1 /*-------------------------------------------------------------------------
2  *
3  * xlogutils.c
4  *
5  * PostgreSQL write-ahead log manager utility routines
6  *
7  * This file contains support routines that are used by XLOG replay functions.
8  * None of this code is used during normal system operation.
9  *
10  *
11  * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
12  * Portions Copyright (c) 1994, Regents of the University of California
13  *
14  * src/backend/access/transam/xlogutils.c
15  *
16  *-------------------------------------------------------------------------
17  */
18 #include "postgres.h"
19 
20 #include <unistd.h>
21 
22 #include "access/timeline.h"
23 #include "access/xlog.h"
24 #include "access/xlog_internal.h"
25 #include "access/xlogutils.h"
26 #include "catalog/catalog.h"
27 #include "miscadmin.h"
28 #include "pgstat.h"
29 #include "storage/smgr.h"
30 #include "utils/guc.h"
31 #include "utils/hsearch.h"
32 #include "utils/rel.h"
33 
34 
35 /*
36  * During XLOG replay, we may see XLOG records for incremental updates of
37  * pages that no longer exist, because their relation was later dropped or
38  * truncated.  (Note: this is only possible when full_page_writes = OFF,
39  * since when it's ON, the first reference we see to a page should always
40  * be a full-page rewrite not an incremental update.)  Rather than simply
41  * ignoring such records, we make a note of the referenced page, and then
42  * complain if we don't actually see a drop or truncate covering the page
43  * later in replay.
44  */
45 typedef struct xl_invalid_page_key
46 {
47 	RelFileNode node;			/* the relation */
48 	ForkNumber	forkno;			/* the fork number */
49 	BlockNumber blkno;			/* the page */
50 } xl_invalid_page_key;
51 
52 typedef struct xl_invalid_page
53 {
54 	xl_invalid_page_key key;	/* hash key ... must be first */
55 	bool		present;		/* page existed but contained zeroes */
56 } xl_invalid_page;
57 
58 static HTAB *invalid_page_tab = NULL;
59 
60 
61 /* Report a reference to an invalid page */
62 static void
report_invalid_page(int elevel,RelFileNode node,ForkNumber forkno,BlockNumber blkno,bool present)63 report_invalid_page(int elevel, RelFileNode node, ForkNumber forkno,
64 					BlockNumber blkno, bool present)
65 {
66 	char	   *path = relpathperm(node, forkno);
67 
68 	if (present)
69 		elog(elevel, "page %u of relation %s is uninitialized",
70 			 blkno, path);
71 	else
72 		elog(elevel, "page %u of relation %s does not exist",
73 			 blkno, path);
74 	pfree(path);
75 }
76 
77 /* Log a reference to an invalid page */
78 static void
log_invalid_page(RelFileNode node,ForkNumber forkno,BlockNumber blkno,bool present)79 log_invalid_page(RelFileNode node, ForkNumber forkno, BlockNumber blkno,
80 				 bool present)
81 {
82 	xl_invalid_page_key key;
83 	xl_invalid_page *hentry;
84 	bool		found;
85 
86 	/*
87 	 * Once recovery has reached a consistent state, the invalid-page table
88 	 * should be empty and remain so. If a reference to an invalid page is
89 	 * found after consistency is reached, PANIC immediately. This might seem
90 	 * aggressive, but it's better than letting the invalid reference linger
91 	 * in the hash table until the end of recovery and PANIC there, which
92 	 * might come only much later if this is a standby server.
93 	 */
94 	if (reachedConsistency)
95 	{
96 		report_invalid_page(WARNING, node, forkno, blkno, present);
97 		elog(PANIC, "WAL contains references to invalid pages");
98 	}
99 
100 	/*
101 	 * Log references to invalid pages at DEBUG1 level.  This allows some
102 	 * tracing of the cause (note the elog context mechanism will tell us
103 	 * something about the XLOG record that generated the reference).
104 	 */
105 	if (log_min_messages <= DEBUG1 || client_min_messages <= DEBUG1)
106 		report_invalid_page(DEBUG1, node, forkno, blkno, present);
107 
108 	if (invalid_page_tab == NULL)
109 	{
110 		/* create hash table when first needed */
111 		HASHCTL		ctl;
112 
113 		memset(&ctl, 0, sizeof(ctl));
114 		ctl.keysize = sizeof(xl_invalid_page_key);
115 		ctl.entrysize = sizeof(xl_invalid_page);
116 
117 		invalid_page_tab = hash_create("XLOG invalid-page table",
118 									   100,
119 									   &ctl,
120 									   HASH_ELEM | HASH_BLOBS);
121 	}
122 
123 	/* we currently assume xl_invalid_page_key contains no padding */
124 	key.node = node;
125 	key.forkno = forkno;
126 	key.blkno = blkno;
127 	hentry = (xl_invalid_page *)
128 		hash_search(invalid_page_tab, (void *) &key, HASH_ENTER, &found);
129 
130 	if (!found)
131 	{
132 		/* hash_search already filled in the key */
133 		hentry->present = present;
134 	}
135 	else
136 	{
137 		/* repeat reference ... leave "present" as it was */
138 	}
139 }
140 
141 /* Forget any invalid pages >= minblkno, because they've been dropped */
142 static void
forget_invalid_pages(RelFileNode node,ForkNumber forkno,BlockNumber minblkno)143 forget_invalid_pages(RelFileNode node, ForkNumber forkno, BlockNumber minblkno)
144 {
145 	HASH_SEQ_STATUS status;
146 	xl_invalid_page *hentry;
147 
148 	if (invalid_page_tab == NULL)
149 		return;					/* nothing to do */
150 
151 	hash_seq_init(&status, invalid_page_tab);
152 
153 	while ((hentry = (xl_invalid_page *) hash_seq_search(&status)) != NULL)
154 	{
155 		if (RelFileNodeEquals(hentry->key.node, node) &&
156 			hentry->key.forkno == forkno &&
157 			hentry->key.blkno >= minblkno)
158 		{
159 			if (log_min_messages <= DEBUG2 || client_min_messages <= DEBUG2)
160 			{
161 				char	   *path = relpathperm(hentry->key.node, forkno);
162 
163 				elog(DEBUG2, "page %u of relation %s has been dropped",
164 					 hentry->key.blkno, path);
165 				pfree(path);
166 			}
167 
168 			if (hash_search(invalid_page_tab,
169 							(void *) &hentry->key,
170 							HASH_REMOVE, NULL) == NULL)
171 				elog(ERROR, "hash table corrupted");
172 		}
173 	}
174 }
175 
176 /* Forget any invalid pages in a whole database */
177 static void
forget_invalid_pages_db(Oid dbid)178 forget_invalid_pages_db(Oid dbid)
179 {
180 	HASH_SEQ_STATUS status;
181 	xl_invalid_page *hentry;
182 
183 	if (invalid_page_tab == NULL)
184 		return;					/* nothing to do */
185 
186 	hash_seq_init(&status, invalid_page_tab);
187 
188 	while ((hentry = (xl_invalid_page *) hash_seq_search(&status)) != NULL)
189 	{
190 		if (hentry->key.node.dbNode == dbid)
191 		{
192 			if (log_min_messages <= DEBUG2 || client_min_messages <= DEBUG2)
193 			{
194 				char	   *path = relpathperm(hentry->key.node, hentry->key.forkno);
195 
196 				elog(DEBUG2, "page %u of relation %s has been dropped",
197 					 hentry->key.blkno, path);
198 				pfree(path);
199 			}
200 
201 			if (hash_search(invalid_page_tab,
202 							(void *) &hentry->key,
203 							HASH_REMOVE, NULL) == NULL)
204 				elog(ERROR, "hash table corrupted");
205 		}
206 	}
207 }
208 
209 /* Are there any unresolved references to invalid pages? */
210 bool
XLogHaveInvalidPages(void)211 XLogHaveInvalidPages(void)
212 {
213 	if (invalid_page_tab != NULL &&
214 		hash_get_num_entries(invalid_page_tab) > 0)
215 		return true;
216 	return false;
217 }
218 
219 /* Complain about any remaining invalid-page entries */
220 void
XLogCheckInvalidPages(void)221 XLogCheckInvalidPages(void)
222 {
223 	HASH_SEQ_STATUS status;
224 	xl_invalid_page *hentry;
225 	bool		foundone = false;
226 
227 	if (invalid_page_tab == NULL)
228 		return;					/* nothing to do */
229 
230 	hash_seq_init(&status, invalid_page_tab);
231 
232 	/*
233 	 * Our strategy is to emit WARNING messages for all remaining entries and
234 	 * only PANIC after we've dumped all the available info.
235 	 */
236 	while ((hentry = (xl_invalid_page *) hash_seq_search(&status)) != NULL)
237 	{
238 		report_invalid_page(WARNING, hentry->key.node, hentry->key.forkno,
239 							hentry->key.blkno, hentry->present);
240 		foundone = true;
241 	}
242 
243 	if (foundone)
244 		elog(PANIC, "WAL contains references to invalid pages");
245 
246 	hash_destroy(invalid_page_tab);
247 	invalid_page_tab = NULL;
248 }
249 
250 
251 /*
252  * XLogReadBufferForRedo
253  *		Read a page during XLOG replay
254  *
255  * Reads a block referenced by a WAL record into shared buffer cache, and
256  * determines what needs to be done to redo the changes to it.  If the WAL
257  * record includes a full-page image of the page, it is restored.
258  *
259  * 'lsn' is the LSN of the record being replayed.  It is compared with the
260  * page's LSN to determine if the record has already been replayed.
261  * 'block_id' is the ID number the block was registered with, when the WAL
262  * record was created.
263  *
264  * Returns one of the following:
265  *
266  *	BLK_NEEDS_REDO	- changes from the WAL record need to be applied
267  *	BLK_DONE		- block doesn't need replaying
268  *	BLK_RESTORED	- block was restored from a full-page image included in
269  *					  the record
270  *	BLK_NOTFOUND	- block was not found (because it was truncated away by
271  *					  an operation later in the WAL stream)
272  *
273  * On return, the buffer is locked in exclusive-mode, and returned in *buf.
274  * Note that the buffer is locked and returned even if it doesn't need
275  * replaying.  (Getting the buffer lock is not really necessary during
276  * single-process crash recovery, but some subroutines such as MarkBufferDirty
277  * will complain if we don't have the lock.  In hot standby mode it's
278  * definitely necessary.)
279  *
280  * Note: when a backup block is available in XLOG with the BKPIMAGE_APPLY flag
281  * set, we restore it, even if the page in the database appears newer.  This
282  * is to protect ourselves against database pages that were partially or
283  * incorrectly written during a crash.  We assume that the XLOG data must be
284  * good because it has passed a CRC check, while the database page might not
285  * be.  This will force us to replay all subsequent modifications of the page
286  * that appear in XLOG, rather than possibly ignoring them as already
287  * applied, but that's not a huge drawback.
288  */
289 XLogRedoAction
XLogReadBufferForRedo(XLogReaderState * record,uint8 block_id,Buffer * buf)290 XLogReadBufferForRedo(XLogReaderState *record, uint8 block_id,
291 					  Buffer *buf)
292 {
293 	return XLogReadBufferForRedoExtended(record, block_id, RBM_NORMAL,
294 										 false, buf);
295 }
296 
297 /*
298  * Pin and lock a buffer referenced by a WAL record, for the purpose of
299  * re-initializing it.
300  */
301 Buffer
XLogInitBufferForRedo(XLogReaderState * record,uint8 block_id)302 XLogInitBufferForRedo(XLogReaderState *record, uint8 block_id)
303 {
304 	Buffer		buf;
305 
306 	XLogReadBufferForRedoExtended(record, block_id, RBM_ZERO_AND_LOCK, false,
307 								  &buf);
308 	return buf;
309 }
310 
311 /*
312  * XLogReadBufferForRedoExtended
313  *		Like XLogReadBufferForRedo, but with extra options.
314  *
315  * In RBM_ZERO_* modes, if the page doesn't exist, the relation is extended
316  * with all-zeroes pages up to the referenced block number.  In
317  * RBM_ZERO_AND_LOCK and RBM_ZERO_AND_CLEANUP_LOCK modes, the return value
318  * is always BLK_NEEDS_REDO.
319  *
320  * (The RBM_ZERO_AND_CLEANUP_LOCK mode is redundant with the get_cleanup_lock
321  * parameter. Do not use an inconsistent combination!)
322  *
323  * If 'get_cleanup_lock' is true, a "cleanup lock" is acquired on the buffer
324  * using LockBufferForCleanup(), instead of a regular exclusive lock.
325  */
326 XLogRedoAction
XLogReadBufferForRedoExtended(XLogReaderState * record,uint8 block_id,ReadBufferMode mode,bool get_cleanup_lock,Buffer * buf)327 XLogReadBufferForRedoExtended(XLogReaderState *record,
328 							  uint8 block_id,
329 							  ReadBufferMode mode, bool get_cleanup_lock,
330 							  Buffer *buf)
331 {
332 	XLogRecPtr	lsn = record->EndRecPtr;
333 	RelFileNode rnode;
334 	ForkNumber	forknum;
335 	BlockNumber blkno;
336 	Page		page;
337 	bool		zeromode;
338 	bool		willinit;
339 
340 	if (!XLogRecGetBlockTag(record, block_id, &rnode, &forknum, &blkno))
341 	{
342 		/* Caller specified a bogus block_id */
343 		elog(PANIC, "failed to locate backup block with ID %d", block_id);
344 	}
345 
346 	/*
347 	 * Make sure that if the block is marked with WILL_INIT, the caller is
348 	 * going to initialize it. And vice versa.
349 	 */
350 	zeromode = (mode == RBM_ZERO_AND_LOCK || mode == RBM_ZERO_AND_CLEANUP_LOCK);
351 	willinit = (record->blocks[block_id].flags & BKPBLOCK_WILL_INIT) != 0;
352 	if (willinit && !zeromode)
353 		elog(PANIC, "block with WILL_INIT flag in WAL record must be zeroed by redo routine");
354 	if (!willinit && zeromode)
355 		elog(PANIC, "block to be initialized in redo routine must be marked with WILL_INIT flag in the WAL record");
356 
357 	/* If it has a full-page image and it should be restored, do it. */
358 	if (XLogRecBlockImageApply(record, block_id))
359 	{
360 		Assert(XLogRecHasBlockImage(record, block_id));
361 		*buf = XLogReadBufferExtended(rnode, forknum, blkno,
362 									  get_cleanup_lock ? RBM_ZERO_AND_CLEANUP_LOCK : RBM_ZERO_AND_LOCK);
363 		page = BufferGetPage(*buf);
364 		if (!RestoreBlockImage(record, block_id, page))
365 			elog(ERROR, "failed to restore block image");
366 
367 		/*
368 		 * The page may be uninitialized. If so, we can't set the LSN because
369 		 * that would corrupt the page.
370 		 */
371 		if (!PageIsNew(page))
372 		{
373 			PageSetLSN(page, lsn);
374 		}
375 
376 		MarkBufferDirty(*buf);
377 
378 		/*
379 		 * At the end of crash recovery the init forks of unlogged relations
380 		 * are copied, without going through shared buffers. So we need to
381 		 * force the on-disk state of init forks to always be in sync with the
382 		 * state in shared buffers.
383 		 */
384 		if (forknum == INIT_FORKNUM)
385 			FlushOneBuffer(*buf);
386 
387 		return BLK_RESTORED;
388 	}
389 	else
390 	{
391 		*buf = XLogReadBufferExtended(rnode, forknum, blkno, mode);
392 		if (BufferIsValid(*buf))
393 		{
394 			if (mode != RBM_ZERO_AND_LOCK && mode != RBM_ZERO_AND_CLEANUP_LOCK)
395 			{
396 				if (get_cleanup_lock)
397 					LockBufferForCleanup(*buf);
398 				else
399 					LockBuffer(*buf, BUFFER_LOCK_EXCLUSIVE);
400 			}
401 			if (lsn <= PageGetLSN(BufferGetPage(*buf)))
402 				return BLK_DONE;
403 			else
404 				return BLK_NEEDS_REDO;
405 		}
406 		else
407 			return BLK_NOTFOUND;
408 	}
409 }
410 
411 /*
412  * XLogReadBufferExtended
413  *		Read a page during XLOG replay
414  *
415  * This is functionally comparable to ReadBufferExtended. There's some
416  * differences in the behavior wrt. the "mode" argument:
417  *
418  * In RBM_NORMAL mode, if the page doesn't exist, or contains all-zeroes, we
419  * return InvalidBuffer. In this case the caller should silently skip the
420  * update on this page. (In this situation, we expect that the page was later
421  * dropped or truncated. If we don't see evidence of that later in the WAL
422  * sequence, we'll complain at the end of WAL replay.)
423  *
424  * In RBM_ZERO_* modes, if the page doesn't exist, the relation is extended
425  * with all-zeroes pages up to the given block number.
426  *
427  * In RBM_NORMAL_NO_LOG mode, we return InvalidBuffer if the page doesn't
428  * exist, and we don't check for all-zeroes.  Thus, no log entry is made
429  * to imply that the page should be dropped or truncated later.
430  *
431  * NB: A redo function should normally not call this directly. To get a page
432  * to modify, use XLogReadBufferForRedoExtended instead. It is important that
433  * all pages modified by a WAL record are registered in the WAL records, or
434  * they will be invisible to tools that that need to know which pages are
435  * modified.
436  */
437 Buffer
XLogReadBufferExtended(RelFileNode rnode,ForkNumber forknum,BlockNumber blkno,ReadBufferMode mode)438 XLogReadBufferExtended(RelFileNode rnode, ForkNumber forknum,
439 					   BlockNumber blkno, ReadBufferMode mode)
440 {
441 	BlockNumber lastblock;
442 	Buffer		buffer;
443 	SMgrRelation smgr;
444 
445 	Assert(blkno != P_NEW);
446 
447 	/* Open the relation at smgr level */
448 	smgr = smgropen(rnode, InvalidBackendId);
449 
450 	/*
451 	 * Create the target file if it doesn't already exist.  This lets us cope
452 	 * if the replay sequence contains writes to a relation that is later
453 	 * deleted.  (The original coding of this routine would instead suppress
454 	 * the writes, but that seems like it risks losing valuable data if the
455 	 * filesystem loses an inode during a crash.  Better to write the data
456 	 * until we are actually told to delete the file.)
457 	 */
458 	smgrcreate(smgr, forknum, true);
459 
460 	lastblock = smgrnblocks(smgr, forknum);
461 
462 	if (blkno < lastblock)
463 	{
464 		/* page exists in file */
465 		buffer = ReadBufferWithoutRelcache(rnode, forknum, blkno,
466 										   mode, NULL);
467 	}
468 	else
469 	{
470 		/* hm, page doesn't exist in file */
471 		if (mode == RBM_NORMAL)
472 		{
473 			log_invalid_page(rnode, forknum, blkno, false);
474 			return InvalidBuffer;
475 		}
476 		if (mode == RBM_NORMAL_NO_LOG)
477 			return InvalidBuffer;
478 		/* OK to extend the file */
479 		/* we do this in recovery only - no rel-extension lock needed */
480 		Assert(InRecovery);
481 		buffer = InvalidBuffer;
482 		do
483 		{
484 			if (buffer != InvalidBuffer)
485 			{
486 				if (mode == RBM_ZERO_AND_LOCK || mode == RBM_ZERO_AND_CLEANUP_LOCK)
487 					LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
488 				ReleaseBuffer(buffer);
489 			}
490 			buffer = ReadBufferWithoutRelcache(rnode, forknum,
491 											   P_NEW, mode, NULL);
492 		}
493 		while (BufferGetBlockNumber(buffer) < blkno);
494 		/* Handle the corner case that P_NEW returns non-consecutive pages */
495 		if (BufferGetBlockNumber(buffer) != blkno)
496 		{
497 			if (mode == RBM_ZERO_AND_LOCK || mode == RBM_ZERO_AND_CLEANUP_LOCK)
498 				LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
499 			ReleaseBuffer(buffer);
500 			buffer = ReadBufferWithoutRelcache(rnode, forknum, blkno,
501 											   mode, NULL);
502 		}
503 	}
504 
505 	if (mode == RBM_NORMAL)
506 	{
507 		/* check that page has been initialized */
508 		Page		page = (Page) BufferGetPage(buffer);
509 
510 		/*
511 		 * We assume that PageIsNew is safe without a lock. During recovery,
512 		 * there should be no other backends that could modify the buffer at
513 		 * the same time.
514 		 */
515 		if (PageIsNew(page))
516 		{
517 			ReleaseBuffer(buffer);
518 			log_invalid_page(rnode, forknum, blkno, true);
519 			return InvalidBuffer;
520 		}
521 	}
522 
523 	return buffer;
524 }
525 
526 /*
527  * Struct actually returned by XLogFakeRelcacheEntry, though the declared
528  * return type is Relation.
529  */
530 typedef struct
531 {
532 	RelationData reldata;		/* Note: this must be first */
533 	FormData_pg_class pgc;
534 } FakeRelCacheEntryData;
535 
536 typedef FakeRelCacheEntryData *FakeRelCacheEntry;
537 
538 /*
539  * Create a fake relation cache entry for a physical relation
540  *
541  * It's often convenient to use the same functions in XLOG replay as in the
542  * main codepath, but those functions typically work with a relcache entry.
543  * We don't have a working relation cache during XLOG replay, but this
544  * function can be used to create a fake relcache entry instead. Only the
545  * fields related to physical storage, like rd_rel, are initialized, so the
546  * fake entry is only usable in low-level operations like ReadBuffer().
547  *
548  * Caller must free the returned entry with FreeFakeRelcacheEntry().
549  */
550 Relation
CreateFakeRelcacheEntry(RelFileNode rnode)551 CreateFakeRelcacheEntry(RelFileNode rnode)
552 {
553 	FakeRelCacheEntry fakeentry;
554 	Relation	rel;
555 
556 	Assert(InRecovery);
557 
558 	/* Allocate the Relation struct and all related space in one block. */
559 	fakeentry = palloc0(sizeof(FakeRelCacheEntryData));
560 	rel = (Relation) fakeentry;
561 
562 	rel->rd_rel = &fakeentry->pgc;
563 	rel->rd_node = rnode;
564 	/* We will never be working with temp rels during recovery */
565 	rel->rd_backend = InvalidBackendId;
566 
567 	/* It must be a permanent table if we're in recovery. */
568 	rel->rd_rel->relpersistence = RELPERSISTENCE_PERMANENT;
569 
570 	/* We don't know the name of the relation; use relfilenode instead */
571 	sprintf(RelationGetRelationName(rel), "%u", rnode.relNode);
572 
573 	/*
574 	 * We set up the lockRelId in case anything tries to lock the dummy
575 	 * relation.  Note that this is fairly bogus since relNode may be
576 	 * different from the relation's OID.  It shouldn't really matter though,
577 	 * since we are presumably running by ourselves and can't have any lock
578 	 * conflicts ...
579 	 */
580 	rel->rd_lockInfo.lockRelId.dbId = rnode.dbNode;
581 	rel->rd_lockInfo.lockRelId.relId = rnode.relNode;
582 
583 	rel->rd_smgr = NULL;
584 
585 	return rel;
586 }
587 
588 /*
589  * Free a fake relation cache entry.
590  */
591 void
FreeFakeRelcacheEntry(Relation fakerel)592 FreeFakeRelcacheEntry(Relation fakerel)
593 {
594 	/* make sure the fakerel is not referenced by the SmgrRelation anymore */
595 	if (fakerel->rd_smgr != NULL)
596 		smgrclearowner(&fakerel->rd_smgr, fakerel->rd_smgr);
597 	pfree(fakerel);
598 }
599 
600 /*
601  * Drop a relation during XLOG replay
602  *
603  * This is called when the relation is about to be deleted; we need to remove
604  * any open "invalid-page" records for the relation.
605  */
606 void
XLogDropRelation(RelFileNode rnode,ForkNumber forknum)607 XLogDropRelation(RelFileNode rnode, ForkNumber forknum)
608 {
609 	forget_invalid_pages(rnode, forknum, 0);
610 }
611 
612 /*
613  * Drop a whole database during XLOG replay
614  *
615  * As above, but for DROP DATABASE instead of dropping a single rel
616  */
617 void
XLogDropDatabase(Oid dbid)618 XLogDropDatabase(Oid dbid)
619 {
620 	/*
621 	 * This is unnecessarily heavy-handed, as it will close SMgrRelation
622 	 * objects for other databases as well. DROP DATABASE occurs seldom enough
623 	 * that it's not worth introducing a variant of smgrclose for just this
624 	 * purpose. XXX: Or should we rather leave the smgr entries dangling?
625 	 */
626 	smgrcloseall();
627 
628 	forget_invalid_pages_db(dbid);
629 }
630 
631 /*
632  * Truncate a relation during XLOG replay
633  *
634  * We need to clean up any open "invalid-page" records for the dropped pages.
635  */
636 void
XLogTruncateRelation(RelFileNode rnode,ForkNumber forkNum,BlockNumber nblocks)637 XLogTruncateRelation(RelFileNode rnode, ForkNumber forkNum,
638 					 BlockNumber nblocks)
639 {
640 	forget_invalid_pages(rnode, forkNum, nblocks);
641 }
642 
643 /*
644  * Read 'count' bytes from WAL into 'buf', starting at location 'startptr'
645  * in timeline 'tli'.
646  *
647  * Will open, and keep open, one WAL segment stored in the static file
648  * descriptor 'sendFile'. This means if XLogRead is used once, there will
649  * always be one descriptor left open until the process ends, but never
650  * more than one.
651  *
652  * XXX This is very similar to pg_waldump's XLogDumpXLogRead and to XLogRead
653  * in walsender.c but for small differences (such as lack of elog() in
654  * frontend).  Probably these should be merged at some point.
655  */
656 static void
XLogRead(char * buf,TimeLineID tli,XLogRecPtr startptr,Size count)657 XLogRead(char *buf, TimeLineID tli, XLogRecPtr startptr, Size count)
658 {
659 	char	   *p;
660 	XLogRecPtr	recptr;
661 	Size		nbytes;
662 
663 	/* state maintained across calls */
664 	static int	sendFile = -1;
665 	static XLogSegNo sendSegNo = 0;
666 	static TimeLineID sendTLI = 0;
667 	static uint32 sendOff = 0;
668 
669 	p = buf;
670 	recptr = startptr;
671 	nbytes = count;
672 
673 	while (nbytes > 0)
674 	{
675 		uint32		startoff;
676 		int			segbytes;
677 		int			readbytes;
678 
679 		startoff = recptr % XLogSegSize;
680 
681 		/* Do we need to switch to a different xlog segment? */
682 		if (sendFile < 0 || !XLByteInSeg(recptr, sendSegNo) ||
683 			sendTLI != tli)
684 		{
685 			char		path[MAXPGPATH];
686 
687 			if (sendFile >= 0)
688 				close(sendFile);
689 
690 			XLByteToSeg(recptr, sendSegNo);
691 
692 			XLogFilePath(path, tli, sendSegNo);
693 
694 			sendFile = BasicOpenFile(path, O_RDONLY | PG_BINARY, 0);
695 
696 			if (sendFile < 0)
697 			{
698 				if (errno == ENOENT)
699 					ereport(ERROR,
700 							(errcode_for_file_access(),
701 							 errmsg("requested WAL segment %s has already been removed",
702 									path)));
703 				else
704 					ereport(ERROR,
705 							(errcode_for_file_access(),
706 							 errmsg("could not open file \"%s\": %m",
707 									path)));
708 			}
709 			sendOff = 0;
710 			sendTLI = tli;
711 		}
712 
713 		/* Need to seek in the file? */
714 		if (sendOff != startoff)
715 		{
716 			if (lseek(sendFile, (off_t) startoff, SEEK_SET) < 0)
717 			{
718 				char		path[MAXPGPATH];
719 				int			save_errno = errno;
720 
721 				XLogFilePath(path, tli, sendSegNo);
722 
723 				errno = save_errno;
724 				ereport(ERROR,
725 						(errcode_for_file_access(),
726 						 errmsg("could not seek in log segment %s to offset %u: %m",
727 								path, startoff)));
728 			}
729 			sendOff = startoff;
730 		}
731 
732 		/* How many bytes are within this segment? */
733 		if (nbytes > (XLogSegSize - startoff))
734 			segbytes = XLogSegSize - startoff;
735 		else
736 			segbytes = nbytes;
737 
738 		pgstat_report_wait_start(WAIT_EVENT_WAL_READ);
739 		readbytes = read(sendFile, p, segbytes);
740 		pgstat_report_wait_end();
741 		if (readbytes <= 0)
742 		{
743 			char		path[MAXPGPATH];
744 			int			save_errno = errno;
745 
746 			XLogFilePath(path, tli, sendSegNo);
747 
748 			errno = save_errno;
749 			ereport(ERROR,
750 					(errcode_for_file_access(),
751 					 errmsg("could not read from log segment %s, offset %u, length %lu: %m",
752 							path, sendOff, (unsigned long) segbytes)));
753 		}
754 
755 		/* Update state for read */
756 		recptr += readbytes;
757 
758 		sendOff += readbytes;
759 		nbytes -= readbytes;
760 		p += readbytes;
761 	}
762 }
763 
764 /*
765  * Determine which timeline to read an xlog page from and set the
766  * XLogReaderState's currTLI to that timeline ID.
767  *
768  * We care about timelines in xlogreader when we might be reading xlog
769  * generated prior to a promotion, either if we're currently a standby in
770  * recovery or if we're a promoted master reading xlogs generated by the old
771  * master before our promotion.
772  *
773  * wantPage must be set to the start address of the page to read and
774  * wantLength to the amount of the page that will be read, up to
775  * XLOG_BLCKSZ. If the amount to be read isn't known, pass XLOG_BLCKSZ.
776  *
777  * We switch to an xlog segment from the new timeline eagerly when on a
778  * historical timeline, as soon as we reach the start of the xlog segment
779  * containing the timeline switch.  The server copied the segment to the new
780  * timeline so all the data up to the switch point is the same, but there's no
781  * guarantee the old segment will still exist. It may have been deleted or
782  * renamed with a .partial suffix so we can't necessarily keep reading from
783  * the old TLI even though tliSwitchPoint says it's OK.
784  *
785  * We can't just check the timeline when we read a page on a different segment
786  * to the last page. We could've received a timeline switch from a cascading
787  * upstream, so the current segment ends abruptly (possibly getting renamed to
788  * .partial) and we have to switch to a new one.  Even in the middle of reading
789  * a page we could have to dump the cached page and switch to a new TLI.
790  *
791  * Because of this, callers MAY NOT assume that currTLI is the timeline that
792  * will be in a page's xlp_tli; the page may begin on an older timeline or we
793  * might be reading from historical timeline data on a segment that's been
794  * copied to a new timeline.
795  *
796  * The caller must also make sure it doesn't read past the current replay
797  * position (using GetWalRcvWriteRecPtr) if executing in recovery, so it
798  * doesn't fail to notice that the current timeline became historical. The
799  * caller must also update ThisTimeLineID with the result of
800  * GetWalRcvWriteRecPtr and must check RecoveryInProgress().
801  */
802 void
XLogReadDetermineTimeline(XLogReaderState * state,XLogRecPtr wantPage,uint32 wantLength)803 XLogReadDetermineTimeline(XLogReaderState *state, XLogRecPtr wantPage, uint32 wantLength)
804 {
805 	const XLogRecPtr lastReadPage = state->readSegNo * XLogSegSize + state->readOff;
806 
807 	Assert(wantPage != InvalidXLogRecPtr && wantPage % XLOG_BLCKSZ == 0);
808 	Assert(wantLength <= XLOG_BLCKSZ);
809 	Assert(state->readLen == 0 || state->readLen <= XLOG_BLCKSZ);
810 
811 	/*
812 	 * If the desired page is currently read in and valid, we have nothing to
813 	 * do.
814 	 *
815 	 * The caller should've ensured that it didn't previously advance readOff
816 	 * past the valid limit of this timeline, so it doesn't matter if the
817 	 * current TLI has since become historical.
818 	 */
819 	if (lastReadPage == wantPage &&
820 		state->readLen != 0 &&
821 		lastReadPage + state->readLen >= wantPage + Min(wantLength, XLOG_BLCKSZ - 1))
822 		return;
823 
824 	/*
825 	 * If we're reading from the current timeline, it hasn't become historical
826 	 * and the page we're reading is after the last page read, we can again
827 	 * just carry on. (Seeking backwards requires a check to make sure the
828 	 * older page isn't on a prior timeline).
829 	 *
830 	 * ThisTimeLineID might've become historical since we last looked, but the
831 	 * caller is required not to read past the flush limit it saw at the time
832 	 * it looked up the timeline. There's nothing we can do about it if
833 	 * StartupXLOG() renames it to .partial concurrently.
834 	 */
835 	if (state->currTLI == ThisTimeLineID && wantPage >= lastReadPage)
836 	{
837 		Assert(state->currTLIValidUntil == InvalidXLogRecPtr);
838 		return;
839 	}
840 
841 	/*
842 	 * If we're just reading pages from a previously validated historical
843 	 * timeline and the timeline we're reading from is valid until the end of
844 	 * the current segment we can just keep reading.
845 	 */
846 	if (state->currTLIValidUntil != InvalidXLogRecPtr &&
847 		state->currTLI != ThisTimeLineID &&
848 		state->currTLI != 0 &&
849 		(wantPage + wantLength) / XLogSegSize < state->currTLIValidUntil / XLogSegSize)
850 		return;
851 
852 	/*
853 	 * If we reach this point we're either looking up a page for random
854 	 * access, the current timeline just became historical, or we're reading
855 	 * from a new segment containing a timeline switch. In all cases we need
856 	 * to determine the newest timeline on the segment.
857 	 *
858 	 * If it's the current timeline we can just keep reading from here unless
859 	 * we detect a timeline switch that makes the current timeline historical.
860 	 * If it's a historical timeline we can read all the segment on the newest
861 	 * timeline because it contains all the old timelines' data too. So only
862 	 * one switch check is required.
863 	 */
864 	{
865 		/*
866 		 * We need to re-read the timeline history in case it's been changed
867 		 * by a promotion or replay from a cascaded replica.
868 		 */
869 		List	   *timelineHistory = readTimeLineHistory(ThisTimeLineID);
870 
871 		XLogRecPtr	endOfSegment = (((wantPage / XLogSegSize) + 1) * XLogSegSize) - 1;
872 
873 		Assert(wantPage / XLogSegSize == endOfSegment / XLogSegSize);
874 
875 		/*
876 		 * Find the timeline of the last LSN on the segment containing
877 		 * wantPage.
878 		 */
879 		state->currTLI = tliOfPointInHistory(endOfSegment, timelineHistory);
880 		state->currTLIValidUntil = tliSwitchPoint(state->currTLI, timelineHistory,
881 												  &state->nextTLI);
882 
883 		Assert(state->currTLIValidUntil == InvalidXLogRecPtr ||
884 			   wantPage + wantLength < state->currTLIValidUntil);
885 
886 		list_free_deep(timelineHistory);
887 
888 		elog(DEBUG3, "switched to timeline %u valid until %X/%X",
889 			 state->currTLI,
890 			 (uint32) (state->currTLIValidUntil >> 32),
891 			 (uint32) (state->currTLIValidUntil));
892 	}
893 }
894 
895 /*
896  * read_page callback for reading local xlog files
897  *
898  * Public because it would likely be very helpful for someone writing another
899  * output method outside walsender, e.g. in a bgworker.
900  *
901  * TODO: The walsender has its own version of this, but it relies on the
902  * walsender's latch being set whenever WAL is flushed. No such infrastructure
903  * exists for normal backends, so we have to do a check/sleep/repeat style of
904  * loop for now.
905  */
906 int
read_local_xlog_page(XLogReaderState * state,XLogRecPtr targetPagePtr,int reqLen,XLogRecPtr targetRecPtr,char * cur_page,TimeLineID * pageTLI)907 read_local_xlog_page(XLogReaderState *state, XLogRecPtr targetPagePtr,
908 					 int reqLen, XLogRecPtr targetRecPtr, char *cur_page,
909 					 TimeLineID *pageTLI)
910 {
911 	XLogRecPtr	read_upto,
912 				loc;
913 	int			count;
914 
915 	loc = targetPagePtr + reqLen;
916 
917 	/* Loop waiting for xlog to be available if necessary */
918 	while (1)
919 	{
920 		/*
921 		 * Determine the limit of xlog we can currently read to, and what the
922 		 * most recent timeline is.
923 		 *
924 		 * RecoveryInProgress() will update ThisTimeLineID when it first
925 		 * notices recovery finishes, so we only have to maintain it for the
926 		 * local process until recovery ends.
927 		 */
928 		if (!RecoveryInProgress())
929 			read_upto = GetFlushRecPtr();
930 		else
931 			read_upto = GetXLogReplayRecPtr(&ThisTimeLineID);
932 
933 		*pageTLI = ThisTimeLineID;
934 
935 		/*
936 		 * Check which timeline to get the record from.
937 		 *
938 		 * We have to do it each time through the loop because if we're in
939 		 * recovery as a cascading standby, the current timeline might've
940 		 * become historical. We can't rely on RecoveryInProgress() because in
941 		 * a standby configuration like
942 		 *
943 		 * A => B => C
944 		 *
945 		 * if we're a logical decoding session on C, and B gets promoted, our
946 		 * timeline will change while we remain in recovery.
947 		 *
948 		 * We can't just keep reading from the old timeline as the last WAL
949 		 * archive in the timeline will get renamed to .partial by
950 		 * StartupXLOG().
951 		 *
952 		 * If that happens after our caller updated ThisTimeLineID but before
953 		 * we actually read the xlog page, we might still try to read from the
954 		 * old (now renamed) segment and fail. There's not much we can do
955 		 * about this, but it can only happen when we're a leaf of a cascading
956 		 * standby whose master gets promoted while we're decoding, so a
957 		 * one-off ERROR isn't too bad.
958 		 */
959 		XLogReadDetermineTimeline(state, targetPagePtr, reqLen);
960 
961 		if (state->currTLI == ThisTimeLineID)
962 		{
963 
964 			if (loc <= read_upto)
965 				break;
966 
967 			CHECK_FOR_INTERRUPTS();
968 			pg_usleep(1000L);
969 		}
970 		else
971 		{
972 			/*
973 			 * We're on a historical timeline, so limit reading to the switch
974 			 * point where we moved to the next timeline.
975 			 *
976 			 * We don't need to GetFlushRecPtr or GetXLogReplayRecPtr. We know
977 			 * about the new timeline, so we must've received past the end of
978 			 * it.
979 			 */
980 			read_upto = state->currTLIValidUntil;
981 
982 			/*
983 			 * Setting pageTLI to our wanted record's TLI is slightly wrong;
984 			 * the page might begin on an older timeline if it contains a
985 			 * timeline switch, since its xlog segment will have been copied
986 			 * from the prior timeline. This is pretty harmless though, as
987 			 * nothing cares so long as the timeline doesn't go backwards.  We
988 			 * should read the page header instead; FIXME someday.
989 			 */
990 			*pageTLI = state->currTLI;
991 
992 			/* No need to wait on a historical timeline */
993 			break;
994 		}
995 	}
996 
997 	if (targetPagePtr + XLOG_BLCKSZ <= read_upto)
998 	{
999 		/*
1000 		 * more than one block available; read only that block, have caller
1001 		 * come back if they need more.
1002 		 */
1003 		count = XLOG_BLCKSZ;
1004 	}
1005 	else if (targetPagePtr + reqLen > read_upto)
1006 	{
1007 		/* not enough data there */
1008 		return -1;
1009 	}
1010 	else
1011 	{
1012 		/* enough bytes available to satisfy the request */
1013 		count = read_upto - targetPagePtr;
1014 	}
1015 
1016 	/*
1017 	 * Even though we just determined how much of the page can be validly read
1018 	 * as 'count', read the whole page anyway. It's guaranteed to be
1019 	 * zero-padded up to the page boundary if it's incomplete.
1020 	 */
1021 	XLogRead(cur_page, *pageTLI, targetPagePtr, XLOG_BLCKSZ);
1022 
1023 	/* number of valid bytes in the buffer */
1024 	return count;
1025 }
1026