new_path->total_cost >= old_path->total_cost)
835 insert_after = p1;
836 /* p1_prev advances */
837 p1_prev = p1;
838 }
839
840 /*
841 * If we found an old path that dominates new_path, we can quit
842 * scanning the partial_pathlist; we will not add new_path, and we
843 * assume new_path cannot dominate any later path.
844 */
845 if (!accept_new)
846 break;
847 }
848
849 if (accept_new)
850 {
851 /* Accept the new path: insert it at proper place */
852 if (insert_after)
853 lappend_cell(parent_rel->partial_pathlist, insert_after, new_path);
854 else
855 parent_rel->partial_pathlist =
856 lcons(new_path, parent_rel->partial_pathlist);
857 }
858 else
859 {
860 /* Reject and recycle the new path */
861 pfree(new_path);
862 }
863 }
864
865 /*
866 * add_partial_path_precheck
867 * Check whether a proposed new partial path could possibly get accepted.
868 *
869 * Unlike add_path_precheck, we can ignore startup cost and parameterization,
870 * since they don't matter for partial paths (see add_partial_path). But
871 * we do want to make sure we don't add a partial path if there's already
872 * a complete path that dominates it, since in that case the proposed path
873 * is surely a loser.
874 */
875 bool
add_partial_path_precheck(RelOptInfo * parent_rel,Cost total_cost,List * pathkeys)876 add_partial_path_precheck(RelOptInfo *parent_rel, Cost total_cost,
877 List *pathkeys)
878 {
879 ListCell *p1;
880
881 /*
882 * Our goal here is twofold. First, we want to find out whether this path
883 * is clearly inferior to some existing partial path. If so, we want to
884 * reject it immediately. Second, we want to find out whether this path
885 * is clearly superior to some existing partial path -- at least, modulo
886 * final cost computations. If so, we definitely want to consider it.
887 *
888 * Unlike add_path(), we always compare pathkeys here. This is because we
889 * expect partial_pathlist to be very short, and getting a definitive
890 * answer at this stage avoids the need to call add_path_precheck.
891 */
892 foreach(p1, parent_rel->partial_pathlist)
893 {
894 Path *old_path = (Path *) lfirst(p1);
895 PathKeysComparison keyscmp;
896
897 keyscmp = compare_pathkeys(pathkeys, old_path->pathkeys);
898 if (keyscmp != PATHKEYS_DIFFERENT)
899 {
900 if (total_cost > old_path->total_cost * STD_FUZZ_FACTOR &&
901 keyscmp != PATHKEYS_BETTER1)
902 return false;
903 if (old_path->total_cost > total_cost * STD_FUZZ_FACTOR &&
904 keyscmp != PATHKEYS_BETTER2)
905 return true;
906 }
907 }
908
909 /*
910 * This path is neither clearly inferior to an existing partial path nor
911 * clearly good enough that it might replace one. Compare it to
912 * non-parallel plans. If it loses even before accounting for the cost of
913 * the Gather node, we should definitely reject it.
914 *
915 * Note that we pass the total_cost to add_path_precheck twice. This is
916 * because it's never advantageous to consider the startup cost of a
917 * partial path; the resulting plans, if run in parallel, will be run to
918 * completion.
919 */
920 if (!add_path_precheck(parent_rel, total_cost, total_cost, pathkeys,
921 NULL))
922 return false;
923
924 return true;
925 }
926
927
928 /*****************************************************************************
929 * PATH NODE CREATION ROUTINES
930 *****************************************************************************/
931
932 /*
933 * create_seqscan_path
934 * Creates a path corresponding to a sequential scan, returning the
935 * pathnode.
936 */
937 Path *
create_seqscan_path(PlannerInfo * root,RelOptInfo * rel,Relids required_outer,int parallel_workers)938 create_seqscan_path(PlannerInfo *root, RelOptInfo *rel,
939 Relids required_outer, int parallel_workers)
940 {
941 Path *pathnode = makeNode(Path);
942
943 pathnode->pathtype = T_SeqScan;
944 pathnode->parent = rel;
945 pathnode->pathtarget = rel->reltarget;
946 pathnode->param_info = get_baserel_parampathinfo(root, rel,
947 required_outer);
948 pathnode->parallel_aware = parallel_workers > 0 ? true : false;
949 pathnode->parallel_safe = rel->consider_parallel;
950 pathnode->parallel_workers = parallel_workers;
951 pathnode->pathkeys = NIL; /* seqscan has unordered result */
952
953 cost_seqscan(pathnode, root, rel, pathnode->param_info);
954
955 return pathnode;
956 }
957
958 /*
959 * create_samplescan_path
960 * Creates a path node for a sampled table scan.
961 */
962 Path *
create_samplescan_path(PlannerInfo * root,RelOptInfo * rel,Relids required_outer)963 create_samplescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
964 {
965 Path *pathnode = makeNode(Path);
966
967 pathnode->pathtype = T_SampleScan;
968 pathnode->parent = rel;
969 pathnode->pathtarget = rel->reltarget;
970 pathnode->param_info = get_baserel_parampathinfo(root, rel,
971 required_outer);
972 pathnode->parallel_aware = false;
973 pathnode->parallel_safe = rel->consider_parallel;
974 pathnode->parallel_workers = 0;
975 pathnode->pathkeys = NIL; /* samplescan has unordered result */
976
977 cost_samplescan(pathnode, root, rel, pathnode->param_info);
978
979 return pathnode;
980 }
981
982 /*
983 * create_index_path
984 * Creates a path node for an index scan.
985 *
986 * 'index' is a usable index.
987 * 'indexclauses' is a list of RestrictInfo nodes representing clauses
988 * to be used as index qual conditions in the scan.
989 * 'indexclausecols' is an integer list of index column numbers (zero based)
990 * the indexclauses can be used with.
991 * 'indexorderbys' is a list of bare expressions (no RestrictInfos)
992 * to be used as index ordering operators in the scan.
993 * 'indexorderbycols' is an integer list of index column numbers (zero based)
994 * the ordering operators can be used with.
995 * 'pathkeys' describes the ordering of the path.
996 * 'indexscandir' is ForwardScanDirection or BackwardScanDirection
997 * for an ordered index, or NoMovementScanDirection for
998 * an unordered index.
999 * 'indexonly' is true if an index-only scan is wanted.
1000 * 'required_outer' is the set of outer relids for a parameterized path.
1001 * 'loop_count' is the number of repetitions of the indexscan to factor into
1002 * estimates of caching behavior.
1003 * 'partial_path' is true if constructing a parallel index scan path.
1004 *
1005 * Returns the new path node.
1006 */
1007 IndexPath *
create_index_path(PlannerInfo * root,IndexOptInfo * index,List * indexclauses,List * indexclausecols,List * indexorderbys,List * indexorderbycols,List * pathkeys,ScanDirection indexscandir,bool indexonly,Relids required_outer,double loop_count,bool partial_path)1008 create_index_path(PlannerInfo *root,
1009 IndexOptInfo *index,
1010 List *indexclauses,
1011 List *indexclausecols,
1012 List *indexorderbys,
1013 List *indexorderbycols,
1014 List *pathkeys,
1015 ScanDirection indexscandir,
1016 bool indexonly,
1017 Relids required_outer,
1018 double loop_count,
1019 bool partial_path)
1020 {
1021 IndexPath *pathnode = makeNode(IndexPath);
1022 RelOptInfo *rel = index->rel;
1023 List *indexquals,
1024 *indexqualcols;
1025
1026 pathnode->path.pathtype = indexonly ? T_IndexOnlyScan : T_IndexScan;
1027 pathnode->path.parent = rel;
1028 pathnode->path.pathtarget = rel->reltarget;
1029 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1030 required_outer);
1031 pathnode->path.parallel_aware = false;
1032 pathnode->path.parallel_safe = rel->consider_parallel;
1033 pathnode->path.parallel_workers = 0;
1034 pathnode->path.pathkeys = pathkeys;
1035
1036 /* Convert clauses to indexquals the executor can handle */
1037 expand_indexqual_conditions(index, indexclauses, indexclausecols,
1038 &indexquals, &indexqualcols);
1039
1040 /* Fill in the pathnode */
1041 pathnode->indexinfo = index;
1042 pathnode->indexclauses = indexclauses;
1043 pathnode->indexquals = indexquals;
1044 pathnode->indexqualcols = indexqualcols;
1045 pathnode->indexorderbys = indexorderbys;
1046 pathnode->indexorderbycols = indexorderbycols;
1047 pathnode->indexscandir = indexscandir;
1048
1049 cost_index(pathnode, root, loop_count, partial_path);
1050
1051 return pathnode;
1052 }
1053
1054 /*
1055 * create_bitmap_heap_path
1056 * Creates a path node for a bitmap scan.
1057 *
1058 * 'bitmapqual' is a tree of IndexPath, BitmapAndPath, and BitmapOrPath nodes.
1059 * 'required_outer' is the set of outer relids for a parameterized path.
1060 * 'loop_count' is the number of repetitions of the indexscan to factor into
1061 * estimates of caching behavior.
1062 *
1063 * loop_count should match the value used when creating the component
1064 * IndexPaths.
1065 */
1066 BitmapHeapPath *
create_bitmap_heap_path(PlannerInfo * root,RelOptInfo * rel,Path * bitmapqual,Relids required_outer,double loop_count,int parallel_degree)1067 create_bitmap_heap_path(PlannerInfo *root,
1068 RelOptInfo *rel,
1069 Path *bitmapqual,
1070 Relids required_outer,
1071 double loop_count,
1072 int parallel_degree)
1073 {
1074 BitmapHeapPath *pathnode = makeNode(BitmapHeapPath);
1075
1076 pathnode->path.pathtype = T_BitmapHeapScan;
1077 pathnode->path.parent = rel;
1078 pathnode->path.pathtarget = rel->reltarget;
1079 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1080 required_outer);
1081 pathnode->path.parallel_aware = parallel_degree > 0 ? true : false;
1082 pathnode->path.parallel_safe = rel->consider_parallel;
1083 pathnode->path.parallel_workers = parallel_degree;
1084 pathnode->path.pathkeys = NIL; /* always unordered */
1085
1086 pathnode->bitmapqual = bitmapqual;
1087
1088 cost_bitmap_heap_scan(&pathnode->path, root, rel,
1089 pathnode->path.param_info,
1090 bitmapqual, loop_count);
1091
1092 return pathnode;
1093 }
1094
1095 /*
1096 * create_bitmap_and_path
1097 * Creates a path node representing a BitmapAnd.
1098 */
1099 BitmapAndPath *
create_bitmap_and_path(PlannerInfo * root,RelOptInfo * rel,List * bitmapquals)1100 create_bitmap_and_path(PlannerInfo *root,
1101 RelOptInfo *rel,
1102 List *bitmapquals)
1103 {
1104 BitmapAndPath *pathnode = makeNode(BitmapAndPath);
1105
1106 pathnode->path.pathtype = T_BitmapAnd;
1107 pathnode->path.parent = rel;
1108 pathnode->path.pathtarget = rel->reltarget;
1109 pathnode->path.param_info = NULL; /* not used in bitmap trees */
1110
1111 /*
1112 * Currently, a BitmapHeapPath, BitmapAndPath, or BitmapOrPath will be
1113 * parallel-safe if and only if rel->consider_parallel is set. So, we can
1114 * set the flag for this path based only on the relation-level flag,
1115 * without actually iterating over the list of children.
1116 */
1117 pathnode->path.parallel_aware = false;
1118 pathnode->path.parallel_safe = rel->consider_parallel;
1119 pathnode->path.parallel_workers = 0;
1120
1121 pathnode->path.pathkeys = NIL; /* always unordered */
1122
1123 pathnode->bitmapquals = bitmapquals;
1124
1125 /* this sets bitmapselectivity as well as the regular cost fields: */
1126 cost_bitmap_and_node(pathnode, root);
1127
1128 return pathnode;
1129 }
1130
1131 /*
1132 * create_bitmap_or_path
1133 * Creates a path node representing a BitmapOr.
1134 */
1135 BitmapOrPath *
create_bitmap_or_path(PlannerInfo * root,RelOptInfo * rel,List * bitmapquals)1136 create_bitmap_or_path(PlannerInfo *root,
1137 RelOptInfo *rel,
1138 List *bitmapquals)
1139 {
1140 BitmapOrPath *pathnode = makeNode(BitmapOrPath);
1141
1142 pathnode->path.pathtype = T_BitmapOr;
1143 pathnode->path.parent = rel;
1144 pathnode->path.pathtarget = rel->reltarget;
1145 pathnode->path.param_info = NULL; /* not used in bitmap trees */
1146
1147 /*
1148 * Currently, a BitmapHeapPath, BitmapAndPath, or BitmapOrPath will be
1149 * parallel-safe if and only if rel->consider_parallel is set. So, we can
1150 * set the flag for this path based only on the relation-level flag,
1151 * without actually iterating over the list of children.
1152 */
1153 pathnode->path.parallel_aware = false;
1154 pathnode->path.parallel_safe = rel->consider_parallel;
1155 pathnode->path.parallel_workers = 0;
1156
1157 pathnode->path.pathkeys = NIL; /* always unordered */
1158
1159 pathnode->bitmapquals = bitmapquals;
1160
1161 /* this sets bitmapselectivity as well as the regular cost fields: */
1162 cost_bitmap_or_node(pathnode, root);
1163
1164 return pathnode;
1165 }
1166
1167 /*
1168 * create_tidscan_path
1169 * Creates a path corresponding to a scan by TID, returning the pathnode.
1170 */
1171 TidPath *
create_tidscan_path(PlannerInfo * root,RelOptInfo * rel,List * tidquals,Relids required_outer)1172 create_tidscan_path(PlannerInfo *root, RelOptInfo *rel, List *tidquals,
1173 Relids required_outer)
1174 {
1175 TidPath *pathnode = makeNode(TidPath);
1176
1177 pathnode->path.pathtype = T_TidScan;
1178 pathnode->path.parent = rel;
1179 pathnode->path.pathtarget = rel->reltarget;
1180 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1181 required_outer);
1182 pathnode->path.parallel_aware = false;
1183 pathnode->path.parallel_safe = rel->consider_parallel;
1184 pathnode->path.parallel_workers = 0;
1185 pathnode->path.pathkeys = NIL; /* always unordered */
1186
1187 pathnode->tidquals = tidquals;
1188
1189 cost_tidscan(&pathnode->path, root, rel, tidquals,
1190 pathnode->path.param_info);
1191
1192 return pathnode;
1193 }
1194
1195 /*
1196 * create_append_path
1197 * Creates a path corresponding to an Append plan, returning the
1198 * pathnode.
1199 *
1200 * Note that we must handle subpaths = NIL, representing a dummy access path.
1201 */
1202 AppendPath *
create_append_path(RelOptInfo * rel,List * subpaths,Relids required_outer,int parallel_workers,List * partitioned_rels)1203 create_append_path(RelOptInfo *rel, List *subpaths, Relids required_outer,
1204 int parallel_workers, List *partitioned_rels)
1205 {
1206 AppendPath *pathnode = makeNode(AppendPath);
1207 ListCell *l;
1208
1209 pathnode->path.pathtype = T_Append;
1210 pathnode->path.parent = rel;
1211 pathnode->path.pathtarget = rel->reltarget;
1212 pathnode->path.param_info = get_appendrel_parampathinfo(rel,
1213 required_outer);
1214 pathnode->path.parallel_aware = false;
1215 pathnode->path.parallel_safe = rel->consider_parallel;
1216 pathnode->path.parallel_workers = parallel_workers;
1217 pathnode->path.pathkeys = NIL; /* result is always considered unsorted */
1218 pathnode->partitioned_rels = list_copy(partitioned_rels);
1219 pathnode->subpaths = subpaths;
1220
1221 /*
1222 * We don't bother with inventing a cost_append(), but just do it here.
1223 *
1224 * Compute rows and costs as sums of subplan rows and costs. We charge
1225 * nothing extra for the Append itself, which perhaps is too optimistic,
1226 * but since it doesn't do any selection or projection, it is a pretty
1227 * cheap node.
1228 */
1229 pathnode->path.rows = 0;
1230 pathnode->path.startup_cost = 0;
1231 pathnode->path.total_cost = 0;
1232 foreach(l, subpaths)
1233 {
1234 Path *subpath = (Path *) lfirst(l);
1235
1236 pathnode->path.rows += subpath->rows;
1237
1238 if (l == list_head(subpaths)) /* first node? */
1239 pathnode->path.startup_cost = subpath->startup_cost;
1240 pathnode->path.total_cost += subpath->total_cost;
1241 pathnode->path.parallel_safe = pathnode->path.parallel_safe &&
1242 subpath->parallel_safe;
1243
1244 /* All child paths must have same parameterization */
1245 Assert(bms_equal(PATH_REQ_OUTER(subpath), required_outer));
1246 }
1247
1248 return pathnode;
1249 }
1250
1251 /*
1252 * create_merge_append_path
1253 * Creates a path corresponding to a MergeAppend plan, returning the
1254 * pathnode.
1255 */
1256 MergeAppendPath *
create_merge_append_path(PlannerInfo * root,RelOptInfo * rel,List * subpaths,List * pathkeys,Relids required_outer,List * partitioned_rels)1257 create_merge_append_path(PlannerInfo *root,
1258 RelOptInfo *rel,
1259 List *subpaths,
1260 List *pathkeys,
1261 Relids required_outer,
1262 List *partitioned_rels)
1263 {
1264 MergeAppendPath *pathnode = makeNode(MergeAppendPath);
1265 Cost input_startup_cost;
1266 Cost input_total_cost;
1267 ListCell *l;
1268
1269 pathnode->path.pathtype = T_MergeAppend;
1270 pathnode->path.parent = rel;
1271 pathnode->path.pathtarget = rel->reltarget;
1272 pathnode->path.param_info = get_appendrel_parampathinfo(rel,
1273 required_outer);
1274 pathnode->path.parallel_aware = false;
1275 pathnode->path.parallel_safe = rel->consider_parallel;
1276 pathnode->path.parallel_workers = 0;
1277 pathnode->path.pathkeys = pathkeys;
1278 pathnode->partitioned_rels = list_copy(partitioned_rels);
1279 pathnode->subpaths = subpaths;
1280
1281 /*
1282 * Apply query-wide LIMIT if known and path is for sole base relation.
1283 * (Handling this at this low level is a bit klugy.)
1284 */
1285 if (bms_equal(rel->relids, root->all_baserels))
1286 pathnode->limit_tuples = root->limit_tuples;
1287 else
1288 pathnode->limit_tuples = -1.0;
1289
1290 /*
1291 * Add up the sizes and costs of the input paths.
1292 */
1293 pathnode->path.rows = 0;
1294 input_startup_cost = 0;
1295 input_total_cost = 0;
1296 foreach(l, subpaths)
1297 {
1298 Path *subpath = (Path *) lfirst(l);
1299
1300 pathnode->path.rows += subpath->rows;
1301 pathnode->path.parallel_safe = pathnode->path.parallel_safe &&
1302 subpath->parallel_safe;
1303
1304 if (pathkeys_contained_in(pathkeys, subpath->pathkeys))
1305 {
1306 /* Subpath is adequately ordered, we won't need to sort it */
1307 input_startup_cost += subpath->startup_cost;
1308 input_total_cost += subpath->total_cost;
1309 }
1310 else
1311 {
1312 /* We'll need to insert a Sort node, so include cost for that */
1313 Path sort_path; /* dummy for result of cost_sort */
1314
1315 cost_sort(&sort_path,
1316 root,
1317 pathkeys,
1318 subpath->total_cost,
1319 subpath->parent->tuples,
1320 subpath->pathtarget->width,
1321 0.0,
1322 work_mem,
1323 pathnode->limit_tuples);
1324 input_startup_cost += sort_path.startup_cost;
1325 input_total_cost += sort_path.total_cost;
1326 }
1327
1328 /* All child paths must have same parameterization */
1329 Assert(bms_equal(PATH_REQ_OUTER(subpath), required_outer));
1330 }
1331
1332 /* Now we can compute total costs of the MergeAppend */
1333 cost_merge_append(&pathnode->path, root,
1334 pathkeys, list_length(subpaths),
1335 input_startup_cost, input_total_cost,
1336 pathnode->path.rows);
1337
1338 return pathnode;
1339 }
1340
1341 /*
1342 * create_result_path
1343 * Creates a path representing a Result-and-nothing-else plan.
1344 *
1345 * This is only used for degenerate cases, such as a query with an empty
1346 * jointree.
1347 */
1348 ResultPath *
create_result_path(PlannerInfo * root,RelOptInfo * rel,PathTarget * target,List * resconstantqual)1349 create_result_path(PlannerInfo *root, RelOptInfo *rel,
1350 PathTarget *target, List *resconstantqual)
1351 {
1352 ResultPath *pathnode = makeNode(ResultPath);
1353
1354 pathnode->path.pathtype = T_Result;
1355 pathnode->path.parent = rel;
1356 pathnode->path.pathtarget = target;
1357 pathnode->path.param_info = NULL; /* there are no other rels... */
1358 pathnode->path.parallel_aware = false;
1359 pathnode->path.parallel_safe = rel->consider_parallel;
1360 pathnode->path.parallel_workers = 0;
1361 pathnode->path.pathkeys = NIL;
1362 pathnode->quals = resconstantqual;
1363
1364 /* Hardly worth defining a cost_result() function ... just do it */
1365 pathnode->path.rows = 1;
1366 pathnode->path.startup_cost = target->cost.startup;
1367 pathnode->path.total_cost = target->cost.startup +
1368 cpu_tuple_cost + target->cost.per_tuple;
1369 if (resconstantqual)
1370 {
1371 QualCost qual_cost;
1372
1373 cost_qual_eval(&qual_cost, resconstantqual, root);
1374 /* resconstantqual is evaluated once at startup */
1375 pathnode->path.startup_cost += qual_cost.startup + qual_cost.per_tuple;
1376 pathnode->path.total_cost += qual_cost.startup + qual_cost.per_tuple;
1377 }
1378
1379 return pathnode;
1380 }
1381
1382 /*
1383 * create_material_path
1384 * Creates a path corresponding to a Material plan, returning the
1385 * pathnode.
1386 */
1387 MaterialPath *
create_material_path(RelOptInfo * rel,Path * subpath)1388 create_material_path(RelOptInfo *rel, Path *subpath)
1389 {
1390 MaterialPath *pathnode = makeNode(MaterialPath);
1391
1392 Assert(subpath->parent == rel);
1393
1394 pathnode->path.pathtype = T_Material;
1395 pathnode->path.parent = rel;
1396 pathnode->path.pathtarget = rel->reltarget;
1397 pathnode->path.param_info = subpath->param_info;
1398 pathnode->path.parallel_aware = false;
1399 pathnode->path.parallel_safe = rel->consider_parallel &&
1400 subpath->parallel_safe;
1401 pathnode->path.parallel_workers = subpath->parallel_workers;
1402 pathnode->path.pathkeys = subpath->pathkeys;
1403
1404 pathnode->subpath = subpath;
1405
1406 cost_material(&pathnode->path,
1407 subpath->startup_cost,
1408 subpath->total_cost,
1409 subpath->rows,
1410 subpath->pathtarget->width);
1411
1412 return pathnode;
1413 }
1414
1415 /*
1416 * create_unique_path
1417 * Creates a path representing elimination of distinct rows from the
1418 * input data. Distinct-ness is defined according to the needs of the
1419 * semijoin represented by sjinfo. If it is not possible to identify
1420 * how to make the data unique, NULL is returned.
1421 *
1422 * If used at all, this is likely to be called repeatedly on the same rel;
1423 * and the input subpath should always be the same (the cheapest_total path
1424 * for the rel). So we cache the result.
1425 */
1426 UniquePath *
create_unique_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,SpecialJoinInfo * sjinfo)1427 create_unique_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath,
1428 SpecialJoinInfo *sjinfo)
1429 {
1430 UniquePath *pathnode;
1431 Path sort_path; /* dummy for result of cost_sort */
1432 Path agg_path; /* dummy for result of cost_agg */
1433 MemoryContext oldcontext;
1434 int numCols;
1435
1436 /* Caller made a mistake if subpath isn't cheapest_total ... */
1437 Assert(subpath == rel->cheapest_total_path);
1438 Assert(subpath->parent == rel);
1439 /* ... or if SpecialJoinInfo is the wrong one */
1440 Assert(sjinfo->jointype == JOIN_SEMI);
1441 Assert(bms_equal(rel->relids, sjinfo->syn_righthand));
1442
1443 /* If result already cached, return it */
1444 if (rel->cheapest_unique_path)
1445 return (UniquePath *) rel->cheapest_unique_path;
1446
1447 /* If it's not possible to unique-ify, return NULL */
1448 if (!(sjinfo->semi_can_btree || sjinfo->semi_can_hash))
1449 return NULL;
1450
1451 /*
1452 * We must ensure path struct and subsidiary data are allocated in main
1453 * planning context; otherwise GEQO memory management causes trouble.
1454 */
1455 oldcontext = MemoryContextSwitchTo(root->planner_cxt);
1456
1457 pathnode = makeNode(UniquePath);
1458
1459 pathnode->path.pathtype = T_Unique;
1460 pathnode->path.parent = rel;
1461 pathnode->path.pathtarget = rel->reltarget;
1462 pathnode->path.param_info = subpath->param_info;
1463 pathnode->path.parallel_aware = false;
1464 pathnode->path.parallel_safe = rel->consider_parallel &&
1465 subpath->parallel_safe;
1466 pathnode->path.parallel_workers = subpath->parallel_workers;
1467
1468 /*
1469 * Assume the output is unsorted, since we don't necessarily have pathkeys
1470 * to represent it. (This might get overridden below.)
1471 */
1472 pathnode->path.pathkeys = NIL;
1473
1474 pathnode->subpath = subpath;
1475 pathnode->in_operators = sjinfo->semi_operators;
1476 pathnode->uniq_exprs = sjinfo->semi_rhs_exprs;
1477
1478 /*
1479 * If the input is a relation and it has a unique index that proves the
1480 * semi_rhs_exprs are unique, then we don't need to do anything. Note
1481 * that relation_has_unique_index_for automatically considers restriction
1482 * clauses for the rel, as well.
1483 */
1484 if (rel->rtekind == RTE_RELATION && sjinfo->semi_can_btree &&
1485 relation_has_unique_index_for(root, rel, NIL,
1486 sjinfo->semi_rhs_exprs,
1487 sjinfo->semi_operators))
1488 {
1489 pathnode->umethod = UNIQUE_PATH_NOOP;
1490 pathnode->path.rows = rel->rows;
1491 pathnode->path.startup_cost = subpath->startup_cost;
1492 pathnode->path.total_cost = subpath->total_cost;
1493 pathnode->path.pathkeys = subpath->pathkeys;
1494
1495 rel->cheapest_unique_path = (Path *) pathnode;
1496
1497 MemoryContextSwitchTo(oldcontext);
1498
1499 return pathnode;
1500 }
1501
1502 /*
1503 * If the input is a subquery whose output must be unique already, then we
1504 * don't need to do anything. The test for uniqueness has to consider
1505 * exactly which columns we are extracting; for example "SELECT DISTINCT
1506 * x,y" doesn't guarantee that x alone is distinct. So we cannot check for
1507 * this optimization unless semi_rhs_exprs consists only of simple Vars
1508 * referencing subquery outputs. (Possibly we could do something with
1509 * expressions in the subquery outputs, too, but for now keep it simple.)
1510 */
1511 if (rel->rtekind == RTE_SUBQUERY)
1512 {
1513 RangeTblEntry *rte = planner_rt_fetch(rel->relid, root);
1514
1515 if (query_supports_distinctness(rte->subquery))
1516 {
1517 List *sub_tlist_colnos;
1518
1519 sub_tlist_colnos = translate_sub_tlist(sjinfo->semi_rhs_exprs,
1520 rel->relid);
1521
1522 if (sub_tlist_colnos &&
1523 query_is_distinct_for(rte->subquery,
1524 sub_tlist_colnos,
1525 sjinfo->semi_operators))
1526 {
1527 pathnode->umethod = UNIQUE_PATH_NOOP;
1528 pathnode->path.rows = rel->rows;
1529 pathnode->path.startup_cost = subpath->startup_cost;
1530 pathnode->path.total_cost = subpath->total_cost;
1531 pathnode->path.pathkeys = subpath->pathkeys;
1532
1533 rel->cheapest_unique_path = (Path *) pathnode;
1534
1535 MemoryContextSwitchTo(oldcontext);
1536
1537 return pathnode;
1538 }
1539 }
1540 }
1541
1542 /* Estimate number of output rows */
1543 pathnode->path.rows = estimate_num_groups(root,
1544 sjinfo->semi_rhs_exprs,
1545 rel->rows,
1546 NULL);
1547 numCols = list_length(sjinfo->semi_rhs_exprs);
1548
1549 if (sjinfo->semi_can_btree)
1550 {
1551 /*
1552 * Estimate cost for sort+unique implementation
1553 */
1554 cost_sort(&sort_path, root, NIL,
1555 subpath->total_cost,
1556 rel->rows,
1557 subpath->pathtarget->width,
1558 0.0,
1559 work_mem,
1560 -1.0);
1561
1562 /*
1563 * Charge one cpu_operator_cost per comparison per input tuple. We
1564 * assume all columns get compared at most of the tuples. (XXX
1565 * probably this is an overestimate.) This should agree with
1566 * create_upper_unique_path.
1567 */
1568 sort_path.total_cost += cpu_operator_cost * rel->rows * numCols;
1569 }
1570
1571 if (sjinfo->semi_can_hash)
1572 {
1573 /*
1574 * Estimate the overhead per hashtable entry at 64 bytes (same as in
1575 * planner.c).
1576 */
1577 int hashentrysize = subpath->pathtarget->width + 64;
1578
1579 if (hashentrysize * pathnode->path.rows > work_mem * 1024L)
1580 {
1581 /*
1582 * We should not try to hash. Hack the SpecialJoinInfo to
1583 * remember this, in case we come through here again.
1584 */
1585 sjinfo->semi_can_hash = false;
1586 }
1587 else
1588 cost_agg(&agg_path, root,
1589 AGG_HASHED, NULL,
1590 numCols, pathnode->path.rows,
1591 subpath->startup_cost,
1592 subpath->total_cost,
1593 rel->rows);
1594 }
1595
1596 if (sjinfo->semi_can_btree && sjinfo->semi_can_hash)
1597 {
1598 if (agg_path.total_cost < sort_path.total_cost)
1599 pathnode->umethod = UNIQUE_PATH_HASH;
1600 else
1601 pathnode->umethod = UNIQUE_PATH_SORT;
1602 }
1603 else if (sjinfo->semi_can_btree)
1604 pathnode->umethod = UNIQUE_PATH_SORT;
1605 else if (sjinfo->semi_can_hash)
1606 pathnode->umethod = UNIQUE_PATH_HASH;
1607 else
1608 {
1609 /* we can get here only if we abandoned hashing above */
1610 MemoryContextSwitchTo(oldcontext);
1611 return NULL;
1612 }
1613
1614 if (pathnode->umethod == UNIQUE_PATH_HASH)
1615 {
1616 pathnode->path.startup_cost = agg_path.startup_cost;
1617 pathnode->path.total_cost = agg_path.total_cost;
1618 }
1619 else
1620 {
1621 pathnode->path.startup_cost = sort_path.startup_cost;
1622 pathnode->path.total_cost = sort_path.total_cost;
1623 }
1624
1625 rel->cheapest_unique_path = (Path *) pathnode;
1626
1627 MemoryContextSwitchTo(oldcontext);
1628
1629 return pathnode;
1630 }
1631
1632 /*
1633 * create_gather_merge_path
1634 *
1635 * Creates a path corresponding to a gather merge scan, returning
1636 * the pathnode.
1637 */
1638 GatherMergePath *
create_gather_merge_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,PathTarget * target,List * pathkeys,Relids required_outer,double * rows)1639 create_gather_merge_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath,
1640 PathTarget *target, List *pathkeys,
1641 Relids required_outer, double *rows)
1642 {
1643 GatherMergePath *pathnode = makeNode(GatherMergePath);
1644 Cost input_startup_cost = 0;
1645 Cost input_total_cost = 0;
1646
1647 Assert(subpath->parallel_safe);
1648 Assert(pathkeys);
1649
1650 pathnode->path.pathtype = T_GatherMerge;
1651 pathnode->path.parent = rel;
1652 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1653 required_outer);
1654 pathnode->path.parallel_aware = false;
1655
1656 pathnode->subpath = subpath;
1657 pathnode->num_workers = subpath->parallel_workers;
1658 pathnode->path.pathkeys = pathkeys;
1659 pathnode->path.pathtarget = target ? target : rel->reltarget;
1660 pathnode->path.rows += subpath->rows;
1661
1662 if (pathkeys_contained_in(pathkeys, subpath->pathkeys))
1663 {
1664 /* Subpath is adequately ordered, we won't need to sort it */
1665 input_startup_cost += subpath->startup_cost;
1666 input_total_cost += subpath->total_cost;
1667 }
1668 else
1669 {
1670 /* We'll need to insert a Sort node, so include cost for that */
1671 Path sort_path; /* dummy for result of cost_sort */
1672
1673 cost_sort(&sort_path,
1674 root,
1675 pathkeys,
1676 subpath->total_cost,
1677 subpath->rows,
1678 subpath->pathtarget->width,
1679 0.0,
1680 work_mem,
1681 -1);
1682 input_startup_cost += sort_path.startup_cost;
1683 input_total_cost += sort_path.total_cost;
1684 }
1685
1686 cost_gather_merge(pathnode, root, rel, pathnode->path.param_info,
1687 input_startup_cost, input_total_cost, rows);
1688
1689 return pathnode;
1690 }
1691
1692 /*
1693 * translate_sub_tlist - get subquery column numbers represented by tlist
1694 *
1695 * The given targetlist usually contains only Vars referencing the given relid.
1696 * Extract their varattnos (ie, the column numbers of the subquery) and return
1697 * as an integer List.
1698 *
1699 * If any of the tlist items is not a simple Var, we cannot determine whether
1700 * the subquery's uniqueness condition (if any) matches ours, so punt and
1701 * return NIL.
1702 */
1703 static List *
translate_sub_tlist(List * tlist,int relid)1704 translate_sub_tlist(List *tlist, int relid)
1705 {
1706 List *result = NIL;
1707 ListCell *l;
1708
1709 foreach(l, tlist)
1710 {
1711 Var *var = (Var *) lfirst(l);
1712
1713 if (!var || !IsA(var, Var) ||
1714 var->varno != relid)
1715 return NIL; /* punt */
1716
1717 result = lappend_int(result, var->varattno);
1718 }
1719 return result;
1720 }
1721
1722 /*
1723 * create_gather_path
1724 * Creates a path corresponding to a gather scan, returning the
1725 * pathnode.
1726 *
1727 * 'rows' may optionally be set to override row estimates from other sources.
1728 */
1729 GatherPath *
create_gather_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,PathTarget * target,Relids required_outer,double * rows)1730 create_gather_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath,
1731 PathTarget *target, Relids required_outer, double *rows)
1732 {
1733 GatherPath *pathnode = makeNode(GatherPath);
1734
1735 Assert(subpath->parallel_safe);
1736
1737 pathnode->path.pathtype = T_Gather;
1738 pathnode->path.parent = rel;
1739 pathnode->path.pathtarget = target;
1740 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1741 required_outer);
1742 pathnode->path.parallel_aware = false;
1743 pathnode->path.parallel_safe = false;
1744 pathnode->path.parallel_workers = 0;
1745 pathnode->path.pathkeys = NIL; /* Gather has unordered result */
1746
1747 pathnode->subpath = subpath;
1748 pathnode->num_workers = subpath->parallel_workers;
1749 pathnode->single_copy = false;
1750
1751 if (pathnode->num_workers == 0)
1752 {
1753 pathnode->path.pathkeys = subpath->pathkeys;
1754 pathnode->num_workers = 1;
1755 pathnode->single_copy = true;
1756 }
1757
1758 cost_gather(pathnode, root, rel, pathnode->path.param_info, rows);
1759
1760 return pathnode;
1761 }
1762
1763 /*
1764 * create_subqueryscan_path
1765 * Creates a path corresponding to a scan of a subquery,
1766 * returning the pathnode.
1767 */
1768 SubqueryScanPath *
create_subqueryscan_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,List * pathkeys,Relids required_outer)1769 create_subqueryscan_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath,
1770 List *pathkeys, Relids required_outer)
1771 {
1772 SubqueryScanPath *pathnode = makeNode(SubqueryScanPath);
1773
1774 pathnode->path.pathtype = T_SubqueryScan;
1775 pathnode->path.parent = rel;
1776 pathnode->path.pathtarget = rel->reltarget;
1777 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1778 required_outer);
1779 pathnode->path.parallel_aware = false;
1780 pathnode->path.parallel_safe = rel->consider_parallel &&
1781 subpath->parallel_safe;
1782 pathnode->path.parallel_workers = subpath->parallel_workers;
1783 pathnode->path.pathkeys = pathkeys;
1784 pathnode->subpath = subpath;
1785
1786 cost_subqueryscan(pathnode, root, rel, pathnode->path.param_info);
1787
1788 return pathnode;
1789 }
1790
1791 /*
1792 * create_functionscan_path
1793 * Creates a path corresponding to a sequential scan of a function,
1794 * returning the pathnode.
1795 */
1796 Path *
create_functionscan_path(PlannerInfo * root,RelOptInfo * rel,List * pathkeys,Relids required_outer)1797 create_functionscan_path(PlannerInfo *root, RelOptInfo *rel,
1798 List *pathkeys, Relids required_outer)
1799 {
1800 Path *pathnode = makeNode(Path);
1801
1802 pathnode->pathtype = T_FunctionScan;
1803 pathnode->parent = rel;
1804 pathnode->pathtarget = rel->reltarget;
1805 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1806 required_outer);
1807 pathnode->parallel_aware = false;
1808 pathnode->parallel_safe = rel->consider_parallel;
1809 pathnode->parallel_workers = 0;
1810 pathnode->pathkeys = pathkeys;
1811
1812 cost_functionscan(pathnode, root, rel, pathnode->param_info);
1813
1814 return pathnode;
1815 }
1816
1817 /*
1818 * create_tablefuncscan_path
1819 * Creates a path corresponding to a sequential scan of a table function,
1820 * returning the pathnode.
1821 */
1822 Path *
create_tablefuncscan_path(PlannerInfo * root,RelOptInfo * rel,Relids required_outer)1823 create_tablefuncscan_path(PlannerInfo *root, RelOptInfo *rel,
1824 Relids required_outer)
1825 {
1826 Path *pathnode = makeNode(Path);
1827
1828 pathnode->pathtype = T_TableFuncScan;
1829 pathnode->parent = rel;
1830 pathnode->pathtarget = rel->reltarget;
1831 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1832 required_outer);
1833 pathnode->parallel_aware = false;
1834 pathnode->parallel_safe = rel->consider_parallel;
1835 pathnode->parallel_workers = 0;
1836 pathnode->pathkeys = NIL; /* result is always unordered */
1837
1838 cost_tablefuncscan(pathnode, root, rel, pathnode->param_info);
1839
1840 return pathnode;
1841 }
1842
1843 /*
1844 * create_valuesscan_path
1845 * Creates a path corresponding to a scan of a VALUES list,
1846 * returning the pathnode.
1847 */
1848 Path *
create_valuesscan_path(PlannerInfo * root,RelOptInfo * rel,Relids required_outer)1849 create_valuesscan_path(PlannerInfo *root, RelOptInfo *rel,
1850 Relids required_outer)
1851 {
1852 Path *pathnode = makeNode(Path);
1853
1854 pathnode->pathtype = T_ValuesScan;
1855 pathnode->parent = rel;
1856 pathnode->pathtarget = rel->reltarget;
1857 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1858 required_outer);
1859 pathnode->parallel_aware = false;
1860 pathnode->parallel_safe = rel->consider_parallel;
1861 pathnode->parallel_workers = 0;
1862 pathnode->pathkeys = NIL; /* result is always unordered */
1863
1864 cost_valuesscan(pathnode, root, rel, pathnode->param_info);
1865
1866 return pathnode;
1867 }
1868
1869 /*
1870 * create_ctescan_path
1871 * Creates a path corresponding to a scan of a non-self-reference CTE,
1872 * returning the pathnode.
1873 */
1874 Path *
create_ctescan_path(PlannerInfo * root,RelOptInfo * rel,Relids required_outer)1875 create_ctescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
1876 {
1877 Path *pathnode = makeNode(Path);
1878
1879 pathnode->pathtype = T_CteScan;
1880 pathnode->parent = rel;
1881 pathnode->pathtarget = rel->reltarget;
1882 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1883 required_outer);
1884 pathnode->parallel_aware = false;
1885 pathnode->parallel_safe = rel->consider_parallel;
1886 pathnode->parallel_workers = 0;
1887 pathnode->pathkeys = NIL; /* XXX for now, result is always unordered */
1888
1889 cost_ctescan(pathnode, root, rel, pathnode->param_info);
1890
1891 return pathnode;
1892 }
1893
1894 /*
1895 * create_namedtuplestorescan_path
1896 * Creates a path corresponding to a scan of a named tuplestore, returning
1897 * the pathnode.
1898 */
1899 Path *
create_namedtuplestorescan_path(PlannerInfo * root,RelOptInfo * rel,Relids required_outer)1900 create_namedtuplestorescan_path(PlannerInfo *root, RelOptInfo *rel,
1901 Relids required_outer)
1902 {
1903 Path *pathnode = makeNode(Path);
1904
1905 pathnode->pathtype = T_NamedTuplestoreScan;
1906 pathnode->parent = rel;
1907 pathnode->pathtarget = rel->reltarget;
1908 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1909 required_outer);
1910 pathnode->parallel_aware = false;
1911 pathnode->parallel_safe = rel->consider_parallel;
1912 pathnode->parallel_workers = 0;
1913 pathnode->pathkeys = NIL; /* result is always unordered */
1914
1915 cost_namedtuplestorescan(pathnode, root, rel, pathnode->param_info);
1916
1917 return pathnode;
1918 }
1919
1920 /*
1921 * create_worktablescan_path
1922 * Creates a path corresponding to a scan of a self-reference CTE,
1923 * returning the pathnode.
1924 */
1925 Path *
create_worktablescan_path(PlannerInfo * root,RelOptInfo * rel,Relids required_outer)1926 create_worktablescan_path(PlannerInfo *root, RelOptInfo *rel,
1927 Relids required_outer)
1928 {
1929 Path *pathnode = makeNode(Path);
1930
1931 pathnode->pathtype = T_WorkTableScan;
1932 pathnode->parent = rel;
1933 pathnode->pathtarget = rel->reltarget;
1934 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1935 required_outer);
1936 pathnode->parallel_aware = false;
1937 pathnode->parallel_safe = rel->consider_parallel;
1938 pathnode->parallel_workers = 0;
1939 pathnode->pathkeys = NIL; /* result is always unordered */
1940
1941 /* Cost is the same as for a regular CTE scan */
1942 cost_ctescan(pathnode, root, rel, pathnode->param_info);
1943
1944 return pathnode;
1945 }
1946
1947 /*
1948 * create_foreignscan_path
1949 * Creates a path corresponding to a scan of a foreign table, foreign join,
1950 * or foreign upper-relation processing, returning the pathnode.
1951 *
1952 * This function is never called from core Postgres; rather, it's expected
1953 * to be called by the GetForeignPaths, GetForeignJoinPaths, or
1954 * GetForeignUpperPaths function of a foreign data wrapper. We make the FDW
1955 * supply all fields of the path, since we do not have any way to calculate
1956 * them in core. However, there is a usually-sane default for the pathtarget
1957 * (rel->reltarget), so we let a NULL for "target" select that.
1958 */
1959 ForeignPath *
create_foreignscan_path(PlannerInfo * root,RelOptInfo * rel,PathTarget * target,double rows,Cost startup_cost,Cost total_cost,List * pathkeys,Relids required_outer,Path * fdw_outerpath,List * fdw_private)1960 create_foreignscan_path(PlannerInfo *root, RelOptInfo *rel,
1961 PathTarget *target,
1962 double rows, Cost startup_cost, Cost total_cost,
1963 List *pathkeys,
1964 Relids required_outer,
1965 Path *fdw_outerpath,
1966 List *fdw_private)
1967 {
1968 ForeignPath *pathnode = makeNode(ForeignPath);
1969
1970 /*
1971 * Since the path's required_outer should always include all the rel's
1972 * lateral_relids, forcibly add those if necessary. This is a bit of a
1973 * hack, but up till early 2019 the contrib FDWs failed to ensure that,
1974 * and it's likely that the same error has propagated into many external
1975 * FDWs. Don't risk modifying the passed-in relid set here.
1976 */
1977 if (rel->lateral_relids && !bms_is_subset(rel->lateral_relids,
1978 required_outer))
1979 required_outer = bms_union(required_outer, rel->lateral_relids);
1980
1981 /*
1982 * Although this function is only designed to be used for scans of
1983 * baserels, before v12 postgres_fdw abused it to make paths for join and
1984 * upper rels. It will work for such cases as long as required_outer is
1985 * empty (otherwise get_baserel_parampathinfo does the wrong thing), which
1986 * fortunately is the expected case for now.
1987 */
1988 if (!bms_is_empty(required_outer) && !IS_SIMPLE_REL(rel))
1989 elog(ERROR, "parameterized foreign joins are not supported yet");
1990
1991 pathnode->path.pathtype = T_ForeignScan;
1992 pathnode->path.parent = rel;
1993 pathnode->path.pathtarget = target ? target : rel->reltarget;
1994 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1995 required_outer);
1996 pathnode->path.parallel_aware = false;
1997 pathnode->path.parallel_safe = rel->consider_parallel;
1998 pathnode->path.parallel_workers = 0;
1999 pathnode->path.rows = rows;
2000 pathnode->path.startup_cost = startup_cost;
2001 pathnode->path.total_cost = total_cost;
2002 pathnode->path.pathkeys = pathkeys;
2003
2004 pathnode->fdw_outerpath = fdw_outerpath;
2005 pathnode->fdw_private = fdw_private;
2006
2007 return pathnode;
2008 }
2009
2010 /*
2011 * calc_nestloop_required_outer
2012 * Compute the required_outer set for a nestloop join path
2013 *
2014 * Note: result must not share storage with either input
2015 */
2016 Relids
calc_nestloop_required_outer(Path * outer_path,Path * inner_path)2017 calc_nestloop_required_outer(Path *outer_path, Path *inner_path)
2018 {
2019 Relids outer_paramrels = PATH_REQ_OUTER(outer_path);
2020 Relids inner_paramrels = PATH_REQ_OUTER(inner_path);
2021 Relids required_outer;
2022
2023 /* inner_path can require rels from outer path, but not vice versa */
2024 Assert(!bms_overlap(outer_paramrels, inner_path->parent->relids));
2025 /* easy case if inner path is not parameterized */
2026 if (!inner_paramrels)
2027 return bms_copy(outer_paramrels);
2028 /* else, form the union ... */
2029 required_outer = bms_union(outer_paramrels, inner_paramrels);
2030 /* ... and remove any mention of now-satisfied outer rels */
2031 required_outer = bms_del_members(required_outer,
2032 outer_path->parent->relids);
2033 /* maintain invariant that required_outer is exactly NULL if empty */
2034 if (bms_is_empty(required_outer))
2035 {
2036 bms_free(required_outer);
2037 required_outer = NULL;
2038 }
2039 return required_outer;
2040 }
2041
2042 /*
2043 * calc_non_nestloop_required_outer
2044 * Compute the required_outer set for a merge or hash join path
2045 *
2046 * Note: result must not share storage with either input
2047 */
2048 Relids
calc_non_nestloop_required_outer(Path * outer_path,Path * inner_path)2049 calc_non_nestloop_required_outer(Path *outer_path, Path *inner_path)
2050 {
2051 Relids outer_paramrels = PATH_REQ_OUTER(outer_path);
2052 Relids inner_paramrels = PATH_REQ_OUTER(inner_path);
2053 Relids required_outer;
2054
2055 /* neither path can require rels from the other */
2056 Assert(!bms_overlap(outer_paramrels, inner_path->parent->relids));
2057 Assert(!bms_overlap(inner_paramrels, outer_path->parent->relids));
2058 /* form the union ... */
2059 required_outer = bms_union(outer_paramrels, inner_paramrels);
2060 /* we do not need an explicit test for empty; bms_union gets it right */
2061 return required_outer;
2062 }
2063
2064 /*
2065 * create_nestloop_path
2066 * Creates a pathnode corresponding to a nestloop join between two
2067 * relations.
2068 *
2069 * 'joinrel' is the join relation.
2070 * 'jointype' is the type of join required
2071 * 'workspace' is the result from initial_cost_nestloop
2072 * 'extra' contains various information about the join
2073 * 'outer_path' is the outer path
2074 * 'inner_path' is the inner path
2075 * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2076 * 'pathkeys' are the path keys of the new join path
2077 * 'required_outer' is the set of required outer rels
2078 *
2079 * Returns the resulting path node.
2080 */
2081 NestPath *
create_nestloop_path(PlannerInfo * root,RelOptInfo * joinrel,JoinType jointype,JoinCostWorkspace * workspace,JoinPathExtraData * extra,Path * outer_path,Path * inner_path,List * restrict_clauses,List * pathkeys,Relids required_outer)2082 create_nestloop_path(PlannerInfo *root,
2083 RelOptInfo *joinrel,
2084 JoinType jointype,
2085 JoinCostWorkspace *workspace,
2086 JoinPathExtraData *extra,
2087 Path *outer_path,
2088 Path *inner_path,
2089 List *restrict_clauses,
2090 List *pathkeys,
2091 Relids required_outer)
2092 {
2093 NestPath *pathnode = makeNode(NestPath);
2094 Relids inner_req_outer = PATH_REQ_OUTER(inner_path);
2095
2096 /*
2097 * If the inner path is parameterized by the outer, we must drop any
2098 * restrict_clauses that are due to be moved into the inner path. We have
2099 * to do this now, rather than postpone the work till createplan time,
2100 * because the restrict_clauses list can affect the size and cost
2101 * estimates for this path.
2102 */
2103 if (bms_overlap(inner_req_outer, outer_path->parent->relids))
2104 {
2105 Relids inner_and_outer = bms_union(inner_path->parent->relids,
2106 inner_req_outer);
2107 List *jclauses = NIL;
2108 ListCell *lc;
2109
2110 foreach(lc, restrict_clauses)
2111 {
2112 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
2113
2114 if (!join_clause_is_movable_into(rinfo,
2115 inner_path->parent->relids,
2116 inner_and_outer))
2117 jclauses = lappend(jclauses, rinfo);
2118 }
2119 restrict_clauses = jclauses;
2120 }
2121
2122 pathnode->path.pathtype = T_NestLoop;
2123 pathnode->path.parent = joinrel;
2124 pathnode->path.pathtarget = joinrel->reltarget;
2125 pathnode->path.param_info =
2126 get_joinrel_parampathinfo(root,
2127 joinrel,
2128 outer_path,
2129 inner_path,
2130 extra->sjinfo,
2131 required_outer,
2132 &restrict_clauses);
2133 pathnode->path.parallel_aware = false;
2134 pathnode->path.parallel_safe = joinrel->consider_parallel &&
2135 outer_path->parallel_safe && inner_path->parallel_safe;
2136 /* This is a foolish way to estimate parallel_workers, but for now... */
2137 pathnode->path.parallel_workers = outer_path->parallel_workers;
2138 pathnode->path.pathkeys = pathkeys;
2139 pathnode->jointype = jointype;
2140 pathnode->inner_unique = extra->inner_unique;
2141 pathnode->outerjoinpath = outer_path;
2142 pathnode->innerjoinpath = inner_path;
2143 pathnode->joinrestrictinfo = restrict_clauses;
2144
2145 final_cost_nestloop(root, pathnode, workspace, extra);
2146
2147 return pathnode;
2148 }
2149
2150 /*
2151 * create_mergejoin_path
2152 * Creates a pathnode corresponding to a mergejoin join between
2153 * two relations
2154 *
2155 * 'joinrel' is the join relation
2156 * 'jointype' is the type of join required
2157 * 'workspace' is the result from initial_cost_mergejoin
2158 * 'extra' contains various information about the join
2159 * 'outer_path' is the outer path
2160 * 'inner_path' is the inner path
2161 * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2162 * 'pathkeys' are the path keys of the new join path
2163 * 'required_outer' is the set of required outer rels
2164 * 'mergeclauses' are the RestrictInfo nodes to use as merge clauses
2165 * (this should be a subset of the restrict_clauses list)
2166 * 'outersortkeys' are the sort varkeys for the outer relation
2167 * 'innersortkeys' are the sort varkeys for the inner relation
2168 */
2169 MergePath *
create_mergejoin_path(PlannerInfo * root,RelOptInfo * joinrel,JoinType jointype,JoinCostWorkspace * workspace,JoinPathExtraData * extra,Path * outer_path,Path * inner_path,List * restrict_clauses,List * pathkeys,Relids required_outer,List * mergeclauses,List * outersortkeys,List * innersortkeys)2170 create_mergejoin_path(PlannerInfo *root,
2171 RelOptInfo *joinrel,
2172 JoinType jointype,
2173 JoinCostWorkspace *workspace,
2174 JoinPathExtraData *extra,
2175 Path *outer_path,
2176 Path *inner_path,
2177 List *restrict_clauses,
2178 List *pathkeys,
2179 Relids required_outer,
2180 List *mergeclauses,
2181 List *outersortkeys,
2182 List *innersortkeys)
2183 {
2184 MergePath *pathnode = makeNode(MergePath);
2185
2186 pathnode->jpath.path.pathtype = T_MergeJoin;
2187 pathnode->jpath.path.parent = joinrel;
2188 pathnode->jpath.path.pathtarget = joinrel->reltarget;
2189 pathnode->jpath.path.param_info =
2190 get_joinrel_parampathinfo(root,
2191 joinrel,
2192 outer_path,
2193 inner_path,
2194 extra->sjinfo,
2195 required_outer,
2196 &restrict_clauses);
2197 pathnode->jpath.path.parallel_aware = false;
2198 pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2199 outer_path->parallel_safe && inner_path->parallel_safe;
2200 /* This is a foolish way to estimate parallel_workers, but for now... */
2201 pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2202 pathnode->jpath.path.pathkeys = pathkeys;
2203 pathnode->jpath.jointype = jointype;
2204 pathnode->jpath.inner_unique = extra->inner_unique;
2205 pathnode->jpath.outerjoinpath = outer_path;
2206 pathnode->jpath.innerjoinpath = inner_path;
2207 pathnode->jpath.joinrestrictinfo = restrict_clauses;
2208 pathnode->path_mergeclauses = mergeclauses;
2209 pathnode->outersortkeys = outersortkeys;
2210 pathnode->innersortkeys = innersortkeys;
2211 /* pathnode->skip_mark_restore will be set by final_cost_mergejoin */
2212 /* pathnode->materialize_inner will be set by final_cost_mergejoin */
2213
2214 final_cost_mergejoin(root, pathnode, workspace, extra);
2215
2216 return pathnode;
2217 }
2218
2219 /*
2220 * create_hashjoin_path
2221 * Creates a pathnode corresponding to a hash join between two relations.
2222 *
2223 * 'joinrel' is the join relation
2224 * 'jointype' is the type of join required
2225 * 'workspace' is the result from initial_cost_hashjoin
2226 * 'extra' contains various information about the join
2227 * 'outer_path' is the cheapest outer path
2228 * 'inner_path' is the cheapest inner path
2229 * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2230 * 'required_outer' is the set of required outer rels
2231 * 'hashclauses' are the RestrictInfo nodes to use as hash clauses
2232 * (this should be a subset of the restrict_clauses list)
2233 */
2234 HashPath *
create_hashjoin_path(PlannerInfo * root,RelOptInfo * joinrel,JoinType jointype,JoinCostWorkspace * workspace,JoinPathExtraData * extra,Path * outer_path,Path * inner_path,List * restrict_clauses,Relids required_outer,List * hashclauses)2235 create_hashjoin_path(PlannerInfo *root,
2236 RelOptInfo *joinrel,
2237 JoinType jointype,
2238 JoinCostWorkspace *workspace,
2239 JoinPathExtraData *extra,
2240 Path *outer_path,
2241 Path *inner_path,
2242 List *restrict_clauses,
2243 Relids required_outer,
2244 List *hashclauses)
2245 {
2246 HashPath *pathnode = makeNode(HashPath);
2247
2248 pathnode->jpath.path.pathtype = T_HashJoin;
2249 pathnode->jpath.path.parent = joinrel;
2250 pathnode->jpath.path.pathtarget = joinrel->reltarget;
2251 pathnode->jpath.path.param_info =
2252 get_joinrel_parampathinfo(root,
2253 joinrel,
2254 outer_path,
2255 inner_path,
2256 extra->sjinfo,
2257 required_outer,
2258 &restrict_clauses);
2259 pathnode->jpath.path.parallel_aware = false;
2260 pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2261 outer_path->parallel_safe && inner_path->parallel_safe;
2262 /* This is a foolish way to estimate parallel_workers, but for now... */
2263 pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2264
2265 /*
2266 * A hashjoin never has pathkeys, since its output ordering is
2267 * unpredictable due to possible batching. XXX If the inner relation is
2268 * small enough, we could instruct the executor that it must not batch,
2269 * and then we could assume that the output inherits the outer relation's
2270 * ordering, which might save a sort step. However there is considerable
2271 * downside if our estimate of the inner relation size is badly off. For
2272 * the moment we don't risk it. (Note also that if we wanted to take this
2273 * seriously, joinpath.c would have to consider many more paths for the
2274 * outer rel than it does now.)
2275 */
2276 pathnode->jpath.path.pathkeys = NIL;
2277 pathnode->jpath.jointype = jointype;
2278 pathnode->jpath.inner_unique = extra->inner_unique;
2279 pathnode->jpath.outerjoinpath = outer_path;
2280 pathnode->jpath.innerjoinpath = inner_path;
2281 pathnode->jpath.joinrestrictinfo = restrict_clauses;
2282 pathnode->path_hashclauses = hashclauses;
2283 /* final_cost_hashjoin will fill in pathnode->num_batches */
2284
2285 final_cost_hashjoin(root, pathnode, workspace, extra);
2286
2287 return pathnode;
2288 }
2289
2290 /*
2291 * create_projection_path
2292 * Creates a pathnode that represents performing a projection.
2293 *
2294 * 'rel' is the parent relation associated with the result
2295 * 'subpath' is the path representing the source of data
2296 * 'target' is the PathTarget to be computed
2297 */
2298 ProjectionPath *
create_projection_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,PathTarget * target)2299 create_projection_path(PlannerInfo *root,
2300 RelOptInfo *rel,
2301 Path *subpath,
2302 PathTarget *target)
2303 {
2304 ProjectionPath *pathnode = makeNode(ProjectionPath);
2305 PathTarget *oldtarget = subpath->pathtarget;
2306
2307 pathnode->path.pathtype = T_Result;
2308 pathnode->path.parent = rel;
2309 pathnode->path.pathtarget = target;
2310 /* For now, assume we are above any joins, so no parameterization */
2311 pathnode->path.param_info = NULL;
2312 pathnode->path.parallel_aware = false;
2313 pathnode->path.parallel_safe = rel->consider_parallel &&
2314 subpath->parallel_safe &&
2315 is_parallel_safe(root, (Node *) target->exprs);
2316 pathnode->path.parallel_workers = subpath->parallel_workers;
2317 /* Projection does not change the sort order */
2318 pathnode->path.pathkeys = subpath->pathkeys;
2319
2320 pathnode->subpath = subpath;
2321
2322 /*
2323 * We might not need a separate Result node. If the input plan node type
2324 * can project, we can just tell it to project something else. Or, if it
2325 * can't project but the desired target has the same expression list as
2326 * what the input will produce anyway, we can still give it the desired
2327 * tlist (possibly changing its ressortgroupref labels, but nothing else).
2328 * Note: in the latter case, create_projection_plan has to recheck our
2329 * conclusion; see comments therein.
2330 */
2331 if (is_projection_capable_path(subpath) ||
2332 equal(oldtarget->exprs, target->exprs))
2333 {
2334 /* No separate Result node needed */
2335 pathnode->dummypp = true;
2336
2337 /*
2338 * Set cost of plan as subpath's cost, adjusted for tlist replacement.
2339 */
2340 pathnode->path.rows = subpath->rows;
2341 pathnode->path.startup_cost = subpath->startup_cost +
2342 (target->cost.startup - oldtarget->cost.startup);
2343 pathnode->path.total_cost = subpath->total_cost +
2344 (target->cost.startup - oldtarget->cost.startup) +
2345 (target->cost.per_tuple - oldtarget->cost.per_tuple) * subpath->rows;
2346 }
2347 else
2348 {
2349 /* We really do need the Result node */
2350 pathnode->dummypp = false;
2351
2352 /*
2353 * The Result node's cost is cpu_tuple_cost per row, plus the cost of
2354 * evaluating the tlist. There is no qual to worry about.
2355 */
2356 pathnode->path.rows = subpath->rows;
2357 pathnode->path.startup_cost = subpath->startup_cost +
2358 target->cost.startup;
2359 pathnode->path.total_cost = subpath->total_cost +
2360 target->cost.startup +
2361 (cpu_tuple_cost + target->cost.per_tuple) * subpath->rows;
2362 }
2363
2364 return pathnode;
2365 }
2366
2367 /*
2368 * apply_projection_to_path
2369 * Add a projection step, or just apply the target directly to given path.
2370 *
2371 * This has the same net effect as create_projection_path(), except that if
2372 * a separate Result plan node isn't needed, we just replace the given path's
2373 * pathtarget with the desired one. This must be used only when the caller
2374 * knows that the given path isn't referenced elsewhere and so can be modified
2375 * in-place.
2376 *
2377 * If the input path is a GatherPath, we try to push the new target down to
2378 * its input as well; this is a yet more invasive modification of the input
2379 * path, which create_projection_path() can't do.
2380 *
2381 * Note that we mustn't change the source path's parent link; so when it is
2382 * add_path'd to "rel" things will be a bit inconsistent. So far that has
2383 * not caused any trouble.
2384 *
2385 * 'rel' is the parent relation associated with the result
2386 * 'path' is the path representing the source of data
2387 * 'target' is the PathTarget to be computed
2388 */
2389 Path *
apply_projection_to_path(PlannerInfo * root,RelOptInfo * rel,Path * path,PathTarget * target)2390 apply_projection_to_path(PlannerInfo *root,
2391 RelOptInfo *rel,
2392 Path *path,
2393 PathTarget *target)
2394 {
2395 QualCost oldcost;
2396
2397 /*
2398 * If given path can't project, we might need a Result node, so make a
2399 * separate ProjectionPath.
2400 */
2401 if (!is_projection_capable_path(path))
2402 return (Path *) create_projection_path(root, rel, path, target);
2403
2404 /*
2405 * We can just jam the desired tlist into the existing path, being sure to
2406 * update its cost estimates appropriately.
2407 */
2408 oldcost = path->pathtarget->cost;
2409 path->pathtarget = target;
2410
2411 path->startup_cost += target->cost.startup - oldcost.startup;
2412 path->total_cost += target->cost.startup - oldcost.startup +
2413 (target->cost.per_tuple - oldcost.per_tuple) * path->rows;
2414
2415 /*
2416 * If the path happens to be a Gather path, we'd like to arrange for the
2417 * subpath to return the required target list so that workers can help
2418 * project. But if there is something that is not parallel-safe in the
2419 * target expressions, then we can't.
2420 */
2421 if (IsA(path, GatherPath) &&
2422 is_parallel_safe(root, (Node *) target->exprs))
2423 {
2424 GatherPath *gpath = (GatherPath *) path;
2425
2426 /*
2427 * We always use create_projection_path here, even if the subpath is
2428 * projection-capable, so as to avoid modifying the subpath in place.
2429 * It seems unlikely at present that there could be any other
2430 * references to the subpath, but better safe than sorry.
2431 *
2432 * Note that we don't change the GatherPath's cost estimates; it might
2433 * be appropriate to do so, to reflect the fact that the bulk of the
2434 * target evaluation will happen in workers.
2435 */
2436 gpath->subpath = (Path *)
2437 create_projection_path(root,
2438 gpath->subpath->parent,
2439 gpath->subpath,
2440 target);
2441 }
2442 else if (path->parallel_safe &&
2443 !is_parallel_safe(root, (Node *) target->exprs))
2444 {
2445 /*
2446 * We're inserting a parallel-restricted target list into a path
2447 * currently marked parallel-safe, so we have to mark it as no longer
2448 * safe.
2449 */
2450 path->parallel_safe = false;
2451 }
2452
2453 return path;
2454 }
2455
2456 /*
2457 * create_set_projection_path
2458 * Creates a pathnode that represents performing a projection that
2459 * includes set-returning functions.
2460 *
2461 * 'rel' is the parent relation associated with the result
2462 * 'subpath' is the path representing the source of data
2463 * 'target' is the PathTarget to be computed
2464 */
2465 ProjectSetPath *
create_set_projection_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,PathTarget * target)2466 create_set_projection_path(PlannerInfo *root,
2467 RelOptInfo *rel,
2468 Path *subpath,
2469 PathTarget *target)
2470 {
2471 ProjectSetPath *pathnode = makeNode(ProjectSetPath);
2472 double tlist_rows;
2473 ListCell *lc;
2474
2475 pathnode->path.pathtype = T_ProjectSet;
2476 pathnode->path.parent = rel;
2477 pathnode->path.pathtarget = target;
2478 /* For now, assume we are above any joins, so no parameterization */
2479 pathnode->path.param_info = NULL;
2480 pathnode->path.parallel_aware = false;
2481 pathnode->path.parallel_safe = rel->consider_parallel &&
2482 subpath->parallel_safe &&
2483 is_parallel_safe(root, (Node *) target->exprs);
2484 pathnode->path.parallel_workers = subpath->parallel_workers;
2485 /* Projection does not change the sort order XXX? */
2486 pathnode->path.pathkeys = subpath->pathkeys;
2487
2488 pathnode->subpath = subpath;
2489
2490 /*
2491 * Estimate number of rows produced by SRFs for each row of input; if
2492 * there's more than one in this node, use the maximum.
2493 */
2494 tlist_rows = 1;
2495 foreach(lc, target->exprs)
2496 {
2497 Node *node = (Node *) lfirst(lc);
2498 double itemrows;
2499
2500 itemrows = expression_returns_set_rows(node);
2501 if (tlist_rows < itemrows)
2502 tlist_rows = itemrows;
2503 }
2504
2505 /*
2506 * In addition to the cost of evaluating the tlist, charge cpu_tuple_cost
2507 * per input row, and half of cpu_tuple_cost for each added output row.
2508 * This is slightly bizarre maybe, but it's what 9.6 did; we may revisit
2509 * this estimate later.
2510 */
2511 pathnode->path.rows = subpath->rows * tlist_rows;
2512 pathnode->path.startup_cost = subpath->startup_cost +
2513 target->cost.startup;
2514 pathnode->path.total_cost = subpath->total_cost +
2515 target->cost.startup +
2516 (cpu_tuple_cost + target->cost.per_tuple) * subpath->rows +
2517 (pathnode->path.rows - subpath->rows) * cpu_tuple_cost / 2;
2518
2519 return pathnode;
2520 }
2521
2522 /*
2523 * create_sort_path
2524 * Creates a pathnode that represents performing an explicit sort.
2525 *
2526 * 'rel' is the parent relation associated with the result
2527 * 'subpath' is the path representing the source of data
2528 * 'pathkeys' represents the desired sort order
2529 * 'limit_tuples' is the estimated bound on the number of output tuples,
2530 * or -1 if no LIMIT or couldn't estimate
2531 */
2532 SortPath *
create_sort_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,List * pathkeys,double limit_tuples)2533 create_sort_path(PlannerInfo *root,
2534 RelOptInfo *rel,
2535 Path *subpath,
2536 List *pathkeys,
2537 double limit_tuples)
2538 {
2539 SortPath *pathnode = makeNode(SortPath);
2540
2541 pathnode->path.pathtype = T_Sort;
2542 pathnode->path.parent = rel;
2543 /* Sort doesn't project, so use source path's pathtarget */
2544 pathnode->path.pathtarget = subpath->pathtarget;
2545 /* For now, assume we are above any joins, so no parameterization */
2546 pathnode->path.param_info = NULL;
2547 pathnode->path.parallel_aware = false;
2548 pathnode->path.parallel_safe = rel->consider_parallel &&
2549 subpath->parallel_safe;
2550 pathnode->path.parallel_workers = subpath->parallel_workers;
2551 pathnode->path.pathkeys = pathkeys;
2552
2553 pathnode->subpath = subpath;
2554
2555 cost_sort(&pathnode->path, root, pathkeys,
2556 subpath->total_cost,
2557 subpath->rows,
2558 subpath->pathtarget->width,
2559 0.0, /* XXX comparison_cost shouldn't be 0? */
2560 work_mem, limit_tuples);
2561
2562 return pathnode;
2563 }
2564
2565 /*
2566 * create_group_path
2567 * Creates a pathnode that represents performing grouping of presorted input
2568 *
2569 * 'rel' is the parent relation associated with the result
2570 * 'subpath' is the path representing the source of data
2571 * 'target' is the PathTarget to be computed
2572 * 'groupClause' is a list of SortGroupClause's representing the grouping
2573 * 'qual' is the HAVING quals if any
2574 * 'numGroups' is the estimated number of groups
2575 */
2576 GroupPath *
create_group_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,PathTarget * target,List * groupClause,List * qual,double numGroups)2577 create_group_path(PlannerInfo *root,
2578 RelOptInfo *rel,
2579 Path *subpath,
2580 PathTarget *target,
2581 List *groupClause,
2582 List *qual,
2583 double numGroups)
2584 {
2585 GroupPath *pathnode = makeNode(GroupPath);
2586
2587 pathnode->path.pathtype = T_Group;
2588 pathnode->path.parent = rel;
2589 pathnode->path.pathtarget = target;
2590 /* For now, assume we are above any joins, so no parameterization */
2591 pathnode->path.param_info = NULL;
2592 pathnode->path.parallel_aware = false;
2593 pathnode->path.parallel_safe = rel->consider_parallel &&
2594 subpath->parallel_safe;
2595 pathnode->path.parallel_workers = subpath->parallel_workers;
2596 /* Group doesn't change sort ordering */
2597 pathnode->path.pathkeys = subpath->pathkeys;
2598
2599 pathnode->subpath = subpath;
2600
2601 pathnode->groupClause = groupClause;
2602 pathnode->qual = qual;
2603
2604 cost_group(&pathnode->path, root,
2605 list_length(groupClause),
2606 numGroups,
2607 subpath->startup_cost, subpath->total_cost,
2608 subpath->rows);
2609
2610 /* add tlist eval cost for each output row */
2611 pathnode->path.startup_cost += target->cost.startup;
2612 pathnode->path.total_cost += target->cost.startup +
2613 target->cost.per_tuple * pathnode->path.rows;
2614
2615 return pathnode;
2616 }
2617
2618 /*
2619 * create_upper_unique_path
2620 * Creates a pathnode that represents performing an explicit Unique step
2621 * on presorted input.
2622 *
2623 * This produces a Unique plan node, but the use-case is so different from
2624 * create_unique_path that it doesn't seem worth trying to merge the two.
2625 *
2626 * 'rel' is the parent relation associated with the result
2627 * 'subpath' is the path representing the source of data
2628 * 'numCols' is the number of grouping columns
2629 * 'numGroups' is the estimated number of groups
2630 *
2631 * The input path must be sorted on the grouping columns, plus possibly
2632 * additional columns; so the first numCols pathkeys are the grouping columns
2633 */
2634 UpperUniquePath *
create_upper_unique_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,int numCols,double numGroups)2635 create_upper_unique_path(PlannerInfo *root,
2636 RelOptInfo *rel,
2637 Path *subpath,
2638 int numCols,
2639 double numGroups)
2640 {
2641 UpperUniquePath *pathnode = makeNode(UpperUniquePath);
2642
2643 pathnode->path.pathtype = T_Unique;
2644 pathnode->path.parent = rel;
2645 /* Unique doesn't project, so use source path's pathtarget */
2646 pathnode->path.pathtarget = subpath->pathtarget;
2647 /* For now, assume we are above any joins, so no parameterization */
2648 pathnode->path.param_info = NULL;
2649 pathnode->path.parallel_aware = false;
2650 pathnode->path.parallel_safe = rel->consider_parallel &&
2651 subpath->parallel_safe;
2652 pathnode->path.parallel_workers = subpath->parallel_workers;
2653 /* Unique doesn't change the input ordering */
2654 pathnode->path.pathkeys = subpath->pathkeys;
2655
2656 pathnode->subpath = subpath;
2657 pathnode->numkeys = numCols;
2658
2659 /*
2660 * Charge one cpu_operator_cost per comparison per input tuple. We assume
2661 * all columns get compared at most of the tuples. (XXX probably this is
2662 * an overestimate.)
2663 */
2664 pathnode->path.startup_cost = subpath->startup_cost;
2665 pathnode->path.total_cost = subpath->total_cost +
2666 cpu_operator_cost * subpath->rows * numCols;
2667 pathnode->path.rows = numGroups;
2668
2669 return pathnode;
2670 }
2671
2672 /*
2673 * create_agg_path
2674 * Creates a pathnode that represents performing aggregation/grouping
2675 *
2676 * 'rel' is the parent relation associated with the result
2677 * 'subpath' is the path representing the source of data
2678 * 'target' is the PathTarget to be computed
2679 * 'aggstrategy' is the Agg node's basic implementation strategy
2680 * 'aggsplit' is the Agg node's aggregate-splitting mode
2681 * 'groupClause' is a list of SortGroupClause's representing the grouping
2682 * 'qual' is the HAVING quals if any
2683 * 'aggcosts' contains cost info about the aggregate functions to be computed
2684 * 'numGroups' is the estimated number of groups (1 if not grouping)
2685 */
2686 AggPath *
create_agg_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,PathTarget * target,AggStrategy aggstrategy,AggSplit aggsplit,List * groupClause,List * qual,const AggClauseCosts * aggcosts,double numGroups)2687 create_agg_path(PlannerInfo *root,
2688 RelOptInfo *rel,
2689 Path *subpath,
2690 PathTarget *target,
2691 AggStrategy aggstrategy,
2692 AggSplit aggsplit,
2693 List *groupClause,
2694 List *qual,
2695 const AggClauseCosts *aggcosts,
2696 double numGroups)
2697 {
2698 AggPath *pathnode = makeNode(AggPath);
2699
2700 pathnode->path.pathtype = T_Agg;
2701 pathnode->path.parent = rel;
2702 pathnode->path.pathtarget = target;
2703 /* For now, assume we are above any joins, so no parameterization */
2704 pathnode->path.param_info = NULL;
2705 pathnode->path.parallel_aware = false;
2706 pathnode->path.parallel_safe = rel->consider_parallel &&
2707 subpath->parallel_safe;
2708 pathnode->path.parallel_workers = subpath->parallel_workers;
2709 if (aggstrategy == AGG_SORTED)
2710 pathnode->path.pathkeys = subpath->pathkeys; /* preserves order */
2711 else
2712 pathnode->path.pathkeys = NIL; /* output is unordered */
2713 pathnode->subpath = subpath;
2714
2715 pathnode->aggstrategy = aggstrategy;
2716 pathnode->aggsplit = aggsplit;
2717 pathnode->numGroups = numGroups;
2718 pathnode->groupClause = groupClause;
2719 pathnode->qual = qual;
2720
2721 cost_agg(&pathnode->path, root,
2722 aggstrategy, aggcosts,
2723 list_length(groupClause), numGroups,
2724 subpath->startup_cost, subpath->total_cost,
2725 subpath->rows);
2726
2727 /* add tlist eval cost for each output row */
2728 pathnode->path.startup_cost += target->cost.startup;
2729 pathnode->path.total_cost += target->cost.startup +
2730 target->cost.per_tuple * pathnode->path.rows;
2731
2732 return pathnode;
2733 }
2734
2735 /*
2736 * create_groupingsets_path
2737 * Creates a pathnode that represents performing GROUPING SETS aggregation
2738 *
2739 * GroupingSetsPath represents sorted grouping with one or more grouping sets.
2740 * The input path's result must be sorted to match the last entry in
2741 * rollup_groupclauses.
2742 *
2743 * 'rel' is the parent relation associated with the result
2744 * 'subpath' is the path representing the source of data
2745 * 'target' is the PathTarget to be computed
2746 * 'having_qual' is the HAVING quals if any
2747 * 'rollups' is a list of RollupData nodes
2748 * 'agg_costs' contains cost info about the aggregate functions to be computed
2749 * 'numGroups' is the estimated total number of groups
2750 */
2751 GroupingSetsPath *
create_groupingsets_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,PathTarget * target,List * having_qual,AggStrategy aggstrategy,List * rollups,const AggClauseCosts * agg_costs,double numGroups)2752 create_groupingsets_path(PlannerInfo *root,
2753 RelOptInfo *rel,
2754 Path *subpath,
2755 PathTarget *target,
2756 List *having_qual,
2757 AggStrategy aggstrategy,
2758 List *rollups,
2759 const AggClauseCosts *agg_costs,
2760 double numGroups)
2761 {
2762 GroupingSetsPath *pathnode = makeNode(GroupingSetsPath);
2763 ListCell *lc;
2764 bool is_first = true;
2765 bool is_first_sort = true;
2766
2767 /* The topmost generated Plan node will be an Agg */
2768 pathnode->path.pathtype = T_Agg;
2769 pathnode->path.parent = rel;
2770 pathnode->path.pathtarget = target;
2771 pathnode->path.param_info = subpath->param_info;
2772 pathnode->path.parallel_aware = false;
2773 pathnode->path.parallel_safe = rel->consider_parallel &&
2774 subpath->parallel_safe;
2775 pathnode->path.parallel_workers = subpath->parallel_workers;
2776 pathnode->subpath = subpath;
2777
2778 /*
2779 * Simplify callers by downgrading AGG_SORTED to AGG_PLAIN, and AGG_MIXED
2780 * to AGG_HASHED, here if possible.
2781 */
2782 if (aggstrategy == AGG_SORTED &&
2783 list_length(rollups) == 1 &&
2784 ((RollupData *) linitial(rollups))->groupClause == NIL)
2785 aggstrategy = AGG_PLAIN;
2786
2787 if (aggstrategy == AGG_MIXED &&
2788 list_length(rollups) == 1)
2789 aggstrategy = AGG_HASHED;
2790
2791 /*
2792 * Output will be in sorted order by group_pathkeys if, and only if, there
2793 * is a single rollup operation on a non-empty list of grouping
2794 * expressions.
2795 */
2796 if (aggstrategy == AGG_SORTED && list_length(rollups) == 1)
2797 pathnode->path.pathkeys = root->group_pathkeys;
2798 else
2799 pathnode->path.pathkeys = NIL;
2800
2801 pathnode->aggstrategy = aggstrategy;
2802 pathnode->rollups = rollups;
2803 pathnode->qual = having_qual;
2804
2805 Assert(rollups != NIL);
2806 Assert(aggstrategy != AGG_PLAIN || list_length(rollups) == 1);
2807 Assert(aggstrategy != AGG_MIXED || list_length(rollups) > 1);
2808
2809 foreach(lc, rollups)
2810 {
2811 RollupData *rollup = lfirst(lc);
2812 List *gsets = rollup->gsets;
2813 int numGroupCols = list_length(linitial(gsets));
2814
2815 /*
2816 * In AGG_SORTED or AGG_PLAIN mode, the first rollup takes the
2817 * (already-sorted) input, and following ones do their own sort.
2818 *
2819 * In AGG_HASHED mode, there is one rollup for each grouping set.
2820 *
2821 * In AGG_MIXED mode, the first rollups are hashed, the first
2822 * non-hashed one takes the (already-sorted) input, and following ones
2823 * do their own sort.
2824 */
2825 if (is_first)
2826 {
2827 cost_agg(&pathnode->path, root,
2828 aggstrategy,
2829 agg_costs,
2830 numGroupCols,
2831 rollup->numGroups,
2832 subpath->startup_cost,
2833 subpath->total_cost,
2834 subpath->rows);
2835 is_first = false;
2836 if (!rollup->is_hashed)
2837 is_first_sort = false;
2838 }
2839 else
2840 {
2841 Path sort_path; /* dummy for result of cost_sort */
2842 Path agg_path; /* dummy for result of cost_agg */
2843
2844 if (rollup->is_hashed || is_first_sort)
2845 {
2846 /*
2847 * Account for cost of aggregation, but don't charge input
2848 * cost again
2849 */
2850 cost_agg(&agg_path, root,
2851 rollup->is_hashed ? AGG_HASHED : AGG_SORTED,
2852 agg_costs,
2853 numGroupCols,
2854 rollup->numGroups,
2855 0.0, 0.0,
2856 subpath->rows);
2857 if (!rollup->is_hashed)
2858 is_first_sort = false;
2859 }
2860 else
2861 {
2862 /* Account for cost of sort, but don't charge input cost again */
2863 cost_sort(&sort_path, root, NIL,
2864 0.0,
2865 subpath->rows,
2866 subpath->pathtarget->width,
2867 0.0,
2868 work_mem,
2869 -1.0);
2870
2871 /* Account for cost of aggregation */
2872
2873 cost_agg(&agg_path, root,
2874 AGG_SORTED,
2875 agg_costs,
2876 numGroupCols,
2877 rollup->numGroups,
2878 sort_path.startup_cost,
2879 sort_path.total_cost,
2880 sort_path.rows);
2881 }
2882
2883 pathnode->path.total_cost += agg_path.total_cost;
2884 pathnode->path.rows += agg_path.rows;
2885 }
2886 }
2887
2888 /* add tlist eval cost for each output row */
2889 pathnode->path.startup_cost += target->cost.startup;
2890 pathnode->path.total_cost += target->cost.startup +
2891 target->cost.per_tuple * pathnode->path.rows;
2892
2893 return pathnode;
2894 }
2895
2896 /*
2897 * create_minmaxagg_path
2898 * Creates a pathnode that represents computation of MIN/MAX aggregates
2899 *
2900 * 'rel' is the parent relation associated with the result
2901 * 'target' is the PathTarget to be computed
2902 * 'mmaggregates' is a list of MinMaxAggInfo structs
2903 * 'quals' is the HAVING quals if any
2904 */
2905 MinMaxAggPath *
create_minmaxagg_path(PlannerInfo * root,RelOptInfo * rel,PathTarget * target,List * mmaggregates,List * quals)2906 create_minmaxagg_path(PlannerInfo *root,
2907 RelOptInfo *rel,
2908 PathTarget *target,
2909 List *mmaggregates,
2910 List *quals)
2911 {
2912 MinMaxAggPath *pathnode = makeNode(MinMaxAggPath);
2913 Cost initplan_cost;
2914 ListCell *lc;
2915
2916 /* The topmost generated Plan node will be a Result */
2917 pathnode->path.pathtype = T_Result;
2918 pathnode->path.parent = rel;
2919 pathnode->path.pathtarget = target;
2920 /* For now, assume we are above any joins, so no parameterization */
2921 pathnode->path.param_info = NULL;
2922 pathnode->path.parallel_aware = false;
2923 /* A MinMaxAggPath implies use of subplans, so cannot be parallel-safe */
2924 pathnode->path.parallel_safe = false;
2925 pathnode->path.parallel_workers = 0;
2926 /* Result is one unordered row */
2927 pathnode->path.rows = 1;
2928 pathnode->path.pathkeys = NIL;
2929
2930 pathnode->mmaggregates = mmaggregates;
2931 pathnode->quals = quals;
2932
2933 /* Calculate cost of all the initplans ... */
2934 initplan_cost = 0;
2935 foreach(lc, mmaggregates)
2936 {
2937 MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
2938
2939 initplan_cost += mminfo->pathcost;
2940 }
2941
2942 /* add tlist eval cost for each output row, plus cpu_tuple_cost */
2943 pathnode->path.startup_cost = initplan_cost + target->cost.startup;
2944 pathnode->path.total_cost = initplan_cost + target->cost.startup +
2945 target->cost.per_tuple + cpu_tuple_cost;
2946
2947 return pathnode;
2948 }
2949
2950 /*
2951 * create_windowagg_path
2952 * Creates a pathnode that represents computation of window functions
2953 *
2954 * 'rel' is the parent relation associated with the result
2955 * 'subpath' is the path representing the source of data
2956 * 'target' is the PathTarget to be computed
2957 * 'windowFuncs' is a list of WindowFunc structs
2958 * 'winclause' is a WindowClause that is common to all the WindowFuncs
2959 * 'winpathkeys' is the pathkeys for the PARTITION keys + ORDER keys
2960 *
2961 * The actual sort order of the input must match winpathkeys, but might
2962 * have additional keys after those.
2963 */
2964 WindowAggPath *
create_windowagg_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,PathTarget * target,List * windowFuncs,WindowClause * winclause,List * winpathkeys)2965 create_windowagg_path(PlannerInfo *root,
2966 RelOptInfo *rel,
2967 Path *subpath,
2968 PathTarget *target,
2969 List *windowFuncs,
2970 WindowClause *winclause,
2971 List *winpathkeys)
2972 {
2973 WindowAggPath *pathnode = makeNode(WindowAggPath);
2974
2975 pathnode->path.pathtype = T_WindowAgg;
2976 pathnode->path.parent = rel;
2977 pathnode->path.pathtarget = target;
2978 /* For now, assume we are above any joins, so no parameterization */
2979 pathnode->path.param_info = NULL;
2980 pathnode->path.parallel_aware = false;
2981 pathnode->path.parallel_safe = rel->consider_parallel &&
2982 subpath->parallel_safe;
2983 pathnode->path.parallel_workers = subpath->parallel_workers;
2984 /* WindowAgg preserves the input sort order */
2985 pathnode->path.pathkeys = subpath->pathkeys;
2986
2987 pathnode->subpath = subpath;
2988 pathnode->winclause = winclause;
2989 pathnode->winpathkeys = winpathkeys;
2990
2991 /*
2992 * For costing purposes, assume that there are no redundant partitioning
2993 * or ordering columns; it's not worth the trouble to deal with that
2994 * corner case here. So we just pass the unmodified list lengths to
2995 * cost_windowagg.
2996 */
2997 cost_windowagg(&pathnode->path, root,
2998 windowFuncs,
2999 list_length(winclause->partitionClause),
3000 list_length(winclause->orderClause),
3001 subpath->startup_cost,
3002 subpath->total_cost,
3003 subpath->rows);
3004
3005 /* add tlist eval cost for each output row */
3006 pathnode->path.startup_cost += target->cost.startup;
3007 pathnode->path.total_cost += target->cost.startup +
3008 target->cost.per_tuple * pathnode->path.rows;
3009
3010 return pathnode;
3011 }
3012
3013 /*
3014 * create_setop_path
3015 * Creates a pathnode that represents computation of INTERSECT or EXCEPT
3016 *
3017 * 'rel' is the parent relation associated with the result
3018 * 'subpath' is the path representing the source of data
3019 * 'cmd' is the specific semantics (INTERSECT or EXCEPT, with/without ALL)
3020 * 'strategy' is the implementation strategy (sorted or hashed)
3021 * 'distinctList' is a list of SortGroupClause's representing the grouping
3022 * 'flagColIdx' is the column number where the flag column will be, if any
3023 * 'firstFlag' is the flag value for the first input relation when hashing;
3024 * or -1 when sorting
3025 * 'numGroups' is the estimated number of distinct groups
3026 * 'outputRows' is the estimated number of output rows
3027 */
3028 SetOpPath *
create_setop_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,SetOpCmd cmd,SetOpStrategy strategy,List * distinctList,AttrNumber flagColIdx,int firstFlag,double numGroups,double outputRows)3029 create_setop_path(PlannerInfo *root,
3030 RelOptInfo *rel,
3031 Path *subpath,
3032 SetOpCmd cmd,
3033 SetOpStrategy strategy,
3034 List *distinctList,
3035 AttrNumber flagColIdx,
3036 int firstFlag,
3037 double numGroups,
3038 double outputRows)
3039 {
3040 SetOpPath *pathnode = makeNode(SetOpPath);
3041
3042 pathnode->path.pathtype = T_SetOp;
3043 pathnode->path.parent = rel;
3044 /* SetOp doesn't project, so use source path's pathtarget */
3045 pathnode->path.pathtarget = subpath->pathtarget;
3046 /* For now, assume we are above any joins, so no parameterization */
3047 pathnode->path.param_info = NULL;
3048 pathnode->path.parallel_aware = false;
3049 pathnode->path.parallel_safe = rel->consider_parallel &&
3050 subpath->parallel_safe;
3051 pathnode->path.parallel_workers = subpath->parallel_workers;
3052 /* SetOp preserves the input sort order if in sort mode */
3053 pathnode->path.pathkeys =
3054 (strategy == SETOP_SORTED) ? subpath->pathkeys : NIL;
3055
3056 pathnode->subpath = subpath;
3057 pathnode->cmd = cmd;
3058 pathnode->strategy = strategy;
3059 pathnode->distinctList = distinctList;
3060 pathnode->flagColIdx = flagColIdx;
3061 pathnode->firstFlag = firstFlag;
3062 pathnode->numGroups = numGroups;
3063
3064 /*
3065 * Charge one cpu_operator_cost per comparison per input tuple. We assume
3066 * all columns get compared at most of the tuples.
3067 */
3068 pathnode->path.startup_cost = subpath->startup_cost;
3069 pathnode->path.total_cost = subpath->total_cost +
3070 cpu_operator_cost * subpath->rows * list_length(distinctList);
3071 pathnode->path.rows = outputRows;
3072
3073 return pathnode;
3074 }
3075
3076 /*
3077 * create_recursiveunion_path
3078 * Creates a pathnode that represents a recursive UNION node
3079 *
3080 * 'rel' is the parent relation associated with the result
3081 * 'leftpath' is the source of data for the non-recursive term
3082 * 'rightpath' is the source of data for the recursive term
3083 * 'target' is the PathTarget to be computed
3084 * 'distinctList' is a list of SortGroupClause's representing the grouping
3085 * 'wtParam' is the ID of Param representing work table
3086 * 'numGroups' is the estimated number of groups
3087 *
3088 * For recursive UNION ALL, distinctList is empty and numGroups is zero
3089 */
3090 RecursiveUnionPath *
create_recursiveunion_path(PlannerInfo * root,RelOptInfo * rel,Path * leftpath,Path * rightpath,PathTarget * target,List * distinctList,int wtParam,double numGroups)3091 create_recursiveunion_path(PlannerInfo *root,
3092 RelOptInfo *rel,
3093 Path *leftpath,
3094 Path *rightpath,
3095 PathTarget *target,
3096 List *distinctList,
3097 int wtParam,
3098 double numGroups)
3099 {
3100 RecursiveUnionPath *pathnode = makeNode(RecursiveUnionPath);
3101
3102 pathnode->path.pathtype = T_RecursiveUnion;
3103 pathnode->path.parent = rel;
3104 pathnode->path.pathtarget = target;
3105 /* For now, assume we are above any joins, so no parameterization */
3106 pathnode->path.param_info = NULL;
3107 pathnode->path.parallel_aware = false;
3108 pathnode->path.parallel_safe = rel->consider_parallel &&
3109 leftpath->parallel_safe && rightpath->parallel_safe;
3110 /* Foolish, but we'll do it like joins for now: */
3111 pathnode->path.parallel_workers = leftpath->parallel_workers;
3112 /* RecursiveUnion result is always unsorted */
3113 pathnode->path.pathkeys = NIL;
3114
3115 pathnode->leftpath = leftpath;
3116 pathnode->rightpath = rightpath;
3117 pathnode->distinctList = distinctList;
3118 pathnode->wtParam = wtParam;
3119 pathnode->numGroups = numGroups;
3120
3121 cost_recursive_union(&pathnode->path, leftpath, rightpath);
3122
3123 return pathnode;
3124 }
3125
3126 /*
3127 * create_lockrows_path
3128 * Creates a pathnode that represents acquiring row locks
3129 *
3130 * 'rel' is the parent relation associated with the result
3131 * 'subpath' is the path representing the source of data
3132 * 'rowMarks' is a list of PlanRowMark's
3133 * 'epqParam' is the ID of Param for EvalPlanQual re-eval
3134 */
3135 LockRowsPath *
create_lockrows_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,List * rowMarks,int epqParam)3136 create_lockrows_path(PlannerInfo *root, RelOptInfo *rel,
3137 Path *subpath, List *rowMarks, int epqParam)
3138 {
3139 LockRowsPath *pathnode = makeNode(LockRowsPath);
3140
3141 pathnode->path.pathtype = T_LockRows;
3142 pathnode->path.parent = rel;
3143 /* LockRows doesn't project, so use source path's pathtarget */
3144 pathnode->path.pathtarget = subpath->pathtarget;
3145 /* For now, assume we are above any joins, so no parameterization */
3146 pathnode->path.param_info = NULL;
3147 pathnode->path.parallel_aware = false;
3148 pathnode->path.parallel_safe = false;
3149 pathnode->path.parallel_workers = 0;
3150 pathnode->path.rows = subpath->rows;
3151
3152 /*
3153 * The result cannot be assumed sorted, since locking might cause the sort
3154 * key columns to be replaced with new values.
3155 */
3156 pathnode->path.pathkeys = NIL;
3157
3158 pathnode->subpath = subpath;
3159 pathnode->rowMarks = rowMarks;
3160 pathnode->epqParam = epqParam;
3161
3162 /*
3163 * We should charge something extra for the costs of row locking and
3164 * possible refetches, but it's hard to say how much. For now, use
3165 * cpu_tuple_cost per row.
3166 */
3167 pathnode->path.startup_cost = subpath->startup_cost;
3168 pathnode->path.total_cost = subpath->total_cost +
3169 cpu_tuple_cost * subpath->rows;
3170
3171 return pathnode;
3172 }
3173
3174 /*
3175 * create_modifytable_path
3176 * Creates a pathnode that represents performing INSERT/UPDATE/DELETE mods
3177 *
3178 * 'rel' is the parent relation associated with the result
3179 * 'operation' is the operation type
3180 * 'canSetTag' is true if we set the command tag/es_processed
3181 * 'nominalRelation' is the parent RT index for use of EXPLAIN
3182 * 'partitioned_rels' is an integer list of RT indexes of non-leaf tables in
3183 * the partition tree, if this is an UPDATE/DELETE to a partitioned table.
3184 * Otherwise NIL.
3185 * 'resultRelations' is an integer list of actual RT indexes of target rel(s)
3186 * 'subpaths' is a list of Path(s) producing source data (one per rel)
3187 * 'subroots' is a list of PlannerInfo structs (one per rel)
3188 * 'withCheckOptionLists' is a list of WCO lists (one per rel)
3189 * 'returningLists' is a list of RETURNING tlists (one per rel)
3190 * 'rowMarks' is a list of PlanRowMarks (non-locking only)
3191 * 'onconflict' is the ON CONFLICT clause, or NULL
3192 * 'epqParam' is the ID of Param for EvalPlanQual re-eval
3193 */
3194 ModifyTablePath *
create_modifytable_path(PlannerInfo * root,RelOptInfo * rel,CmdType operation,bool canSetTag,Index nominalRelation,List * partitioned_rels,List * resultRelations,List * subpaths,List * subroots,List * withCheckOptionLists,List * returningLists,List * rowMarks,OnConflictExpr * onconflict,int epqParam)3195 create_modifytable_path(PlannerInfo *root, RelOptInfo *rel,
3196 CmdType operation, bool canSetTag,
3197 Index nominalRelation, List *partitioned_rels,
3198 List *resultRelations, List *subpaths,
3199 List *subroots,
3200 List *withCheckOptionLists, List *returningLists,
3201 List *rowMarks, OnConflictExpr *onconflict,
3202 int epqParam)
3203 {
3204 ModifyTablePath *pathnode = makeNode(ModifyTablePath);
3205 double total_size;
3206 ListCell *lc;
3207
3208 Assert(list_length(resultRelations) == list_length(subpaths));
3209 Assert(list_length(resultRelations) == list_length(subroots));
3210 Assert(withCheckOptionLists == NIL ||
3211 list_length(resultRelations) == list_length(withCheckOptionLists));
3212 Assert(returningLists == NIL ||
3213 list_length(resultRelations) == list_length(returningLists));
3214
3215 pathnode->path.pathtype = T_ModifyTable;
3216 pathnode->path.parent = rel;
3217 /* pathtarget is not interesting, just make it minimally valid */
3218 pathnode->path.pathtarget = rel->reltarget;
3219 /* For now, assume we are above any joins, so no parameterization */
3220 pathnode->path.param_info = NULL;
3221 pathnode->path.parallel_aware = false;
3222 pathnode->path.parallel_safe = false;
3223 pathnode->path.parallel_workers = 0;
3224 pathnode->path.pathkeys = NIL;
3225
3226 /*
3227 * Compute cost & rowcount as sum of subpath costs & rowcounts.
3228 *
3229 * Currently, we don't charge anything extra for the actual table
3230 * modification work, nor for the WITH CHECK OPTIONS or RETURNING
3231 * expressions if any. It would only be window dressing, since
3232 * ModifyTable is always a top-level node and there is no way for the
3233 * costs to change any higher-level planning choices. But we might want
3234 * to make it look better sometime.
3235 */
3236 pathnode->path.startup_cost = 0;
3237 pathnode->path.total_cost = 0;
3238 pathnode->path.rows = 0;
3239 total_size = 0;
3240 foreach(lc, subpaths)
3241 {
3242 Path *subpath = (Path *) lfirst(lc);
3243
3244 if (lc == list_head(subpaths)) /* first node? */
3245 pathnode->path.startup_cost = subpath->startup_cost;
3246 pathnode->path.total_cost += subpath->total_cost;
3247 pathnode->path.rows += subpath->rows;
3248 total_size += subpath->pathtarget->width * subpath->rows;
3249 }
3250
3251 /*
3252 * Set width to the average width of the subpath outputs. XXX this is
3253 * totally wrong: we should report zero if no RETURNING, else an average
3254 * of the RETURNING tlist widths. But it's what happened historically,
3255 * and improving it is a task for another day.
3256 */
3257 if (pathnode->path.rows > 0)
3258 total_size /= pathnode->path.rows;
3259 pathnode->path.pathtarget->width = rint(total_size);
3260
3261 pathnode->operation = operation;
3262 pathnode->canSetTag = canSetTag;
3263 pathnode->nominalRelation = nominalRelation;
3264 pathnode->partitioned_rels = list_copy(partitioned_rels);
3265 pathnode->resultRelations = resultRelations;
3266 pathnode->subpaths = subpaths;
3267 pathnode->subroots = subroots;
3268 pathnode->withCheckOptionLists = withCheckOptionLists;
3269 pathnode->returningLists = returningLists;
3270 pathnode->rowMarks = rowMarks;
3271 pathnode->onconflict = onconflict;
3272 pathnode->epqParam = epqParam;
3273
3274 return pathnode;
3275 }
3276
3277 /*
3278 * create_limit_path
3279 * Creates a pathnode that represents performing LIMIT/OFFSET
3280 *
3281 * In addition to providing the actual OFFSET and LIMIT expressions,
3282 * the caller must provide estimates of their values for costing purposes.
3283 * The estimates are as computed by preprocess_limit(), ie, 0 represents
3284 * the clause not being present, and -1 means it's present but we could
3285 * not estimate its value.
3286 *
3287 * 'rel' is the parent relation associated with the result
3288 * 'subpath' is the path representing the source of data
3289 * 'limitOffset' is the actual OFFSET expression, or NULL
3290 * 'limitCount' is the actual LIMIT expression, or NULL
3291 * 'offset_est' is the estimated value of the OFFSET expression
3292 * 'count_est' is the estimated value of the LIMIT expression
3293 */
3294 LimitPath *
create_limit_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,Node * limitOffset,Node * limitCount,int64 offset_est,int64 count_est)3295 create_limit_path(PlannerInfo *root, RelOptInfo *rel,
3296 Path *subpath,
3297 Node *limitOffset, Node *limitCount,
3298 int64 offset_est, int64 count_est)
3299 {
3300 LimitPath *pathnode = makeNode(LimitPath);
3301
3302 pathnode->path.pathtype = T_Limit;
3303 pathnode->path.parent = rel;
3304 /* Limit doesn't project, so use source path's pathtarget */
3305 pathnode->path.pathtarget = subpath->pathtarget;
3306 /* For now, assume we are above any joins, so no parameterization */
3307 pathnode->path.param_info = NULL;
3308 pathnode->path.parallel_aware = false;
3309 pathnode->path.parallel_safe = rel->consider_parallel &&
3310 subpath->parallel_safe;
3311 pathnode->path.parallel_workers = subpath->parallel_workers;
3312 pathnode->path.rows = subpath->rows;
3313 pathnode->path.startup_cost = subpath->startup_cost;
3314 pathnode->path.total_cost = subpath->total_cost;
3315 pathnode->path.pathkeys = subpath->pathkeys;
3316 pathnode->subpath = subpath;
3317 pathnode->limitOffset = limitOffset;
3318 pathnode->limitCount = limitCount;
3319
3320 /*
3321 * Adjust the output rows count and costs according to the offset/limit.
3322 * This is only a cosmetic issue if we are at top level, but if we are
3323 * building a subquery then it's important to report correct info to the
3324 * outer planner.
3325 *
3326 * When the offset or count couldn't be estimated, use 10% of the
3327 * estimated number of rows emitted from the subpath.
3328 *
3329 * XXX we don't bother to add eval costs of the offset/limit expressions
3330 * themselves to the path costs. In theory we should, but in most cases
3331 * those expressions are trivial and it's just not worth the trouble.
3332 */
3333 if (offset_est != 0)
3334 {
3335 double offset_rows;
3336
3337 if (offset_est > 0)
3338 offset_rows = (double) offset_est;
3339 else
3340 offset_rows = clamp_row_est(subpath->rows * 0.10);
3341 if (offset_rows > pathnode->path.rows)
3342 offset_rows = pathnode->path.rows;
3343 if (subpath->rows > 0)
3344 pathnode->path.startup_cost +=
3345 (subpath->total_cost - subpath->startup_cost)
3346 * offset_rows / subpath->rows;
3347 pathnode->path.rows -= offset_rows;
3348 if (pathnode->path.rows < 1)
3349 pathnode->path.rows = 1;
3350 }
3351
3352 if (count_est != 0)
3353 {
3354 double count_rows;
3355
3356 if (count_est > 0)
3357 count_rows = (double) count_est;
3358 else
3359 count_rows = clamp_row_est(subpath->rows * 0.10);
3360 if (count_rows > pathnode->path.rows)
3361 count_rows = pathnode->path.rows;
3362 if (subpath->rows > 0)
3363 pathnode->path.total_cost = pathnode->path.startup_cost +
3364 (subpath->total_cost - subpath->startup_cost)
3365 * count_rows / subpath->rows;
3366 pathnode->path.rows = count_rows;
3367 if (pathnode->path.rows < 1)
3368 pathnode->path.rows = 1;
3369 }
3370
3371 return pathnode;
3372 }
3373
3374
3375 /*
3376 * reparameterize_path
3377 * Attempt to modify a Path to have greater parameterization
3378 *
3379 * We use this to attempt to bring all child paths of an appendrel to the
3380 * same parameterization level, ensuring that they all enforce the same set
3381 * of join quals (and thus that that parameterization can be attributed to
3382 * an append path built from such paths). Currently, only a few path types
3383 * are supported here, though more could be added at need. We return NULL
3384 * if we can't reparameterize the given path.
3385 *
3386 * Note: we intentionally do not pass created paths to add_path(); it would
3387 * possibly try to delete them on the grounds of being cost-inferior to the
3388 * paths they were made from, and we don't want that. Paths made here are
3389 * not necessarily of general-purpose usefulness, but they can be useful
3390 * as members of an append path.
3391 */
3392 Path *
reparameterize_path(PlannerInfo * root,Path * path,Relids required_outer,double loop_count)3393 reparameterize_path(PlannerInfo *root, Path *path,
3394 Relids required_outer,
3395 double loop_count)
3396 {
3397 RelOptInfo *rel = path->parent;
3398
3399 /* Can only increase, not decrease, path's parameterization */
3400 if (!bms_is_subset(PATH_REQ_OUTER(path), required_outer))
3401 return NULL;
3402 switch (path->pathtype)
3403 {
3404 case T_SeqScan:
3405 return create_seqscan_path(root, rel, required_outer, 0);
3406 case T_SampleScan:
3407 return (Path *) create_samplescan_path(root, rel, required_outer);
3408 case T_IndexScan:
3409 case T_IndexOnlyScan:
3410 {
3411 IndexPath *ipath = (IndexPath *) path;
3412 IndexPath *newpath = makeNode(IndexPath);
3413
3414 /*
3415 * We can't use create_index_path directly, and would not want
3416 * to because it would re-compute the indexqual conditions
3417 * which is wasted effort. Instead we hack things a bit:
3418 * flat-copy the path node, revise its param_info, and redo
3419 * the cost estimate.
3420 */
3421 memcpy(newpath, ipath, sizeof(IndexPath));
3422 newpath->path.param_info =
3423 get_baserel_parampathinfo(root, rel, required_outer);
3424 cost_index(newpath, root, loop_count, false);
3425 return (Path *) newpath;
3426 }
3427 case T_BitmapHeapScan:
3428 {
3429 BitmapHeapPath *bpath = (BitmapHeapPath *) path;
3430
3431 return (Path *) create_bitmap_heap_path(root,
3432 rel,
3433 bpath->bitmapqual,
3434 required_outer,
3435 loop_count, 0);
3436 }
3437 case T_SubqueryScan:
3438 {
3439 SubqueryScanPath *spath = (SubqueryScanPath *) path;
3440
3441 return (Path *) create_subqueryscan_path(root,
3442 rel,
3443 spath->subpath,
3444 spath->path.pathkeys,
3445 required_outer);
3446 }
3447 case T_Append:
3448 {
3449 AppendPath *apath = (AppendPath *) path;
3450 List *childpaths = NIL;
3451 ListCell *lc;
3452
3453 /* Reparameterize the children */
3454 foreach(lc, apath->subpaths)
3455 {
3456 Path *spath = (Path *) lfirst(lc);
3457
3458 spath = reparameterize_path(root, spath,
3459 required_outer,
3460 loop_count);
3461 if (spath == NULL)
3462 return NULL;
3463 childpaths = lappend(childpaths, spath);
3464 }
3465 return (Path *)
3466 create_append_path(rel, childpaths,
3467 required_outer,
3468 apath->path.parallel_workers,
3469 apath->partitioned_rels);
3470 }
3471 default:
3472 break;
3473 }
3474 return NULL;
3475 }
3476