1 /*-------------------------------------------------------------------------
2  *
3  * pathnode.c
4  *	  Routines to manipulate pathlists and create path nodes
5  *
6  * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  *	  src/backend/optimizer/util/pathnode.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include <math.h>
18 
19 #include "miscadmin.h"
20 #include "nodes/nodeFuncs.h"
21 #include "optimizer/clauses.h"
22 #include "optimizer/cost.h"
23 #include "optimizer/pathnode.h"
24 #include "optimizer/paths.h"
25 #include "optimizer/planmain.h"
26 #include "optimizer/restrictinfo.h"
27 #include "optimizer/var.h"
28 #include "parser/parsetree.h"
29 #include "utils/lsyscache.h"
30 #include "utils/selfuncs.h"
31 
32 
33 typedef enum
34 {
35 	COSTS_EQUAL,				/* path costs are fuzzily equal */
36 	COSTS_BETTER1,				/* first path is cheaper than second */
37 	COSTS_BETTER2,				/* second path is cheaper than first */
38 	COSTS_DIFFERENT				/* neither path dominates the other on cost */
39 } PathCostComparison;
40 
41 /*
42  * STD_FUZZ_FACTOR is the normal fuzz factor for compare_path_costs_fuzzily.
43  * XXX is it worth making this user-controllable?  It provides a tradeoff
44  * between planner runtime and the accuracy of path cost comparisons.
45  */
46 #define STD_FUZZ_FACTOR 1.01
47 
48 static List *translate_sub_tlist(List *tlist, int relid);
49 
50 
51 /*****************************************************************************
52  *		MISC. PATH UTILITIES
53  *****************************************************************************/
54 
55 /*
56  * compare_path_costs
57  *	  Return -1, 0, or +1 according as path1 is cheaper, the same cost,
58  *	  or more expensive than path2 for the specified criterion.
59  */
60 int
compare_path_costs(Path * path1,Path * path2,CostSelector criterion)61 compare_path_costs(Path *path1, Path *path2, CostSelector criterion)
62 {
63 	if (criterion == STARTUP_COST)
64 	{
65 		if (path1->startup_cost < path2->startup_cost)
66 			return -1;
67 		if (path1->startup_cost > path2->startup_cost)
68 			return +1;
69 
70 		/*
71 		 * If paths have the same startup cost (not at all unlikely), order
72 		 * them by total cost.
73 		 */
74 		if (path1->total_cost < path2->total_cost)
75 			return -1;
76 		if (path1->total_cost > path2->total_cost)
77 			return +1;
78 	}
79 	else
80 	{
81 		if (path1->total_cost < path2->total_cost)
82 			return -1;
83 		if (path1->total_cost > path2->total_cost)
84 			return +1;
85 
86 		/*
87 		 * If paths have the same total cost, order them by startup cost.
88 		 */
89 		if (path1->startup_cost < path2->startup_cost)
90 			return -1;
91 		if (path1->startup_cost > path2->startup_cost)
92 			return +1;
93 	}
94 	return 0;
95 }
96 
97 /*
98  * compare_path_fractional_costs
99  *	  Return -1, 0, or +1 according as path1 is cheaper, the same cost,
100  *	  or more expensive than path2 for fetching the specified fraction
101  *	  of the total tuples.
102  *
103  * If fraction is <= 0 or > 1, we interpret it as 1, ie, we select the
104  * path with the cheaper total_cost.
105  */
106 int
compare_fractional_path_costs(Path * path1,Path * path2,double fraction)107 compare_fractional_path_costs(Path *path1, Path *path2,
108 							  double fraction)
109 {
110 	Cost		cost1,
111 				cost2;
112 
113 	if (fraction <= 0.0 || fraction >= 1.0)
114 		return compare_path_costs(path1, path2, TOTAL_COST);
115 	cost1 = path1->startup_cost +
116 		fraction * (path1->total_cost - path1->startup_cost);
117 	cost2 = path2->startup_cost +
118 		fraction * (path2->total_cost - path2->startup_cost);
119 	if (cost1 < cost2)
120 		return -1;
121 	if (cost1 > cost2)
122 		return +1;
123 	return 0;
124 }
125 
126 /*
127  * compare_path_costs_fuzzily
128  *	  Compare the costs of two paths to see if either can be said to
129  *	  dominate the other.
130  *
131  * We use fuzzy comparisons so that add_path() can avoid keeping both of
132  * a pair of paths that really have insignificantly different cost.
133  *
134  * The fuzz_factor argument must be 1.0 plus delta, where delta is the
135  * fraction of the smaller cost that is considered to be a significant
136  * difference.  For example, fuzz_factor = 1.01 makes the fuzziness limit
137  * be 1% of the smaller cost.
138  *
139  * The two paths are said to have "equal" costs if both startup and total
140  * costs are fuzzily the same.  Path1 is said to be better than path2 if
141  * it has fuzzily better startup cost and fuzzily no worse total cost,
142  * or if it has fuzzily better total cost and fuzzily no worse startup cost.
143  * Path2 is better than path1 if the reverse holds.  Finally, if one path
144  * is fuzzily better than the other on startup cost and fuzzily worse on
145  * total cost, we just say that their costs are "different", since neither
146  * dominates the other across the whole performance spectrum.
147  *
148  * This function also enforces a policy rule that paths for which the relevant
149  * one of parent->consider_startup and parent->consider_param_startup is false
150  * cannot survive comparisons solely on the grounds of good startup cost, so
151  * we never return COSTS_DIFFERENT when that is true for the total-cost loser.
152  * (But if total costs are fuzzily equal, we compare startup costs anyway,
153  * in hopes of eliminating one path or the other.)
154  */
155 static PathCostComparison
compare_path_costs_fuzzily(Path * path1,Path * path2,double fuzz_factor)156 compare_path_costs_fuzzily(Path *path1, Path *path2, double fuzz_factor)
157 {
158 #define CONSIDER_PATH_STARTUP_COST(p)  \
159 	((p)->param_info == NULL ? (p)->parent->consider_startup : (p)->parent->consider_param_startup)
160 
161 	/*
162 	 * Check total cost first since it's more likely to be different; many
163 	 * paths have zero startup cost.
164 	 */
165 	if (path1->total_cost > path2->total_cost * fuzz_factor)
166 	{
167 		/* path1 fuzzily worse on total cost */
168 		if (CONSIDER_PATH_STARTUP_COST(path1) &&
169 			path2->startup_cost > path1->startup_cost * fuzz_factor)
170 		{
171 			/* ... but path2 fuzzily worse on startup, so DIFFERENT */
172 			return COSTS_DIFFERENT;
173 		}
174 		/* else path2 dominates */
175 		return COSTS_BETTER2;
176 	}
177 	if (path2->total_cost > path1->total_cost * fuzz_factor)
178 	{
179 		/* path2 fuzzily worse on total cost */
180 		if (CONSIDER_PATH_STARTUP_COST(path2) &&
181 			path1->startup_cost > path2->startup_cost * fuzz_factor)
182 		{
183 			/* ... but path1 fuzzily worse on startup, so DIFFERENT */
184 			return COSTS_DIFFERENT;
185 		}
186 		/* else path1 dominates */
187 		return COSTS_BETTER1;
188 	}
189 	/* fuzzily the same on total cost ... */
190 	if (path1->startup_cost > path2->startup_cost * fuzz_factor)
191 	{
192 		/* ... but path1 fuzzily worse on startup, so path2 wins */
193 		return COSTS_BETTER2;
194 	}
195 	if (path2->startup_cost > path1->startup_cost * fuzz_factor)
196 	{
197 		/* ... but path2 fuzzily worse on startup, so path1 wins */
198 		return COSTS_BETTER1;
199 	}
200 	/* fuzzily the same on both costs */
201 	return COSTS_EQUAL;
202 
203 #undef CONSIDER_PATH_STARTUP_COST
204 }
205 
206 /*
207  * set_cheapest
208  *	  Find the minimum-cost paths from among a relation's paths,
209  *	  and save them in the rel's cheapest-path fields.
210  *
211  * cheapest_total_path is normally the cheapest-total-cost unparameterized
212  * path; but if there are no unparameterized paths, we assign it to be the
213  * best (cheapest least-parameterized) parameterized path.  However, only
214  * unparameterized paths are considered candidates for cheapest_startup_path,
215  * so that will be NULL if there are no unparameterized paths.
216  *
217  * The cheapest_parameterized_paths list collects all parameterized paths
218  * that have survived the add_path() tournament for this relation.  (Since
219  * add_path ignores pathkeys for a parameterized path, these will be paths
220  * that have best cost or best row count for their parameterization.  We
221  * may also have both a parallel-safe and a non-parallel-safe path in some
222  * cases for the same parameterization in some cases, but this should be
223  * relatively rare since, most typically, all paths for the same relation
224  * will be parallel-safe or none of them will.)
225  *
226  * cheapest_parameterized_paths always includes the cheapest-total
227  * unparameterized path, too, if there is one; the users of that list find
228  * it more convenient if that's included.
229  *
230  * This is normally called only after we've finished constructing the path
231  * list for the rel node.
232  */
233 void
set_cheapest(RelOptInfo * parent_rel)234 set_cheapest(RelOptInfo *parent_rel)
235 {
236 	Path	   *cheapest_startup_path;
237 	Path	   *cheapest_total_path;
238 	Path	   *best_param_path;
239 	List	   *parameterized_paths;
240 	ListCell   *p;
241 
242 	Assert(IsA(parent_rel, RelOptInfo));
243 
244 	if (parent_rel->pathlist == NIL)
245 		elog(ERROR, "could not devise a query plan for the given query");
246 
247 	cheapest_startup_path = cheapest_total_path = best_param_path = NULL;
248 	parameterized_paths = NIL;
249 
250 	foreach(p, parent_rel->pathlist)
251 	{
252 		Path	   *path = (Path *) lfirst(p);
253 		int			cmp;
254 
255 		if (path->param_info)
256 		{
257 			/* Parameterized path, so add it to parameterized_paths */
258 			parameterized_paths = lappend(parameterized_paths, path);
259 
260 			/*
261 			 * If we have an unparameterized cheapest-total, we no longer care
262 			 * about finding the best parameterized path, so move on.
263 			 */
264 			if (cheapest_total_path)
265 				continue;
266 
267 			/*
268 			 * Otherwise, track the best parameterized path, which is the one
269 			 * with least total cost among those of the minimum
270 			 * parameterization.
271 			 */
272 			if (best_param_path == NULL)
273 				best_param_path = path;
274 			else
275 			{
276 				switch (bms_subset_compare(PATH_REQ_OUTER(path),
277 										   PATH_REQ_OUTER(best_param_path)))
278 				{
279 					case BMS_EQUAL:
280 						/* keep the cheaper one */
281 						if (compare_path_costs(path, best_param_path,
282 											   TOTAL_COST) < 0)
283 							best_param_path = path;
284 						break;
285 					case BMS_SUBSET1:
286 						/* new path is less-parameterized */
287 						best_param_path = path;
288 						break;
289 					case BMS_SUBSET2:
290 						/* old path is less-parameterized, keep it */
291 						break;
292 					case BMS_DIFFERENT:
293 
294 						/*
295 						 * This means that neither path has the least possible
296 						 * parameterization for the rel.  We'll sit on the old
297 						 * path until something better comes along.
298 						 */
299 						break;
300 				}
301 			}
302 		}
303 		else
304 		{
305 			/* Unparameterized path, so consider it for cheapest slots */
306 			if (cheapest_total_path == NULL)
307 			{
308 				cheapest_startup_path = cheapest_total_path = path;
309 				continue;
310 			}
311 
312 			/*
313 			 * If we find two paths of identical costs, try to keep the
314 			 * better-sorted one.  The paths might have unrelated sort
315 			 * orderings, in which case we can only guess which might be
316 			 * better to keep, but if one is superior then we definitely
317 			 * should keep that one.
318 			 */
319 			cmp = compare_path_costs(cheapest_startup_path, path, STARTUP_COST);
320 			if (cmp > 0 ||
321 				(cmp == 0 &&
322 				 compare_pathkeys(cheapest_startup_path->pathkeys,
323 								  path->pathkeys) == PATHKEYS_BETTER2))
324 				cheapest_startup_path = path;
325 
326 			cmp = compare_path_costs(cheapest_total_path, path, TOTAL_COST);
327 			if (cmp > 0 ||
328 				(cmp == 0 &&
329 				 compare_pathkeys(cheapest_total_path->pathkeys,
330 								  path->pathkeys) == PATHKEYS_BETTER2))
331 				cheapest_total_path = path;
332 		}
333 	}
334 
335 	/* Add cheapest unparameterized path, if any, to parameterized_paths */
336 	if (cheapest_total_path)
337 		parameterized_paths = lcons(cheapest_total_path, parameterized_paths);
338 
339 	/*
340 	 * If there is no unparameterized path, use the best parameterized path as
341 	 * cheapest_total_path (but not as cheapest_startup_path).
342 	 */
343 	if (cheapest_total_path == NULL)
344 		cheapest_total_path = best_param_path;
345 	Assert(cheapest_total_path != NULL);
346 
347 	parent_rel->cheapest_startup_path = cheapest_startup_path;
348 	parent_rel->cheapest_total_path = cheapest_total_path;
349 	parent_rel->cheapest_unique_path = NULL;	/* computed only if needed */
350 	parent_rel->cheapest_parameterized_paths = parameterized_paths;
351 }
352 
353 /*
354  * add_path
355  *	  Consider a potential implementation path for the specified parent rel,
356  *	  and add it to the rel's pathlist if it is worthy of consideration.
357  *	  A path is worthy if it has a better sort order (better pathkeys) or
358  *	  cheaper cost (on either dimension), or generates fewer rows, than any
359  *	  existing path that has the same or superset parameterization rels.
360  *	  We also consider parallel-safe paths more worthy than others.
361  *
362  *	  We also remove from the rel's pathlist any old paths that are dominated
363  *	  by new_path --- that is, new_path is cheaper, at least as well ordered,
364  *	  generates no more rows, requires no outer rels not required by the old
365  *	  path, and is no less parallel-safe.
366  *
367  *	  In most cases, a path with a superset parameterization will generate
368  *	  fewer rows (since it has more join clauses to apply), so that those two
369  *	  figures of merit move in opposite directions; this means that a path of
370  *	  one parameterization can seldom dominate a path of another.  But such
371  *	  cases do arise, so we make the full set of checks anyway.
372  *
373  *	  There are two policy decisions embedded in this function, along with
374  *	  its sibling add_path_precheck.  First, we treat all parameterized paths
375  *	  as having NIL pathkeys, so that they cannot win comparisons on the
376  *	  basis of sort order.  This is to reduce the number of parameterized
377  *	  paths that are kept; see discussion in src/backend/optimizer/README.
378  *
379  *	  Second, we only consider cheap startup cost to be interesting if
380  *	  parent_rel->consider_startup is true for an unparameterized path, or
381  *	  parent_rel->consider_param_startup is true for a parameterized one.
382  *	  Again, this allows discarding useless paths sooner.
383  *
384  *	  The pathlist is kept sorted by total_cost, with cheaper paths
385  *	  at the front.  Within this routine, that's simply a speed hack:
386  *	  doing it that way makes it more likely that we will reject an inferior
387  *	  path after a few comparisons, rather than many comparisons.
388  *	  However, add_path_precheck relies on this ordering to exit early
389  *	  when possible.
390  *
391  *	  NOTE: discarded Path objects are immediately pfree'd to reduce planner
392  *	  memory consumption.  We dare not try to free the substructure of a Path,
393  *	  since much of it may be shared with other Paths or the query tree itself;
394  *	  but just recycling discarded Path nodes is a very useful savings in
395  *	  a large join tree.  We can recycle the List nodes of pathlist, too.
396  *
397  *	  As noted in optimizer/README, deleting a previously-accepted Path is
398  *	  safe because we know that Paths of this rel cannot yet be referenced
399  *	  from any other rel, such as a higher-level join.  However, in some cases
400  *	  it is possible that a Path is referenced by another Path for its own
401  *	  rel; we must not delete such a Path, even if it is dominated by the new
402  *	  Path.  Currently this occurs only for IndexPath objects, which may be
403  *	  referenced as children of BitmapHeapPaths as well as being paths in
404  *	  their own right.  Hence, we don't pfree IndexPaths when rejecting them.
405  *
406  * 'parent_rel' is the relation entry to which the path corresponds.
407  * 'new_path' is a potential path for parent_rel.
408  *
409  * Returns nothing, but modifies parent_rel->pathlist.
410  */
411 void
add_path(RelOptInfo * parent_rel,Path * new_path)412 add_path(RelOptInfo *parent_rel, Path *new_path)
413 {
414 	bool		accept_new = true;	/* unless we find a superior old path */
415 	ListCell   *insert_after = NULL;	/* where to insert new item */
416 	List	   *new_path_pathkeys;
417 	ListCell   *p1;
418 	ListCell   *p1_prev;
419 	ListCell   *p1_next;
420 
421 	/*
422 	 * This is a convenient place to check for query cancel --- no part of the
423 	 * planner goes very long without calling add_path().
424 	 */
425 	CHECK_FOR_INTERRUPTS();
426 
427 	/* Pretend parameterized paths have no pathkeys, per comment above */
428 	new_path_pathkeys = new_path->param_info ? NIL : new_path->pathkeys;
429 
430 	/*
431 	 * Loop to check proposed new path against old paths.  Note it is possible
432 	 * for more than one old path to be tossed out because new_path dominates
433 	 * it.
434 	 *
435 	 * We can't use foreach here because the loop body may delete the current
436 	 * list cell.
437 	 */
438 	p1_prev = NULL;
439 	for (p1 = list_head(parent_rel->pathlist); p1 != NULL; p1 = p1_next)
440 	{
441 		Path	   *old_path = (Path *) lfirst(p1);
442 		bool		remove_old = false; /* unless new proves superior */
443 		PathCostComparison costcmp;
444 		PathKeysComparison keyscmp;
445 		BMS_Comparison outercmp;
446 
447 		p1_next = lnext(p1);
448 
449 		/*
450 		 * Do a fuzzy cost comparison with standard fuzziness limit.
451 		 */
452 		costcmp = compare_path_costs_fuzzily(new_path, old_path,
453 											 STD_FUZZ_FACTOR);
454 
455 		/*
456 		 * If the two paths compare differently for startup and total cost,
457 		 * then we want to keep both, and we can skip comparing pathkeys and
458 		 * required_outer rels.  If they compare the same, proceed with the
459 		 * other comparisons.  Row count is checked last.  (We make the tests
460 		 * in this order because the cost comparison is most likely to turn
461 		 * out "different", and the pathkeys comparison next most likely.  As
462 		 * explained above, row count very seldom makes a difference, so even
463 		 * though it's cheap to compare there's not much point in checking it
464 		 * earlier.)
465 		 */
466 		if (costcmp != COSTS_DIFFERENT)
467 		{
468 			/* Similarly check to see if either dominates on pathkeys */
469 			List	   *old_path_pathkeys;
470 
471 			old_path_pathkeys = old_path->param_info ? NIL : old_path->pathkeys;
472 			keyscmp = compare_pathkeys(new_path_pathkeys,
473 									   old_path_pathkeys);
474 			if (keyscmp != PATHKEYS_DIFFERENT)
475 			{
476 				switch (costcmp)
477 				{
478 					case COSTS_EQUAL:
479 						outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
480 													  PATH_REQ_OUTER(old_path));
481 						if (keyscmp == PATHKEYS_BETTER1)
482 						{
483 							if ((outercmp == BMS_EQUAL ||
484 								 outercmp == BMS_SUBSET1) &&
485 								new_path->rows <= old_path->rows &&
486 								new_path->parallel_safe >= old_path->parallel_safe)
487 								remove_old = true;	/* new dominates old */
488 						}
489 						else if (keyscmp == PATHKEYS_BETTER2)
490 						{
491 							if ((outercmp == BMS_EQUAL ||
492 								 outercmp == BMS_SUBSET2) &&
493 								new_path->rows >= old_path->rows &&
494 								new_path->parallel_safe <= old_path->parallel_safe)
495 								accept_new = false; /* old dominates new */
496 						}
497 						else	/* keyscmp == PATHKEYS_EQUAL */
498 						{
499 							if (outercmp == BMS_EQUAL)
500 							{
501 								/*
502 								 * Same pathkeys and outer rels, and fuzzily
503 								 * the same cost, so keep just one; to decide
504 								 * which, first check parallel-safety, then
505 								 * rows, then do a fuzzy cost comparison with
506 								 * very small fuzz limit.  (We used to do an
507 								 * exact cost comparison, but that results in
508 								 * annoying platform-specific plan variations
509 								 * due to roundoff in the cost estimates.)	If
510 								 * things are still tied, arbitrarily keep
511 								 * only the old path.  Notice that we will
512 								 * keep only the old path even if the
513 								 * less-fuzzy comparison decides the startup
514 								 * and total costs compare differently.
515 								 */
516 								if (new_path->parallel_safe >
517 									old_path->parallel_safe)
518 									remove_old = true;	/* new dominates old */
519 								else if (new_path->parallel_safe <
520 										 old_path->parallel_safe)
521 									accept_new = false; /* old dominates new */
522 								else if (new_path->rows < old_path->rows)
523 									remove_old = true;	/* new dominates old */
524 								else if (new_path->rows > old_path->rows)
525 									accept_new = false; /* old dominates new */
526 								else if (compare_path_costs_fuzzily(new_path,
527 																	old_path,
528 																	1.0000000001) == COSTS_BETTER1)
529 									remove_old = true;	/* new dominates old */
530 								else
531 									accept_new = false; /* old equals or
532 														 * dominates new */
533 							}
534 							else if (outercmp == BMS_SUBSET1 &&
535 									 new_path->rows <= old_path->rows &&
536 									 new_path->parallel_safe >= old_path->parallel_safe)
537 								remove_old = true;	/* new dominates old */
538 							else if (outercmp == BMS_SUBSET2 &&
539 									 new_path->rows >= old_path->rows &&
540 									 new_path->parallel_safe <= old_path->parallel_safe)
541 								accept_new = false; /* old dominates new */
542 							/* else different parameterizations, keep both */
543 						}
544 						break;
545 					case COSTS_BETTER1:
546 						if (keyscmp != PATHKEYS_BETTER2)
547 						{
548 							outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
549 														  PATH_REQ_OUTER(old_path));
550 							if ((outercmp == BMS_EQUAL ||
551 								 outercmp == BMS_SUBSET1) &&
552 								new_path->rows <= old_path->rows &&
553 								new_path->parallel_safe >= old_path->parallel_safe)
554 								remove_old = true;	/* new dominates old */
555 						}
556 						break;
557 					case COSTS_BETTER2:
558 						if (keyscmp != PATHKEYS_BETTER1)
559 						{
560 							outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
561 														  PATH_REQ_OUTER(old_path));
562 							if ((outercmp == BMS_EQUAL ||
563 								 outercmp == BMS_SUBSET2) &&
564 								new_path->rows >= old_path->rows &&
565 								new_path->parallel_safe <= old_path->parallel_safe)
566 								accept_new = false; /* old dominates new */
567 						}
568 						break;
569 					case COSTS_DIFFERENT:
570 
571 						/*
572 						 * can't get here, but keep this case to keep compiler
573 						 * quiet
574 						 */
575 						break;
576 				}
577 			}
578 		}
579 
580 		/*
581 		 * Remove current element from pathlist if dominated by new.
582 		 */
583 		if (remove_old)
584 		{
585 			parent_rel->pathlist = list_delete_cell(parent_rel->pathlist,
586 													p1, p1_prev);
587 
588 			/*
589 			 * Delete the data pointed-to by the deleted cell, if possible
590 			 */
591 			if (!IsA(old_path, IndexPath))
592 				pfree(old_path);
593 			/* p1_prev does not advance */
594 		}
595 		else
596 		{
597 			/* new belongs after this old path if it has cost >= old's */
598 			if (new_path->total_cost >= old_path->total_cost)
599 				insert_after = p1;
600 			/* p1_prev advances */
601 			p1_prev = p1;
602 		}
603 
604 		/*
605 		 * If we found an old path that dominates new_path, we can quit
606 		 * scanning the pathlist; we will not add new_path, and we assume
607 		 * new_path cannot dominate any other elements of the pathlist.
608 		 */
609 		if (!accept_new)
610 			break;
611 	}
612 
613 	if (accept_new)
614 	{
615 		/* Accept the new path: insert it at proper place in pathlist */
616 		if (insert_after)
617 			lappend_cell(parent_rel->pathlist, insert_after, new_path);
618 		else
619 			parent_rel->pathlist = lcons(new_path, parent_rel->pathlist);
620 	}
621 	else
622 	{
623 		/* Reject and recycle the new path */
624 		if (!IsA(new_path, IndexPath))
625 			pfree(new_path);
626 	}
627 }
628 
629 /*
630  * add_path_precheck
631  *	  Check whether a proposed new path could possibly get accepted.
632  *	  We assume we know the path's pathkeys and parameterization accurately,
633  *	  and have lower bounds for its costs.
634  *
635  * Note that we do not know the path's rowcount, since getting an estimate for
636  * that is too expensive to do before prechecking.  We assume here that paths
637  * of a superset parameterization will generate fewer rows; if that holds,
638  * then paths with different parameterizations cannot dominate each other
639  * and so we can simply ignore existing paths of another parameterization.
640  * (In the infrequent cases where that rule of thumb fails, add_path will
641  * get rid of the inferior path.)
642  *
643  * At the time this is called, we haven't actually built a Path structure,
644  * so the required information has to be passed piecemeal.
645  */
646 bool
add_path_precheck(RelOptInfo * parent_rel,Cost startup_cost,Cost total_cost,List * pathkeys,Relids required_outer)647 add_path_precheck(RelOptInfo *parent_rel,
648 				  Cost startup_cost, Cost total_cost,
649 				  List *pathkeys, Relids required_outer)
650 {
651 	List	   *new_path_pathkeys;
652 	bool		consider_startup;
653 	ListCell   *p1;
654 
655 	/* Pretend parameterized paths have no pathkeys, per add_path policy */
656 	new_path_pathkeys = required_outer ? NIL : pathkeys;
657 
658 	/* Decide whether new path's startup cost is interesting */
659 	consider_startup = required_outer ? parent_rel->consider_param_startup : parent_rel->consider_startup;
660 
661 	foreach(p1, parent_rel->pathlist)
662 	{
663 		Path	   *old_path = (Path *) lfirst(p1);
664 		PathKeysComparison keyscmp;
665 
666 		/*
667 		 * We are looking for an old_path with the same parameterization (and
668 		 * by assumption the same rowcount) that dominates the new path on
669 		 * pathkeys as well as both cost metrics.  If we find one, we can
670 		 * reject the new path.
671 		 *
672 		 * Cost comparisons here should match compare_path_costs_fuzzily.
673 		 */
674 		if (total_cost > old_path->total_cost * STD_FUZZ_FACTOR)
675 		{
676 			/* new path can win on startup cost only if consider_startup */
677 			if (startup_cost > old_path->startup_cost * STD_FUZZ_FACTOR ||
678 				!consider_startup)
679 			{
680 				/* new path loses on cost, so check pathkeys... */
681 				List	   *old_path_pathkeys;
682 
683 				old_path_pathkeys = old_path->param_info ? NIL : old_path->pathkeys;
684 				keyscmp = compare_pathkeys(new_path_pathkeys,
685 										   old_path_pathkeys);
686 				if (keyscmp == PATHKEYS_EQUAL ||
687 					keyscmp == PATHKEYS_BETTER2)
688 				{
689 					/* new path does not win on pathkeys... */
690 					if (bms_equal(required_outer, PATH_REQ_OUTER(old_path)))
691 					{
692 						/* Found an old path that dominates the new one */
693 						return false;
694 					}
695 				}
696 			}
697 		}
698 		else
699 		{
700 			/*
701 			 * Since the pathlist is sorted by total_cost, we can stop looking
702 			 * once we reach a path with a total_cost larger than the new
703 			 * path's.
704 			 */
705 			break;
706 		}
707 	}
708 
709 	return true;
710 }
711 
712 /*
713  * add_partial_path
714  *	  Like add_path, our goal here is to consider whether a path is worthy
715  *	  of being kept around, but the considerations here are a bit different.
716  *	  A partial path is one which can be executed in any number of workers in
717  *	  parallel such that each worker will generate a subset of the path's
718  *	  overall result.
719  *
720  *	  As in add_path, the partial_pathlist is kept sorted with the cheapest
721  *	  total path in front.  This is depended on by multiple places, which
722  *	  just take the front entry as the cheapest path without searching.
723  *
724  *	  We don't generate parameterized partial paths for several reasons.  Most
725  *	  importantly, they're not safe to execute, because there's nothing to
726  *	  make sure that a parallel scan within the parameterized portion of the
727  *	  plan is running with the same value in every worker at the same time.
728  *	  Fortunately, it seems unlikely to be worthwhile anyway, because having
729  *	  each worker scan the entire outer relation and a subset of the inner
730  *	  relation will generally be a terrible plan.  The inner (parameterized)
731  *	  side of the plan will be small anyway.  There could be rare cases where
732  *	  this wins big - e.g. if join order constraints put a 1-row relation on
733  *	  the outer side of the topmost join with a parameterized plan on the inner
734  *	  side - but we'll have to be content not to handle such cases until
735  *	  somebody builds an executor infrastructure that can cope with them.
736  *
737  *	  Because we don't consider parameterized paths here, we also don't
738  *	  need to consider the row counts as a measure of quality: every path will
739  *	  produce the same number of rows.  Neither do we need to consider startup
740  *	  costs: parallelism is only used for plans that will be run to completion.
741  *	  Therefore, this routine is much simpler than add_path: it needs to
742  *	  consider only pathkeys and total cost.
743  *
744  *	  As with add_path, we pfree paths that are found to be dominated by
745  *	  another partial path; this requires that there be no other references to
746  *	  such paths yet.  Hence, GatherPaths must not be created for a rel until
747  *	  we're done creating all partial paths for it.  Unlike add_path, we don't
748  *	  take an exception for IndexPaths as partial index paths won't be
749  *	  referenced by partial BitmapHeapPaths.
750  */
751 void
add_partial_path(RelOptInfo * parent_rel,Path * new_path)752 add_partial_path(RelOptInfo *parent_rel, Path *new_path)
753 {
754 	bool		accept_new = true;	/* unless we find a superior old path */
755 	ListCell   *insert_after = NULL;	/* where to insert new item */
756 	ListCell   *p1;
757 	ListCell   *p1_prev;
758 	ListCell   *p1_next;
759 
760 	/* Check for query cancel. */
761 	CHECK_FOR_INTERRUPTS();
762 
763 	/*
764 	 * As in add_path, throw out any paths which are dominated by the new
765 	 * path, but throw out the new path if some existing path dominates it.
766 	 */
767 	p1_prev = NULL;
768 	for (p1 = list_head(parent_rel->partial_pathlist); p1 != NULL;
769 		 p1 = p1_next)
770 	{
771 		Path	   *old_path = (Path *) lfirst(p1);
772 		bool		remove_old = false; /* unless new proves superior */
773 		PathKeysComparison keyscmp;
774 
775 		p1_next = lnext(p1);
776 
777 		/* Compare pathkeys. */
778 		keyscmp = compare_pathkeys(new_path->pathkeys, old_path->pathkeys);
779 
780 		/* Unless pathkeys are incompable, keep just one of the two paths. */
781 		if (keyscmp != PATHKEYS_DIFFERENT)
782 		{
783 			if (new_path->total_cost > old_path->total_cost * STD_FUZZ_FACTOR)
784 			{
785 				/* New path costs more; keep it only if pathkeys are better. */
786 				if (keyscmp != PATHKEYS_BETTER1)
787 					accept_new = false;
788 			}
789 			else if (old_path->total_cost > new_path->total_cost
790 					 * STD_FUZZ_FACTOR)
791 			{
792 				/* Old path costs more; keep it only if pathkeys are better. */
793 				if (keyscmp != PATHKEYS_BETTER2)
794 					remove_old = true;
795 			}
796 			else if (keyscmp == PATHKEYS_BETTER1)
797 			{
798 				/* Costs are about the same, new path has better pathkeys. */
799 				remove_old = true;
800 			}
801 			else if (keyscmp == PATHKEYS_BETTER2)
802 			{
803 				/* Costs are about the same, old path has better pathkeys. */
804 				accept_new = false;
805 			}
806 			else if (old_path->total_cost > new_path->total_cost * 1.0000000001)
807 			{
808 				/* Pathkeys are the same, and the old path costs more. */
809 				remove_old = true;
810 			}
811 			else
812 			{
813 				/*
814 				 * Pathkeys are the same, and new path isn't materially
815 				 * cheaper.
816 				 */
817 				accept_new = false;
818 			}
819 		}
820 
821 		/*
822 		 * Remove current element from partial_pathlist if dominated by new.
823 		 */
824 		if (remove_old)
825 		{
826 			parent_rel->partial_pathlist =
827 				list_delete_cell(parent_rel->partial_pathlist, p1, p1_prev);
828 			pfree(old_path);
829 			/* p1_prev does not advance */
830 		}
831 		else
832 		{
833 			/* new belongs after this old path if it has cost >= old's */
834 			if (new_path->total_cost >= old_path->total_cost)
835 				insert_after = p1;
836 			/* p1_prev advances */
837 			p1_prev = p1;
838 		}
839 
840 		/*
841 		 * If we found an old path that dominates new_path, we can quit
842 		 * scanning the partial_pathlist; we will not add new_path, and we
843 		 * assume new_path cannot dominate any later path.
844 		 */
845 		if (!accept_new)
846 			break;
847 	}
848 
849 	if (accept_new)
850 	{
851 		/* Accept the new path: insert it at proper place */
852 		if (insert_after)
853 			lappend_cell(parent_rel->partial_pathlist, insert_after, new_path);
854 		else
855 			parent_rel->partial_pathlist =
856 				lcons(new_path, parent_rel->partial_pathlist);
857 	}
858 	else
859 	{
860 		/* Reject and recycle the new path */
861 		pfree(new_path);
862 	}
863 }
864 
865 /*
866  * add_partial_path_precheck
867  *	  Check whether a proposed new partial path could possibly get accepted.
868  *
869  * Unlike add_path_precheck, we can ignore startup cost and parameterization,
870  * since they don't matter for partial paths (see add_partial_path).  But
871  * we do want to make sure we don't add a partial path if there's already
872  * a complete path that dominates it, since in that case the proposed path
873  * is surely a loser.
874  */
875 bool
add_partial_path_precheck(RelOptInfo * parent_rel,Cost total_cost,List * pathkeys)876 add_partial_path_precheck(RelOptInfo *parent_rel, Cost total_cost,
877 						  List *pathkeys)
878 {
879 	ListCell   *p1;
880 
881 	/*
882 	 * Our goal here is twofold.  First, we want to find out whether this path
883 	 * is clearly inferior to some existing partial path.  If so, we want to
884 	 * reject it immediately.  Second, we want to find out whether this path
885 	 * is clearly superior to some existing partial path -- at least, modulo
886 	 * final cost computations.  If so, we definitely want to consider it.
887 	 *
888 	 * Unlike add_path(), we always compare pathkeys here.  This is because we
889 	 * expect partial_pathlist to be very short, and getting a definitive
890 	 * answer at this stage avoids the need to call add_path_precheck.
891 	 */
892 	foreach(p1, parent_rel->partial_pathlist)
893 	{
894 		Path	   *old_path = (Path *) lfirst(p1);
895 		PathKeysComparison keyscmp;
896 
897 		keyscmp = compare_pathkeys(pathkeys, old_path->pathkeys);
898 		if (keyscmp != PATHKEYS_DIFFERENT)
899 		{
900 			if (total_cost > old_path->total_cost * STD_FUZZ_FACTOR &&
901 				keyscmp != PATHKEYS_BETTER1)
902 				return false;
903 			if (old_path->total_cost > total_cost * STD_FUZZ_FACTOR &&
904 				keyscmp != PATHKEYS_BETTER2)
905 				return true;
906 		}
907 	}
908 
909 	/*
910 	 * This path is neither clearly inferior to an existing partial path nor
911 	 * clearly good enough that it might replace one.  Compare it to
912 	 * non-parallel plans.  If it loses even before accounting for the cost of
913 	 * the Gather node, we should definitely reject it.
914 	 *
915 	 * Note that we pass the total_cost to add_path_precheck twice.  This is
916 	 * because it's never advantageous to consider the startup cost of a
917 	 * partial path; the resulting plans, if run in parallel, will be run to
918 	 * completion.
919 	 */
920 	if (!add_path_precheck(parent_rel, total_cost, total_cost, pathkeys,
921 						   NULL))
922 		return false;
923 
924 	return true;
925 }
926 
927 
928 /*****************************************************************************
929  *		PATH NODE CREATION ROUTINES
930  *****************************************************************************/
931 
932 /*
933  * create_seqscan_path
934  *	  Creates a path corresponding to a sequential scan, returning the
935  *	  pathnode.
936  */
937 Path *
create_seqscan_path(PlannerInfo * root,RelOptInfo * rel,Relids required_outer,int parallel_workers)938 create_seqscan_path(PlannerInfo *root, RelOptInfo *rel,
939 					Relids required_outer, int parallel_workers)
940 {
941 	Path	   *pathnode = makeNode(Path);
942 
943 	pathnode->pathtype = T_SeqScan;
944 	pathnode->parent = rel;
945 	pathnode->pathtarget = rel->reltarget;
946 	pathnode->param_info = get_baserel_parampathinfo(root, rel,
947 													 required_outer);
948 	pathnode->parallel_aware = parallel_workers > 0 ? true : false;
949 	pathnode->parallel_safe = rel->consider_parallel;
950 	pathnode->parallel_workers = parallel_workers;
951 	pathnode->pathkeys = NIL;	/* seqscan has unordered result */
952 
953 	cost_seqscan(pathnode, root, rel, pathnode->param_info);
954 
955 	return pathnode;
956 }
957 
958 /*
959  * create_samplescan_path
960  *	  Creates a path node for a sampled table scan.
961  */
962 Path *
create_samplescan_path(PlannerInfo * root,RelOptInfo * rel,Relids required_outer)963 create_samplescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
964 {
965 	Path	   *pathnode = makeNode(Path);
966 
967 	pathnode->pathtype = T_SampleScan;
968 	pathnode->parent = rel;
969 	pathnode->pathtarget = rel->reltarget;
970 	pathnode->param_info = get_baserel_parampathinfo(root, rel,
971 													 required_outer);
972 	pathnode->parallel_aware = false;
973 	pathnode->parallel_safe = rel->consider_parallel;
974 	pathnode->parallel_workers = 0;
975 	pathnode->pathkeys = NIL;	/* samplescan has unordered result */
976 
977 	cost_samplescan(pathnode, root, rel, pathnode->param_info);
978 
979 	return pathnode;
980 }
981 
982 /*
983  * create_index_path
984  *	  Creates a path node for an index scan.
985  *
986  * 'index' is a usable index.
987  * 'indexclauses' is a list of RestrictInfo nodes representing clauses
988  *			to be used as index qual conditions in the scan.
989  * 'indexclausecols' is an integer list of index column numbers (zero based)
990  *			the indexclauses can be used with.
991  * 'indexorderbys' is a list of bare expressions (no RestrictInfos)
992  *			to be used as index ordering operators in the scan.
993  * 'indexorderbycols' is an integer list of index column numbers (zero based)
994  *			the ordering operators can be used with.
995  * 'pathkeys' describes the ordering of the path.
996  * 'indexscandir' is ForwardScanDirection or BackwardScanDirection
997  *			for an ordered index, or NoMovementScanDirection for
998  *			an unordered index.
999  * 'indexonly' is true if an index-only scan is wanted.
1000  * 'required_outer' is the set of outer relids for a parameterized path.
1001  * 'loop_count' is the number of repetitions of the indexscan to factor into
1002  *		estimates of caching behavior.
1003  * 'partial_path' is true if constructing a parallel index scan path.
1004  *
1005  * Returns the new path node.
1006  */
1007 IndexPath *
create_index_path(PlannerInfo * root,IndexOptInfo * index,List * indexclauses,List * indexclausecols,List * indexorderbys,List * indexorderbycols,List * pathkeys,ScanDirection indexscandir,bool indexonly,Relids required_outer,double loop_count,bool partial_path)1008 create_index_path(PlannerInfo *root,
1009 				  IndexOptInfo *index,
1010 				  List *indexclauses,
1011 				  List *indexclausecols,
1012 				  List *indexorderbys,
1013 				  List *indexorderbycols,
1014 				  List *pathkeys,
1015 				  ScanDirection indexscandir,
1016 				  bool indexonly,
1017 				  Relids required_outer,
1018 				  double loop_count,
1019 				  bool partial_path)
1020 {
1021 	IndexPath  *pathnode = makeNode(IndexPath);
1022 	RelOptInfo *rel = index->rel;
1023 	List	   *indexquals,
1024 			   *indexqualcols;
1025 
1026 	pathnode->path.pathtype = indexonly ? T_IndexOnlyScan : T_IndexScan;
1027 	pathnode->path.parent = rel;
1028 	pathnode->path.pathtarget = rel->reltarget;
1029 	pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1030 														  required_outer);
1031 	pathnode->path.parallel_aware = false;
1032 	pathnode->path.parallel_safe = rel->consider_parallel;
1033 	pathnode->path.parallel_workers = 0;
1034 	pathnode->path.pathkeys = pathkeys;
1035 
1036 	/* Convert clauses to indexquals the executor can handle */
1037 	expand_indexqual_conditions(index, indexclauses, indexclausecols,
1038 								&indexquals, &indexqualcols);
1039 
1040 	/* Fill in the pathnode */
1041 	pathnode->indexinfo = index;
1042 	pathnode->indexclauses = indexclauses;
1043 	pathnode->indexquals = indexquals;
1044 	pathnode->indexqualcols = indexqualcols;
1045 	pathnode->indexorderbys = indexorderbys;
1046 	pathnode->indexorderbycols = indexorderbycols;
1047 	pathnode->indexscandir = indexscandir;
1048 
1049 	cost_index(pathnode, root, loop_count, partial_path);
1050 
1051 	return pathnode;
1052 }
1053 
1054 /*
1055  * create_bitmap_heap_path
1056  *	  Creates a path node for a bitmap scan.
1057  *
1058  * 'bitmapqual' is a tree of IndexPath, BitmapAndPath, and BitmapOrPath nodes.
1059  * 'required_outer' is the set of outer relids for a parameterized path.
1060  * 'loop_count' is the number of repetitions of the indexscan to factor into
1061  *		estimates of caching behavior.
1062  *
1063  * loop_count should match the value used when creating the component
1064  * IndexPaths.
1065  */
1066 BitmapHeapPath *
create_bitmap_heap_path(PlannerInfo * root,RelOptInfo * rel,Path * bitmapqual,Relids required_outer,double loop_count,int parallel_degree)1067 create_bitmap_heap_path(PlannerInfo *root,
1068 						RelOptInfo *rel,
1069 						Path *bitmapqual,
1070 						Relids required_outer,
1071 						double loop_count,
1072 						int parallel_degree)
1073 {
1074 	BitmapHeapPath *pathnode = makeNode(BitmapHeapPath);
1075 
1076 	pathnode->path.pathtype = T_BitmapHeapScan;
1077 	pathnode->path.parent = rel;
1078 	pathnode->path.pathtarget = rel->reltarget;
1079 	pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1080 														  required_outer);
1081 	pathnode->path.parallel_aware = parallel_degree > 0 ? true : false;
1082 	pathnode->path.parallel_safe = rel->consider_parallel;
1083 	pathnode->path.parallel_workers = parallel_degree;
1084 	pathnode->path.pathkeys = NIL;	/* always unordered */
1085 
1086 	pathnode->bitmapqual = bitmapqual;
1087 
1088 	cost_bitmap_heap_scan(&pathnode->path, root, rel,
1089 						  pathnode->path.param_info,
1090 						  bitmapqual, loop_count);
1091 
1092 	return pathnode;
1093 }
1094 
1095 /*
1096  * create_bitmap_and_path
1097  *	  Creates a path node representing a BitmapAnd.
1098  */
1099 BitmapAndPath *
create_bitmap_and_path(PlannerInfo * root,RelOptInfo * rel,List * bitmapquals)1100 create_bitmap_and_path(PlannerInfo *root,
1101 					   RelOptInfo *rel,
1102 					   List *bitmapquals)
1103 {
1104 	BitmapAndPath *pathnode = makeNode(BitmapAndPath);
1105 
1106 	pathnode->path.pathtype = T_BitmapAnd;
1107 	pathnode->path.parent = rel;
1108 	pathnode->path.pathtarget = rel->reltarget;
1109 	pathnode->path.param_info = NULL;	/* not used in bitmap trees */
1110 
1111 	/*
1112 	 * Currently, a BitmapHeapPath, BitmapAndPath, or BitmapOrPath will be
1113 	 * parallel-safe if and only if rel->consider_parallel is set.  So, we can
1114 	 * set the flag for this path based only on the relation-level flag,
1115 	 * without actually iterating over the list of children.
1116 	 */
1117 	pathnode->path.parallel_aware = false;
1118 	pathnode->path.parallel_safe = rel->consider_parallel;
1119 	pathnode->path.parallel_workers = 0;
1120 
1121 	pathnode->path.pathkeys = NIL;	/* always unordered */
1122 
1123 	pathnode->bitmapquals = bitmapquals;
1124 
1125 	/* this sets bitmapselectivity as well as the regular cost fields: */
1126 	cost_bitmap_and_node(pathnode, root);
1127 
1128 	return pathnode;
1129 }
1130 
1131 /*
1132  * create_bitmap_or_path
1133  *	  Creates a path node representing a BitmapOr.
1134  */
1135 BitmapOrPath *
create_bitmap_or_path(PlannerInfo * root,RelOptInfo * rel,List * bitmapquals)1136 create_bitmap_or_path(PlannerInfo *root,
1137 					  RelOptInfo *rel,
1138 					  List *bitmapquals)
1139 {
1140 	BitmapOrPath *pathnode = makeNode(BitmapOrPath);
1141 
1142 	pathnode->path.pathtype = T_BitmapOr;
1143 	pathnode->path.parent = rel;
1144 	pathnode->path.pathtarget = rel->reltarget;
1145 	pathnode->path.param_info = NULL;	/* not used in bitmap trees */
1146 
1147 	/*
1148 	 * Currently, a BitmapHeapPath, BitmapAndPath, or BitmapOrPath will be
1149 	 * parallel-safe if and only if rel->consider_parallel is set.  So, we can
1150 	 * set the flag for this path based only on the relation-level flag,
1151 	 * without actually iterating over the list of children.
1152 	 */
1153 	pathnode->path.parallel_aware = false;
1154 	pathnode->path.parallel_safe = rel->consider_parallel;
1155 	pathnode->path.parallel_workers = 0;
1156 
1157 	pathnode->path.pathkeys = NIL;	/* always unordered */
1158 
1159 	pathnode->bitmapquals = bitmapquals;
1160 
1161 	/* this sets bitmapselectivity as well as the regular cost fields: */
1162 	cost_bitmap_or_node(pathnode, root);
1163 
1164 	return pathnode;
1165 }
1166 
1167 /*
1168  * create_tidscan_path
1169  *	  Creates a path corresponding to a scan by TID, returning the pathnode.
1170  */
1171 TidPath *
create_tidscan_path(PlannerInfo * root,RelOptInfo * rel,List * tidquals,Relids required_outer)1172 create_tidscan_path(PlannerInfo *root, RelOptInfo *rel, List *tidquals,
1173 					Relids required_outer)
1174 {
1175 	TidPath    *pathnode = makeNode(TidPath);
1176 
1177 	pathnode->path.pathtype = T_TidScan;
1178 	pathnode->path.parent = rel;
1179 	pathnode->path.pathtarget = rel->reltarget;
1180 	pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1181 														  required_outer);
1182 	pathnode->path.parallel_aware = false;
1183 	pathnode->path.parallel_safe = rel->consider_parallel;
1184 	pathnode->path.parallel_workers = 0;
1185 	pathnode->path.pathkeys = NIL;	/* always unordered */
1186 
1187 	pathnode->tidquals = tidquals;
1188 
1189 	cost_tidscan(&pathnode->path, root, rel, tidquals,
1190 				 pathnode->path.param_info);
1191 
1192 	return pathnode;
1193 }
1194 
1195 /*
1196  * create_append_path
1197  *	  Creates a path corresponding to an Append plan, returning the
1198  *	  pathnode.
1199  *
1200  * Note that we must handle subpaths = NIL, representing a dummy access path.
1201  */
1202 AppendPath *
create_append_path(RelOptInfo * rel,List * subpaths,Relids required_outer,int parallel_workers,List * partitioned_rels)1203 create_append_path(RelOptInfo *rel, List *subpaths, Relids required_outer,
1204 				   int parallel_workers, List *partitioned_rels)
1205 {
1206 	AppendPath *pathnode = makeNode(AppendPath);
1207 	ListCell   *l;
1208 
1209 	pathnode->path.pathtype = T_Append;
1210 	pathnode->path.parent = rel;
1211 	pathnode->path.pathtarget = rel->reltarget;
1212 	pathnode->path.param_info = get_appendrel_parampathinfo(rel,
1213 															required_outer);
1214 	pathnode->path.parallel_aware = false;
1215 	pathnode->path.parallel_safe = rel->consider_parallel;
1216 	pathnode->path.parallel_workers = parallel_workers;
1217 	pathnode->path.pathkeys = NIL;	/* result is always considered unsorted */
1218 	pathnode->partitioned_rels = list_copy(partitioned_rels);
1219 	pathnode->subpaths = subpaths;
1220 
1221 	/*
1222 	 * We don't bother with inventing a cost_append(), but just do it here.
1223 	 *
1224 	 * Compute rows and costs as sums of subplan rows and costs.  We charge
1225 	 * nothing extra for the Append itself, which perhaps is too optimistic,
1226 	 * but since it doesn't do any selection or projection, it is a pretty
1227 	 * cheap node.
1228 	 */
1229 	pathnode->path.rows = 0;
1230 	pathnode->path.startup_cost = 0;
1231 	pathnode->path.total_cost = 0;
1232 	foreach(l, subpaths)
1233 	{
1234 		Path	   *subpath = (Path *) lfirst(l);
1235 
1236 		pathnode->path.rows += subpath->rows;
1237 
1238 		if (l == list_head(subpaths))	/* first node? */
1239 			pathnode->path.startup_cost = subpath->startup_cost;
1240 		pathnode->path.total_cost += subpath->total_cost;
1241 		pathnode->path.parallel_safe = pathnode->path.parallel_safe &&
1242 			subpath->parallel_safe;
1243 
1244 		/* All child paths must have same parameterization */
1245 		Assert(bms_equal(PATH_REQ_OUTER(subpath), required_outer));
1246 	}
1247 
1248 	return pathnode;
1249 }
1250 
1251 /*
1252  * create_merge_append_path
1253  *	  Creates a path corresponding to a MergeAppend plan, returning the
1254  *	  pathnode.
1255  */
1256 MergeAppendPath *
create_merge_append_path(PlannerInfo * root,RelOptInfo * rel,List * subpaths,List * pathkeys,Relids required_outer,List * partitioned_rels)1257 create_merge_append_path(PlannerInfo *root,
1258 						 RelOptInfo *rel,
1259 						 List *subpaths,
1260 						 List *pathkeys,
1261 						 Relids required_outer,
1262 						 List *partitioned_rels)
1263 {
1264 	MergeAppendPath *pathnode = makeNode(MergeAppendPath);
1265 	Cost		input_startup_cost;
1266 	Cost		input_total_cost;
1267 	ListCell   *l;
1268 
1269 	pathnode->path.pathtype = T_MergeAppend;
1270 	pathnode->path.parent = rel;
1271 	pathnode->path.pathtarget = rel->reltarget;
1272 	pathnode->path.param_info = get_appendrel_parampathinfo(rel,
1273 															required_outer);
1274 	pathnode->path.parallel_aware = false;
1275 	pathnode->path.parallel_safe = rel->consider_parallel;
1276 	pathnode->path.parallel_workers = 0;
1277 	pathnode->path.pathkeys = pathkeys;
1278 	pathnode->partitioned_rels = list_copy(partitioned_rels);
1279 	pathnode->subpaths = subpaths;
1280 
1281 	/*
1282 	 * Apply query-wide LIMIT if known and path is for sole base relation.
1283 	 * (Handling this at this low level is a bit klugy.)
1284 	 */
1285 	if (bms_equal(rel->relids, root->all_baserels))
1286 		pathnode->limit_tuples = root->limit_tuples;
1287 	else
1288 		pathnode->limit_tuples = -1.0;
1289 
1290 	/*
1291 	 * Add up the sizes and costs of the input paths.
1292 	 */
1293 	pathnode->path.rows = 0;
1294 	input_startup_cost = 0;
1295 	input_total_cost = 0;
1296 	foreach(l, subpaths)
1297 	{
1298 		Path	   *subpath = (Path *) lfirst(l);
1299 
1300 		pathnode->path.rows += subpath->rows;
1301 		pathnode->path.parallel_safe = pathnode->path.parallel_safe &&
1302 			subpath->parallel_safe;
1303 
1304 		if (pathkeys_contained_in(pathkeys, subpath->pathkeys))
1305 		{
1306 			/* Subpath is adequately ordered, we won't need to sort it */
1307 			input_startup_cost += subpath->startup_cost;
1308 			input_total_cost += subpath->total_cost;
1309 		}
1310 		else
1311 		{
1312 			/* We'll need to insert a Sort node, so include cost for that */
1313 			Path		sort_path;	/* dummy for result of cost_sort */
1314 
1315 			cost_sort(&sort_path,
1316 					  root,
1317 					  pathkeys,
1318 					  subpath->total_cost,
1319 					  subpath->parent->tuples,
1320 					  subpath->pathtarget->width,
1321 					  0.0,
1322 					  work_mem,
1323 					  pathnode->limit_tuples);
1324 			input_startup_cost += sort_path.startup_cost;
1325 			input_total_cost += sort_path.total_cost;
1326 		}
1327 
1328 		/* All child paths must have same parameterization */
1329 		Assert(bms_equal(PATH_REQ_OUTER(subpath), required_outer));
1330 	}
1331 
1332 	/* Now we can compute total costs of the MergeAppend */
1333 	cost_merge_append(&pathnode->path, root,
1334 					  pathkeys, list_length(subpaths),
1335 					  input_startup_cost, input_total_cost,
1336 					  pathnode->path.rows);
1337 
1338 	return pathnode;
1339 }
1340 
1341 /*
1342  * create_result_path
1343  *	  Creates a path representing a Result-and-nothing-else plan.
1344  *
1345  * This is only used for degenerate cases, such as a query with an empty
1346  * jointree.
1347  */
1348 ResultPath *
create_result_path(PlannerInfo * root,RelOptInfo * rel,PathTarget * target,List * resconstantqual)1349 create_result_path(PlannerInfo *root, RelOptInfo *rel,
1350 				   PathTarget *target, List *resconstantqual)
1351 {
1352 	ResultPath *pathnode = makeNode(ResultPath);
1353 
1354 	pathnode->path.pathtype = T_Result;
1355 	pathnode->path.parent = rel;
1356 	pathnode->path.pathtarget = target;
1357 	pathnode->path.param_info = NULL;	/* there are no other rels... */
1358 	pathnode->path.parallel_aware = false;
1359 	pathnode->path.parallel_safe = rel->consider_parallel;
1360 	pathnode->path.parallel_workers = 0;
1361 	pathnode->path.pathkeys = NIL;
1362 	pathnode->quals = resconstantqual;
1363 
1364 	/* Hardly worth defining a cost_result() function ... just do it */
1365 	pathnode->path.rows = 1;
1366 	pathnode->path.startup_cost = target->cost.startup;
1367 	pathnode->path.total_cost = target->cost.startup +
1368 		cpu_tuple_cost + target->cost.per_tuple;
1369 	if (resconstantqual)
1370 	{
1371 		QualCost	qual_cost;
1372 
1373 		cost_qual_eval(&qual_cost, resconstantqual, root);
1374 		/* resconstantqual is evaluated once at startup */
1375 		pathnode->path.startup_cost += qual_cost.startup + qual_cost.per_tuple;
1376 		pathnode->path.total_cost += qual_cost.startup + qual_cost.per_tuple;
1377 	}
1378 
1379 	return pathnode;
1380 }
1381 
1382 /*
1383  * create_material_path
1384  *	  Creates a path corresponding to a Material plan, returning the
1385  *	  pathnode.
1386  */
1387 MaterialPath *
create_material_path(RelOptInfo * rel,Path * subpath)1388 create_material_path(RelOptInfo *rel, Path *subpath)
1389 {
1390 	MaterialPath *pathnode = makeNode(MaterialPath);
1391 
1392 	Assert(subpath->parent == rel);
1393 
1394 	pathnode->path.pathtype = T_Material;
1395 	pathnode->path.parent = rel;
1396 	pathnode->path.pathtarget = rel->reltarget;
1397 	pathnode->path.param_info = subpath->param_info;
1398 	pathnode->path.parallel_aware = false;
1399 	pathnode->path.parallel_safe = rel->consider_parallel &&
1400 		subpath->parallel_safe;
1401 	pathnode->path.parallel_workers = subpath->parallel_workers;
1402 	pathnode->path.pathkeys = subpath->pathkeys;
1403 
1404 	pathnode->subpath = subpath;
1405 
1406 	cost_material(&pathnode->path,
1407 				  subpath->startup_cost,
1408 				  subpath->total_cost,
1409 				  subpath->rows,
1410 				  subpath->pathtarget->width);
1411 
1412 	return pathnode;
1413 }
1414 
1415 /*
1416  * create_unique_path
1417  *	  Creates a path representing elimination of distinct rows from the
1418  *	  input data.  Distinct-ness is defined according to the needs of the
1419  *	  semijoin represented by sjinfo.  If it is not possible to identify
1420  *	  how to make the data unique, NULL is returned.
1421  *
1422  * If used at all, this is likely to be called repeatedly on the same rel;
1423  * and the input subpath should always be the same (the cheapest_total path
1424  * for the rel).  So we cache the result.
1425  */
1426 UniquePath *
create_unique_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,SpecialJoinInfo * sjinfo)1427 create_unique_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath,
1428 				   SpecialJoinInfo *sjinfo)
1429 {
1430 	UniquePath *pathnode;
1431 	Path		sort_path;		/* dummy for result of cost_sort */
1432 	Path		agg_path;		/* dummy for result of cost_agg */
1433 	MemoryContext oldcontext;
1434 	int			numCols;
1435 
1436 	/* Caller made a mistake if subpath isn't cheapest_total ... */
1437 	Assert(subpath == rel->cheapest_total_path);
1438 	Assert(subpath->parent == rel);
1439 	/* ... or if SpecialJoinInfo is the wrong one */
1440 	Assert(sjinfo->jointype == JOIN_SEMI);
1441 	Assert(bms_equal(rel->relids, sjinfo->syn_righthand));
1442 
1443 	/* If result already cached, return it */
1444 	if (rel->cheapest_unique_path)
1445 		return (UniquePath *) rel->cheapest_unique_path;
1446 
1447 	/* If it's not possible to unique-ify, return NULL */
1448 	if (!(sjinfo->semi_can_btree || sjinfo->semi_can_hash))
1449 		return NULL;
1450 
1451 	/*
1452 	 * We must ensure path struct and subsidiary data are allocated in main
1453 	 * planning context; otherwise GEQO memory management causes trouble.
1454 	 */
1455 	oldcontext = MemoryContextSwitchTo(root->planner_cxt);
1456 
1457 	pathnode = makeNode(UniquePath);
1458 
1459 	pathnode->path.pathtype = T_Unique;
1460 	pathnode->path.parent = rel;
1461 	pathnode->path.pathtarget = rel->reltarget;
1462 	pathnode->path.param_info = subpath->param_info;
1463 	pathnode->path.parallel_aware = false;
1464 	pathnode->path.parallel_safe = rel->consider_parallel &&
1465 		subpath->parallel_safe;
1466 	pathnode->path.parallel_workers = subpath->parallel_workers;
1467 
1468 	/*
1469 	 * Assume the output is unsorted, since we don't necessarily have pathkeys
1470 	 * to represent it.  (This might get overridden below.)
1471 	 */
1472 	pathnode->path.pathkeys = NIL;
1473 
1474 	pathnode->subpath = subpath;
1475 	pathnode->in_operators = sjinfo->semi_operators;
1476 	pathnode->uniq_exprs = sjinfo->semi_rhs_exprs;
1477 
1478 	/*
1479 	 * If the input is a relation and it has a unique index that proves the
1480 	 * semi_rhs_exprs are unique, then we don't need to do anything.  Note
1481 	 * that relation_has_unique_index_for automatically considers restriction
1482 	 * clauses for the rel, as well.
1483 	 */
1484 	if (rel->rtekind == RTE_RELATION && sjinfo->semi_can_btree &&
1485 		relation_has_unique_index_for(root, rel, NIL,
1486 									  sjinfo->semi_rhs_exprs,
1487 									  sjinfo->semi_operators))
1488 	{
1489 		pathnode->umethod = UNIQUE_PATH_NOOP;
1490 		pathnode->path.rows = rel->rows;
1491 		pathnode->path.startup_cost = subpath->startup_cost;
1492 		pathnode->path.total_cost = subpath->total_cost;
1493 		pathnode->path.pathkeys = subpath->pathkeys;
1494 
1495 		rel->cheapest_unique_path = (Path *) pathnode;
1496 
1497 		MemoryContextSwitchTo(oldcontext);
1498 
1499 		return pathnode;
1500 	}
1501 
1502 	/*
1503 	 * If the input is a subquery whose output must be unique already, then we
1504 	 * don't need to do anything.  The test for uniqueness has to consider
1505 	 * exactly which columns we are extracting; for example "SELECT DISTINCT
1506 	 * x,y" doesn't guarantee that x alone is distinct. So we cannot check for
1507 	 * this optimization unless semi_rhs_exprs consists only of simple Vars
1508 	 * referencing subquery outputs.  (Possibly we could do something with
1509 	 * expressions in the subquery outputs, too, but for now keep it simple.)
1510 	 */
1511 	if (rel->rtekind == RTE_SUBQUERY)
1512 	{
1513 		RangeTblEntry *rte = planner_rt_fetch(rel->relid, root);
1514 
1515 		if (query_supports_distinctness(rte->subquery))
1516 		{
1517 			List	   *sub_tlist_colnos;
1518 
1519 			sub_tlist_colnos = translate_sub_tlist(sjinfo->semi_rhs_exprs,
1520 												   rel->relid);
1521 
1522 			if (sub_tlist_colnos &&
1523 				query_is_distinct_for(rte->subquery,
1524 									  sub_tlist_colnos,
1525 									  sjinfo->semi_operators))
1526 			{
1527 				pathnode->umethod = UNIQUE_PATH_NOOP;
1528 				pathnode->path.rows = rel->rows;
1529 				pathnode->path.startup_cost = subpath->startup_cost;
1530 				pathnode->path.total_cost = subpath->total_cost;
1531 				pathnode->path.pathkeys = subpath->pathkeys;
1532 
1533 				rel->cheapest_unique_path = (Path *) pathnode;
1534 
1535 				MemoryContextSwitchTo(oldcontext);
1536 
1537 				return pathnode;
1538 			}
1539 		}
1540 	}
1541 
1542 	/* Estimate number of output rows */
1543 	pathnode->path.rows = estimate_num_groups(root,
1544 											  sjinfo->semi_rhs_exprs,
1545 											  rel->rows,
1546 											  NULL);
1547 	numCols = list_length(sjinfo->semi_rhs_exprs);
1548 
1549 	if (sjinfo->semi_can_btree)
1550 	{
1551 		/*
1552 		 * Estimate cost for sort+unique implementation
1553 		 */
1554 		cost_sort(&sort_path, root, NIL,
1555 				  subpath->total_cost,
1556 				  rel->rows,
1557 				  subpath->pathtarget->width,
1558 				  0.0,
1559 				  work_mem,
1560 				  -1.0);
1561 
1562 		/*
1563 		 * Charge one cpu_operator_cost per comparison per input tuple. We
1564 		 * assume all columns get compared at most of the tuples. (XXX
1565 		 * probably this is an overestimate.)  This should agree with
1566 		 * create_upper_unique_path.
1567 		 */
1568 		sort_path.total_cost += cpu_operator_cost * rel->rows * numCols;
1569 	}
1570 
1571 	if (sjinfo->semi_can_hash)
1572 	{
1573 		/*
1574 		 * Estimate the overhead per hashtable entry at 64 bytes (same as in
1575 		 * planner.c).
1576 		 */
1577 		int			hashentrysize = subpath->pathtarget->width + 64;
1578 
1579 		if (hashentrysize * pathnode->path.rows > work_mem * 1024L)
1580 		{
1581 			/*
1582 			 * We should not try to hash.  Hack the SpecialJoinInfo to
1583 			 * remember this, in case we come through here again.
1584 			 */
1585 			sjinfo->semi_can_hash = false;
1586 		}
1587 		else
1588 			cost_agg(&agg_path, root,
1589 					 AGG_HASHED, NULL,
1590 					 numCols, pathnode->path.rows,
1591 					 subpath->startup_cost,
1592 					 subpath->total_cost,
1593 					 rel->rows);
1594 	}
1595 
1596 	if (sjinfo->semi_can_btree && sjinfo->semi_can_hash)
1597 	{
1598 		if (agg_path.total_cost < sort_path.total_cost)
1599 			pathnode->umethod = UNIQUE_PATH_HASH;
1600 		else
1601 			pathnode->umethod = UNIQUE_PATH_SORT;
1602 	}
1603 	else if (sjinfo->semi_can_btree)
1604 		pathnode->umethod = UNIQUE_PATH_SORT;
1605 	else if (sjinfo->semi_can_hash)
1606 		pathnode->umethod = UNIQUE_PATH_HASH;
1607 	else
1608 	{
1609 		/* we can get here only if we abandoned hashing above */
1610 		MemoryContextSwitchTo(oldcontext);
1611 		return NULL;
1612 	}
1613 
1614 	if (pathnode->umethod == UNIQUE_PATH_HASH)
1615 	{
1616 		pathnode->path.startup_cost = agg_path.startup_cost;
1617 		pathnode->path.total_cost = agg_path.total_cost;
1618 	}
1619 	else
1620 	{
1621 		pathnode->path.startup_cost = sort_path.startup_cost;
1622 		pathnode->path.total_cost = sort_path.total_cost;
1623 	}
1624 
1625 	rel->cheapest_unique_path = (Path *) pathnode;
1626 
1627 	MemoryContextSwitchTo(oldcontext);
1628 
1629 	return pathnode;
1630 }
1631 
1632 /*
1633  * create_gather_merge_path
1634  *
1635  *	  Creates a path corresponding to a gather merge scan, returning
1636  *	  the pathnode.
1637  */
1638 GatherMergePath *
create_gather_merge_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,PathTarget * target,List * pathkeys,Relids required_outer,double * rows)1639 create_gather_merge_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath,
1640 						 PathTarget *target, List *pathkeys,
1641 						 Relids required_outer, double *rows)
1642 {
1643 	GatherMergePath *pathnode = makeNode(GatherMergePath);
1644 	Cost		input_startup_cost = 0;
1645 	Cost		input_total_cost = 0;
1646 
1647 	Assert(subpath->parallel_safe);
1648 	Assert(pathkeys);
1649 
1650 	pathnode->path.pathtype = T_GatherMerge;
1651 	pathnode->path.parent = rel;
1652 	pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1653 														  required_outer);
1654 	pathnode->path.parallel_aware = false;
1655 
1656 	pathnode->subpath = subpath;
1657 	pathnode->num_workers = subpath->parallel_workers;
1658 	pathnode->path.pathkeys = pathkeys;
1659 	pathnode->path.pathtarget = target ? target : rel->reltarget;
1660 	pathnode->path.rows += subpath->rows;
1661 
1662 	if (pathkeys_contained_in(pathkeys, subpath->pathkeys))
1663 	{
1664 		/* Subpath is adequately ordered, we won't need to sort it */
1665 		input_startup_cost += subpath->startup_cost;
1666 		input_total_cost += subpath->total_cost;
1667 	}
1668 	else
1669 	{
1670 		/* We'll need to insert a Sort node, so include cost for that */
1671 		Path		sort_path;	/* dummy for result of cost_sort */
1672 
1673 		cost_sort(&sort_path,
1674 				  root,
1675 				  pathkeys,
1676 				  subpath->total_cost,
1677 				  subpath->rows,
1678 				  subpath->pathtarget->width,
1679 				  0.0,
1680 				  work_mem,
1681 				  -1);
1682 		input_startup_cost += sort_path.startup_cost;
1683 		input_total_cost += sort_path.total_cost;
1684 	}
1685 
1686 	cost_gather_merge(pathnode, root, rel, pathnode->path.param_info,
1687 					  input_startup_cost, input_total_cost, rows);
1688 
1689 	return pathnode;
1690 }
1691 
1692 /*
1693  * translate_sub_tlist - get subquery column numbers represented by tlist
1694  *
1695  * The given targetlist usually contains only Vars referencing the given relid.
1696  * Extract their varattnos (ie, the column numbers of the subquery) and return
1697  * as an integer List.
1698  *
1699  * If any of the tlist items is not a simple Var, we cannot determine whether
1700  * the subquery's uniqueness condition (if any) matches ours, so punt and
1701  * return NIL.
1702  */
1703 static List *
translate_sub_tlist(List * tlist,int relid)1704 translate_sub_tlist(List *tlist, int relid)
1705 {
1706 	List	   *result = NIL;
1707 	ListCell   *l;
1708 
1709 	foreach(l, tlist)
1710 	{
1711 		Var		   *var = (Var *) lfirst(l);
1712 
1713 		if (!var || !IsA(var, Var) ||
1714 			var->varno != relid)
1715 			return NIL;			/* punt */
1716 
1717 		result = lappend_int(result, var->varattno);
1718 	}
1719 	return result;
1720 }
1721 
1722 /*
1723  * create_gather_path
1724  *	  Creates a path corresponding to a gather scan, returning the
1725  *	  pathnode.
1726  *
1727  * 'rows' may optionally be set to override row estimates from other sources.
1728  */
1729 GatherPath *
create_gather_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,PathTarget * target,Relids required_outer,double * rows)1730 create_gather_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath,
1731 				   PathTarget *target, Relids required_outer, double *rows)
1732 {
1733 	GatherPath *pathnode = makeNode(GatherPath);
1734 
1735 	Assert(subpath->parallel_safe);
1736 
1737 	pathnode->path.pathtype = T_Gather;
1738 	pathnode->path.parent = rel;
1739 	pathnode->path.pathtarget = target;
1740 	pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1741 														  required_outer);
1742 	pathnode->path.parallel_aware = false;
1743 	pathnode->path.parallel_safe = false;
1744 	pathnode->path.parallel_workers = 0;
1745 	pathnode->path.pathkeys = NIL;	/* Gather has unordered result */
1746 
1747 	pathnode->subpath = subpath;
1748 	pathnode->num_workers = subpath->parallel_workers;
1749 	pathnode->single_copy = false;
1750 
1751 	if (pathnode->num_workers == 0)
1752 	{
1753 		pathnode->path.pathkeys = subpath->pathkeys;
1754 		pathnode->num_workers = 1;
1755 		pathnode->single_copy = true;
1756 	}
1757 
1758 	cost_gather(pathnode, root, rel, pathnode->path.param_info, rows);
1759 
1760 	return pathnode;
1761 }
1762 
1763 /*
1764  * create_subqueryscan_path
1765  *	  Creates a path corresponding to a scan of a subquery,
1766  *	  returning the pathnode.
1767  */
1768 SubqueryScanPath *
create_subqueryscan_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,List * pathkeys,Relids required_outer)1769 create_subqueryscan_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath,
1770 						 List *pathkeys, Relids required_outer)
1771 {
1772 	SubqueryScanPath *pathnode = makeNode(SubqueryScanPath);
1773 
1774 	pathnode->path.pathtype = T_SubqueryScan;
1775 	pathnode->path.parent = rel;
1776 	pathnode->path.pathtarget = rel->reltarget;
1777 	pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1778 														  required_outer);
1779 	pathnode->path.parallel_aware = false;
1780 	pathnode->path.parallel_safe = rel->consider_parallel &&
1781 		subpath->parallel_safe;
1782 	pathnode->path.parallel_workers = subpath->parallel_workers;
1783 	pathnode->path.pathkeys = pathkeys;
1784 	pathnode->subpath = subpath;
1785 
1786 	cost_subqueryscan(pathnode, root, rel, pathnode->path.param_info);
1787 
1788 	return pathnode;
1789 }
1790 
1791 /*
1792  * create_functionscan_path
1793  *	  Creates a path corresponding to a sequential scan of a function,
1794  *	  returning the pathnode.
1795  */
1796 Path *
create_functionscan_path(PlannerInfo * root,RelOptInfo * rel,List * pathkeys,Relids required_outer)1797 create_functionscan_path(PlannerInfo *root, RelOptInfo *rel,
1798 						 List *pathkeys, Relids required_outer)
1799 {
1800 	Path	   *pathnode = makeNode(Path);
1801 
1802 	pathnode->pathtype = T_FunctionScan;
1803 	pathnode->parent = rel;
1804 	pathnode->pathtarget = rel->reltarget;
1805 	pathnode->param_info = get_baserel_parampathinfo(root, rel,
1806 													 required_outer);
1807 	pathnode->parallel_aware = false;
1808 	pathnode->parallel_safe = rel->consider_parallel;
1809 	pathnode->parallel_workers = 0;
1810 	pathnode->pathkeys = pathkeys;
1811 
1812 	cost_functionscan(pathnode, root, rel, pathnode->param_info);
1813 
1814 	return pathnode;
1815 }
1816 
1817 /*
1818  * create_tablefuncscan_path
1819  *	  Creates a path corresponding to a sequential scan of a table function,
1820  *	  returning the pathnode.
1821  */
1822 Path *
create_tablefuncscan_path(PlannerInfo * root,RelOptInfo * rel,Relids required_outer)1823 create_tablefuncscan_path(PlannerInfo *root, RelOptInfo *rel,
1824 						  Relids required_outer)
1825 {
1826 	Path	   *pathnode = makeNode(Path);
1827 
1828 	pathnode->pathtype = T_TableFuncScan;
1829 	pathnode->parent = rel;
1830 	pathnode->pathtarget = rel->reltarget;
1831 	pathnode->param_info = get_baserel_parampathinfo(root, rel,
1832 													 required_outer);
1833 	pathnode->parallel_aware = false;
1834 	pathnode->parallel_safe = rel->consider_parallel;
1835 	pathnode->parallel_workers = 0;
1836 	pathnode->pathkeys = NIL;	/* result is always unordered */
1837 
1838 	cost_tablefuncscan(pathnode, root, rel, pathnode->param_info);
1839 
1840 	return pathnode;
1841 }
1842 
1843 /*
1844  * create_valuesscan_path
1845  *	  Creates a path corresponding to a scan of a VALUES list,
1846  *	  returning the pathnode.
1847  */
1848 Path *
create_valuesscan_path(PlannerInfo * root,RelOptInfo * rel,Relids required_outer)1849 create_valuesscan_path(PlannerInfo *root, RelOptInfo *rel,
1850 					   Relids required_outer)
1851 {
1852 	Path	   *pathnode = makeNode(Path);
1853 
1854 	pathnode->pathtype = T_ValuesScan;
1855 	pathnode->parent = rel;
1856 	pathnode->pathtarget = rel->reltarget;
1857 	pathnode->param_info = get_baserel_parampathinfo(root, rel,
1858 													 required_outer);
1859 	pathnode->parallel_aware = false;
1860 	pathnode->parallel_safe = rel->consider_parallel;
1861 	pathnode->parallel_workers = 0;
1862 	pathnode->pathkeys = NIL;	/* result is always unordered */
1863 
1864 	cost_valuesscan(pathnode, root, rel, pathnode->param_info);
1865 
1866 	return pathnode;
1867 }
1868 
1869 /*
1870  * create_ctescan_path
1871  *	  Creates a path corresponding to a scan of a non-self-reference CTE,
1872  *	  returning the pathnode.
1873  */
1874 Path *
create_ctescan_path(PlannerInfo * root,RelOptInfo * rel,Relids required_outer)1875 create_ctescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
1876 {
1877 	Path	   *pathnode = makeNode(Path);
1878 
1879 	pathnode->pathtype = T_CteScan;
1880 	pathnode->parent = rel;
1881 	pathnode->pathtarget = rel->reltarget;
1882 	pathnode->param_info = get_baserel_parampathinfo(root, rel,
1883 													 required_outer);
1884 	pathnode->parallel_aware = false;
1885 	pathnode->parallel_safe = rel->consider_parallel;
1886 	pathnode->parallel_workers = 0;
1887 	pathnode->pathkeys = NIL;	/* XXX for now, result is always unordered */
1888 
1889 	cost_ctescan(pathnode, root, rel, pathnode->param_info);
1890 
1891 	return pathnode;
1892 }
1893 
1894 /*
1895  * create_namedtuplestorescan_path
1896  *	  Creates a path corresponding to a scan of a named tuplestore, returning
1897  *	  the pathnode.
1898  */
1899 Path *
create_namedtuplestorescan_path(PlannerInfo * root,RelOptInfo * rel,Relids required_outer)1900 create_namedtuplestorescan_path(PlannerInfo *root, RelOptInfo *rel,
1901 								Relids required_outer)
1902 {
1903 	Path	   *pathnode = makeNode(Path);
1904 
1905 	pathnode->pathtype = T_NamedTuplestoreScan;
1906 	pathnode->parent = rel;
1907 	pathnode->pathtarget = rel->reltarget;
1908 	pathnode->param_info = get_baserel_parampathinfo(root, rel,
1909 													 required_outer);
1910 	pathnode->parallel_aware = false;
1911 	pathnode->parallel_safe = rel->consider_parallel;
1912 	pathnode->parallel_workers = 0;
1913 	pathnode->pathkeys = NIL;	/* result is always unordered */
1914 
1915 	cost_namedtuplestorescan(pathnode, root, rel, pathnode->param_info);
1916 
1917 	return pathnode;
1918 }
1919 
1920 /*
1921  * create_worktablescan_path
1922  *	  Creates a path corresponding to a scan of a self-reference CTE,
1923  *	  returning the pathnode.
1924  */
1925 Path *
create_worktablescan_path(PlannerInfo * root,RelOptInfo * rel,Relids required_outer)1926 create_worktablescan_path(PlannerInfo *root, RelOptInfo *rel,
1927 						  Relids required_outer)
1928 {
1929 	Path	   *pathnode = makeNode(Path);
1930 
1931 	pathnode->pathtype = T_WorkTableScan;
1932 	pathnode->parent = rel;
1933 	pathnode->pathtarget = rel->reltarget;
1934 	pathnode->param_info = get_baserel_parampathinfo(root, rel,
1935 													 required_outer);
1936 	pathnode->parallel_aware = false;
1937 	pathnode->parallel_safe = rel->consider_parallel;
1938 	pathnode->parallel_workers = 0;
1939 	pathnode->pathkeys = NIL;	/* result is always unordered */
1940 
1941 	/* Cost is the same as for a regular CTE scan */
1942 	cost_ctescan(pathnode, root, rel, pathnode->param_info);
1943 
1944 	return pathnode;
1945 }
1946 
1947 /*
1948  * create_foreignscan_path
1949  *	  Creates a path corresponding to a scan of a foreign table, foreign join,
1950  *	  or foreign upper-relation processing, returning the pathnode.
1951  *
1952  * This function is never called from core Postgres; rather, it's expected
1953  * to be called by the GetForeignPaths, GetForeignJoinPaths, or
1954  * GetForeignUpperPaths function of a foreign data wrapper.  We make the FDW
1955  * supply all fields of the path, since we do not have any way to calculate
1956  * them in core.  However, there is a usually-sane default for the pathtarget
1957  * (rel->reltarget), so we let a NULL for "target" select that.
1958  */
1959 ForeignPath *
create_foreignscan_path(PlannerInfo * root,RelOptInfo * rel,PathTarget * target,double rows,Cost startup_cost,Cost total_cost,List * pathkeys,Relids required_outer,Path * fdw_outerpath,List * fdw_private)1960 create_foreignscan_path(PlannerInfo *root, RelOptInfo *rel,
1961 						PathTarget *target,
1962 						double rows, Cost startup_cost, Cost total_cost,
1963 						List *pathkeys,
1964 						Relids required_outer,
1965 						Path *fdw_outerpath,
1966 						List *fdw_private)
1967 {
1968 	ForeignPath *pathnode = makeNode(ForeignPath);
1969 
1970 	/*
1971 	 * Since the path's required_outer should always include all the rel's
1972 	 * lateral_relids, forcibly add those if necessary.  This is a bit of a
1973 	 * hack, but up till early 2019 the contrib FDWs failed to ensure that,
1974 	 * and it's likely that the same error has propagated into many external
1975 	 * FDWs.  Don't risk modifying the passed-in relid set here.
1976 	 */
1977 	if (rel->lateral_relids && !bms_is_subset(rel->lateral_relids,
1978 											  required_outer))
1979 		required_outer = bms_union(required_outer, rel->lateral_relids);
1980 
1981 	/*
1982 	 * Although this function is only designed to be used for scans of
1983 	 * baserels, before v12 postgres_fdw abused it to make paths for join and
1984 	 * upper rels.  It will work for such cases as long as required_outer is
1985 	 * empty (otherwise get_baserel_parampathinfo does the wrong thing), which
1986 	 * fortunately is the expected case for now.
1987 	 */
1988 	if (!bms_is_empty(required_outer) && !IS_SIMPLE_REL(rel))
1989 		elog(ERROR, "parameterized foreign joins are not supported yet");
1990 
1991 	pathnode->path.pathtype = T_ForeignScan;
1992 	pathnode->path.parent = rel;
1993 	pathnode->path.pathtarget = target ? target : rel->reltarget;
1994 	pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1995 														  required_outer);
1996 	pathnode->path.parallel_aware = false;
1997 	pathnode->path.parallel_safe = rel->consider_parallel;
1998 	pathnode->path.parallel_workers = 0;
1999 	pathnode->path.rows = rows;
2000 	pathnode->path.startup_cost = startup_cost;
2001 	pathnode->path.total_cost = total_cost;
2002 	pathnode->path.pathkeys = pathkeys;
2003 
2004 	pathnode->fdw_outerpath = fdw_outerpath;
2005 	pathnode->fdw_private = fdw_private;
2006 
2007 	return pathnode;
2008 }
2009 
2010 /*
2011  * calc_nestloop_required_outer
2012  *	  Compute the required_outer set for a nestloop join path
2013  *
2014  * Note: result must not share storage with either input
2015  */
2016 Relids
calc_nestloop_required_outer(Path * outer_path,Path * inner_path)2017 calc_nestloop_required_outer(Path *outer_path, Path *inner_path)
2018 {
2019 	Relids		outer_paramrels = PATH_REQ_OUTER(outer_path);
2020 	Relids		inner_paramrels = PATH_REQ_OUTER(inner_path);
2021 	Relids		required_outer;
2022 
2023 	/* inner_path can require rels from outer path, but not vice versa */
2024 	Assert(!bms_overlap(outer_paramrels, inner_path->parent->relids));
2025 	/* easy case if inner path is not parameterized */
2026 	if (!inner_paramrels)
2027 		return bms_copy(outer_paramrels);
2028 	/* else, form the union ... */
2029 	required_outer = bms_union(outer_paramrels, inner_paramrels);
2030 	/* ... and remove any mention of now-satisfied outer rels */
2031 	required_outer = bms_del_members(required_outer,
2032 									 outer_path->parent->relids);
2033 	/* maintain invariant that required_outer is exactly NULL if empty */
2034 	if (bms_is_empty(required_outer))
2035 	{
2036 		bms_free(required_outer);
2037 		required_outer = NULL;
2038 	}
2039 	return required_outer;
2040 }
2041 
2042 /*
2043  * calc_non_nestloop_required_outer
2044  *	  Compute the required_outer set for a merge or hash join path
2045  *
2046  * Note: result must not share storage with either input
2047  */
2048 Relids
calc_non_nestloop_required_outer(Path * outer_path,Path * inner_path)2049 calc_non_nestloop_required_outer(Path *outer_path, Path *inner_path)
2050 {
2051 	Relids		outer_paramrels = PATH_REQ_OUTER(outer_path);
2052 	Relids		inner_paramrels = PATH_REQ_OUTER(inner_path);
2053 	Relids		required_outer;
2054 
2055 	/* neither path can require rels from the other */
2056 	Assert(!bms_overlap(outer_paramrels, inner_path->parent->relids));
2057 	Assert(!bms_overlap(inner_paramrels, outer_path->parent->relids));
2058 	/* form the union ... */
2059 	required_outer = bms_union(outer_paramrels, inner_paramrels);
2060 	/* we do not need an explicit test for empty; bms_union gets it right */
2061 	return required_outer;
2062 }
2063 
2064 /*
2065  * create_nestloop_path
2066  *	  Creates a pathnode corresponding to a nestloop join between two
2067  *	  relations.
2068  *
2069  * 'joinrel' is the join relation.
2070  * 'jointype' is the type of join required
2071  * 'workspace' is the result from initial_cost_nestloop
2072  * 'extra' contains various information about the join
2073  * 'outer_path' is the outer path
2074  * 'inner_path' is the inner path
2075  * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2076  * 'pathkeys' are the path keys of the new join path
2077  * 'required_outer' is the set of required outer rels
2078  *
2079  * Returns the resulting path node.
2080  */
2081 NestPath *
create_nestloop_path(PlannerInfo * root,RelOptInfo * joinrel,JoinType jointype,JoinCostWorkspace * workspace,JoinPathExtraData * extra,Path * outer_path,Path * inner_path,List * restrict_clauses,List * pathkeys,Relids required_outer)2082 create_nestloop_path(PlannerInfo *root,
2083 					 RelOptInfo *joinrel,
2084 					 JoinType jointype,
2085 					 JoinCostWorkspace *workspace,
2086 					 JoinPathExtraData *extra,
2087 					 Path *outer_path,
2088 					 Path *inner_path,
2089 					 List *restrict_clauses,
2090 					 List *pathkeys,
2091 					 Relids required_outer)
2092 {
2093 	NestPath   *pathnode = makeNode(NestPath);
2094 	Relids		inner_req_outer = PATH_REQ_OUTER(inner_path);
2095 
2096 	/*
2097 	 * If the inner path is parameterized by the outer, we must drop any
2098 	 * restrict_clauses that are due to be moved into the inner path.  We have
2099 	 * to do this now, rather than postpone the work till createplan time,
2100 	 * because the restrict_clauses list can affect the size and cost
2101 	 * estimates for this path.
2102 	 */
2103 	if (bms_overlap(inner_req_outer, outer_path->parent->relids))
2104 	{
2105 		Relids		inner_and_outer = bms_union(inner_path->parent->relids,
2106 												inner_req_outer);
2107 		List	   *jclauses = NIL;
2108 		ListCell   *lc;
2109 
2110 		foreach(lc, restrict_clauses)
2111 		{
2112 			RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
2113 
2114 			if (!join_clause_is_movable_into(rinfo,
2115 											 inner_path->parent->relids,
2116 											 inner_and_outer))
2117 				jclauses = lappend(jclauses, rinfo);
2118 		}
2119 		restrict_clauses = jclauses;
2120 	}
2121 
2122 	pathnode->path.pathtype = T_NestLoop;
2123 	pathnode->path.parent = joinrel;
2124 	pathnode->path.pathtarget = joinrel->reltarget;
2125 	pathnode->path.param_info =
2126 		get_joinrel_parampathinfo(root,
2127 								  joinrel,
2128 								  outer_path,
2129 								  inner_path,
2130 								  extra->sjinfo,
2131 								  required_outer,
2132 								  &restrict_clauses);
2133 	pathnode->path.parallel_aware = false;
2134 	pathnode->path.parallel_safe = joinrel->consider_parallel &&
2135 		outer_path->parallel_safe && inner_path->parallel_safe;
2136 	/* This is a foolish way to estimate parallel_workers, but for now... */
2137 	pathnode->path.parallel_workers = outer_path->parallel_workers;
2138 	pathnode->path.pathkeys = pathkeys;
2139 	pathnode->jointype = jointype;
2140 	pathnode->inner_unique = extra->inner_unique;
2141 	pathnode->outerjoinpath = outer_path;
2142 	pathnode->innerjoinpath = inner_path;
2143 	pathnode->joinrestrictinfo = restrict_clauses;
2144 
2145 	final_cost_nestloop(root, pathnode, workspace, extra);
2146 
2147 	return pathnode;
2148 }
2149 
2150 /*
2151  * create_mergejoin_path
2152  *	  Creates a pathnode corresponding to a mergejoin join between
2153  *	  two relations
2154  *
2155  * 'joinrel' is the join relation
2156  * 'jointype' is the type of join required
2157  * 'workspace' is the result from initial_cost_mergejoin
2158  * 'extra' contains various information about the join
2159  * 'outer_path' is the outer path
2160  * 'inner_path' is the inner path
2161  * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2162  * 'pathkeys' are the path keys of the new join path
2163  * 'required_outer' is the set of required outer rels
2164  * 'mergeclauses' are the RestrictInfo nodes to use as merge clauses
2165  *		(this should be a subset of the restrict_clauses list)
2166  * 'outersortkeys' are the sort varkeys for the outer relation
2167  * 'innersortkeys' are the sort varkeys for the inner relation
2168  */
2169 MergePath *
create_mergejoin_path(PlannerInfo * root,RelOptInfo * joinrel,JoinType jointype,JoinCostWorkspace * workspace,JoinPathExtraData * extra,Path * outer_path,Path * inner_path,List * restrict_clauses,List * pathkeys,Relids required_outer,List * mergeclauses,List * outersortkeys,List * innersortkeys)2170 create_mergejoin_path(PlannerInfo *root,
2171 					  RelOptInfo *joinrel,
2172 					  JoinType jointype,
2173 					  JoinCostWorkspace *workspace,
2174 					  JoinPathExtraData *extra,
2175 					  Path *outer_path,
2176 					  Path *inner_path,
2177 					  List *restrict_clauses,
2178 					  List *pathkeys,
2179 					  Relids required_outer,
2180 					  List *mergeclauses,
2181 					  List *outersortkeys,
2182 					  List *innersortkeys)
2183 {
2184 	MergePath  *pathnode = makeNode(MergePath);
2185 
2186 	pathnode->jpath.path.pathtype = T_MergeJoin;
2187 	pathnode->jpath.path.parent = joinrel;
2188 	pathnode->jpath.path.pathtarget = joinrel->reltarget;
2189 	pathnode->jpath.path.param_info =
2190 		get_joinrel_parampathinfo(root,
2191 								  joinrel,
2192 								  outer_path,
2193 								  inner_path,
2194 								  extra->sjinfo,
2195 								  required_outer,
2196 								  &restrict_clauses);
2197 	pathnode->jpath.path.parallel_aware = false;
2198 	pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2199 		outer_path->parallel_safe && inner_path->parallel_safe;
2200 	/* This is a foolish way to estimate parallel_workers, but for now... */
2201 	pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2202 	pathnode->jpath.path.pathkeys = pathkeys;
2203 	pathnode->jpath.jointype = jointype;
2204 	pathnode->jpath.inner_unique = extra->inner_unique;
2205 	pathnode->jpath.outerjoinpath = outer_path;
2206 	pathnode->jpath.innerjoinpath = inner_path;
2207 	pathnode->jpath.joinrestrictinfo = restrict_clauses;
2208 	pathnode->path_mergeclauses = mergeclauses;
2209 	pathnode->outersortkeys = outersortkeys;
2210 	pathnode->innersortkeys = innersortkeys;
2211 	/* pathnode->skip_mark_restore will be set by final_cost_mergejoin */
2212 	/* pathnode->materialize_inner will be set by final_cost_mergejoin */
2213 
2214 	final_cost_mergejoin(root, pathnode, workspace, extra);
2215 
2216 	return pathnode;
2217 }
2218 
2219 /*
2220  * create_hashjoin_path
2221  *	  Creates a pathnode corresponding to a hash join between two relations.
2222  *
2223  * 'joinrel' is the join relation
2224  * 'jointype' is the type of join required
2225  * 'workspace' is the result from initial_cost_hashjoin
2226  * 'extra' contains various information about the join
2227  * 'outer_path' is the cheapest outer path
2228  * 'inner_path' is the cheapest inner path
2229  * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2230  * 'required_outer' is the set of required outer rels
2231  * 'hashclauses' are the RestrictInfo nodes to use as hash clauses
2232  *		(this should be a subset of the restrict_clauses list)
2233  */
2234 HashPath *
create_hashjoin_path(PlannerInfo * root,RelOptInfo * joinrel,JoinType jointype,JoinCostWorkspace * workspace,JoinPathExtraData * extra,Path * outer_path,Path * inner_path,List * restrict_clauses,Relids required_outer,List * hashclauses)2235 create_hashjoin_path(PlannerInfo *root,
2236 					 RelOptInfo *joinrel,
2237 					 JoinType jointype,
2238 					 JoinCostWorkspace *workspace,
2239 					 JoinPathExtraData *extra,
2240 					 Path *outer_path,
2241 					 Path *inner_path,
2242 					 List *restrict_clauses,
2243 					 Relids required_outer,
2244 					 List *hashclauses)
2245 {
2246 	HashPath   *pathnode = makeNode(HashPath);
2247 
2248 	pathnode->jpath.path.pathtype = T_HashJoin;
2249 	pathnode->jpath.path.parent = joinrel;
2250 	pathnode->jpath.path.pathtarget = joinrel->reltarget;
2251 	pathnode->jpath.path.param_info =
2252 		get_joinrel_parampathinfo(root,
2253 								  joinrel,
2254 								  outer_path,
2255 								  inner_path,
2256 								  extra->sjinfo,
2257 								  required_outer,
2258 								  &restrict_clauses);
2259 	pathnode->jpath.path.parallel_aware = false;
2260 	pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2261 		outer_path->parallel_safe && inner_path->parallel_safe;
2262 	/* This is a foolish way to estimate parallel_workers, but for now... */
2263 	pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2264 
2265 	/*
2266 	 * A hashjoin never has pathkeys, since its output ordering is
2267 	 * unpredictable due to possible batching.  XXX If the inner relation is
2268 	 * small enough, we could instruct the executor that it must not batch,
2269 	 * and then we could assume that the output inherits the outer relation's
2270 	 * ordering, which might save a sort step.  However there is considerable
2271 	 * downside if our estimate of the inner relation size is badly off. For
2272 	 * the moment we don't risk it.  (Note also that if we wanted to take this
2273 	 * seriously, joinpath.c would have to consider many more paths for the
2274 	 * outer rel than it does now.)
2275 	 */
2276 	pathnode->jpath.path.pathkeys = NIL;
2277 	pathnode->jpath.jointype = jointype;
2278 	pathnode->jpath.inner_unique = extra->inner_unique;
2279 	pathnode->jpath.outerjoinpath = outer_path;
2280 	pathnode->jpath.innerjoinpath = inner_path;
2281 	pathnode->jpath.joinrestrictinfo = restrict_clauses;
2282 	pathnode->path_hashclauses = hashclauses;
2283 	/* final_cost_hashjoin will fill in pathnode->num_batches */
2284 
2285 	final_cost_hashjoin(root, pathnode, workspace, extra);
2286 
2287 	return pathnode;
2288 }
2289 
2290 /*
2291  * create_projection_path
2292  *	  Creates a pathnode that represents performing a projection.
2293  *
2294  * 'rel' is the parent relation associated with the result
2295  * 'subpath' is the path representing the source of data
2296  * 'target' is the PathTarget to be computed
2297  */
2298 ProjectionPath *
create_projection_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,PathTarget * target)2299 create_projection_path(PlannerInfo *root,
2300 					   RelOptInfo *rel,
2301 					   Path *subpath,
2302 					   PathTarget *target)
2303 {
2304 	ProjectionPath *pathnode = makeNode(ProjectionPath);
2305 	PathTarget *oldtarget = subpath->pathtarget;
2306 
2307 	pathnode->path.pathtype = T_Result;
2308 	pathnode->path.parent = rel;
2309 	pathnode->path.pathtarget = target;
2310 	/* For now, assume we are above any joins, so no parameterization */
2311 	pathnode->path.param_info = NULL;
2312 	pathnode->path.parallel_aware = false;
2313 	pathnode->path.parallel_safe = rel->consider_parallel &&
2314 		subpath->parallel_safe &&
2315 		is_parallel_safe(root, (Node *) target->exprs);
2316 	pathnode->path.parallel_workers = subpath->parallel_workers;
2317 	/* Projection does not change the sort order */
2318 	pathnode->path.pathkeys = subpath->pathkeys;
2319 
2320 	pathnode->subpath = subpath;
2321 
2322 	/*
2323 	 * We might not need a separate Result node.  If the input plan node type
2324 	 * can project, we can just tell it to project something else.  Or, if it
2325 	 * can't project but the desired target has the same expression list as
2326 	 * what the input will produce anyway, we can still give it the desired
2327 	 * tlist (possibly changing its ressortgroupref labels, but nothing else).
2328 	 * Note: in the latter case, create_projection_plan has to recheck our
2329 	 * conclusion; see comments therein.
2330 	 */
2331 	if (is_projection_capable_path(subpath) ||
2332 		equal(oldtarget->exprs, target->exprs))
2333 	{
2334 		/* No separate Result node needed */
2335 		pathnode->dummypp = true;
2336 
2337 		/*
2338 		 * Set cost of plan as subpath's cost, adjusted for tlist replacement.
2339 		 */
2340 		pathnode->path.rows = subpath->rows;
2341 		pathnode->path.startup_cost = subpath->startup_cost +
2342 			(target->cost.startup - oldtarget->cost.startup);
2343 		pathnode->path.total_cost = subpath->total_cost +
2344 			(target->cost.startup - oldtarget->cost.startup) +
2345 			(target->cost.per_tuple - oldtarget->cost.per_tuple) * subpath->rows;
2346 	}
2347 	else
2348 	{
2349 		/* We really do need the Result node */
2350 		pathnode->dummypp = false;
2351 
2352 		/*
2353 		 * The Result node's cost is cpu_tuple_cost per row, plus the cost of
2354 		 * evaluating the tlist.  There is no qual to worry about.
2355 		 */
2356 		pathnode->path.rows = subpath->rows;
2357 		pathnode->path.startup_cost = subpath->startup_cost +
2358 			target->cost.startup;
2359 		pathnode->path.total_cost = subpath->total_cost +
2360 			target->cost.startup +
2361 			(cpu_tuple_cost + target->cost.per_tuple) * subpath->rows;
2362 	}
2363 
2364 	return pathnode;
2365 }
2366 
2367 /*
2368  * apply_projection_to_path
2369  *	  Add a projection step, or just apply the target directly to given path.
2370  *
2371  * This has the same net effect as create_projection_path(), except that if
2372  * a separate Result plan node isn't needed, we just replace the given path's
2373  * pathtarget with the desired one.  This must be used only when the caller
2374  * knows that the given path isn't referenced elsewhere and so can be modified
2375  * in-place.
2376  *
2377  * If the input path is a GatherPath, we try to push the new target down to
2378  * its input as well; this is a yet more invasive modification of the input
2379  * path, which create_projection_path() can't do.
2380  *
2381  * Note that we mustn't change the source path's parent link; so when it is
2382  * add_path'd to "rel" things will be a bit inconsistent.  So far that has
2383  * not caused any trouble.
2384  *
2385  * 'rel' is the parent relation associated with the result
2386  * 'path' is the path representing the source of data
2387  * 'target' is the PathTarget to be computed
2388  */
2389 Path *
apply_projection_to_path(PlannerInfo * root,RelOptInfo * rel,Path * path,PathTarget * target)2390 apply_projection_to_path(PlannerInfo *root,
2391 						 RelOptInfo *rel,
2392 						 Path *path,
2393 						 PathTarget *target)
2394 {
2395 	QualCost	oldcost;
2396 
2397 	/*
2398 	 * If given path can't project, we might need a Result node, so make a
2399 	 * separate ProjectionPath.
2400 	 */
2401 	if (!is_projection_capable_path(path))
2402 		return (Path *) create_projection_path(root, rel, path, target);
2403 
2404 	/*
2405 	 * We can just jam the desired tlist into the existing path, being sure to
2406 	 * update its cost estimates appropriately.
2407 	 */
2408 	oldcost = path->pathtarget->cost;
2409 	path->pathtarget = target;
2410 
2411 	path->startup_cost += target->cost.startup - oldcost.startup;
2412 	path->total_cost += target->cost.startup - oldcost.startup +
2413 		(target->cost.per_tuple - oldcost.per_tuple) * path->rows;
2414 
2415 	/*
2416 	 * If the path happens to be a Gather path, we'd like to arrange for the
2417 	 * subpath to return the required target list so that workers can help
2418 	 * project.  But if there is something that is not parallel-safe in the
2419 	 * target expressions, then we can't.
2420 	 */
2421 	if (IsA(path, GatherPath) &&
2422 		is_parallel_safe(root, (Node *) target->exprs))
2423 	{
2424 		GatherPath *gpath = (GatherPath *) path;
2425 
2426 		/*
2427 		 * We always use create_projection_path here, even if the subpath is
2428 		 * projection-capable, so as to avoid modifying the subpath in place.
2429 		 * It seems unlikely at present that there could be any other
2430 		 * references to the subpath, but better safe than sorry.
2431 		 *
2432 		 * Note that we don't change the GatherPath's cost estimates; it might
2433 		 * be appropriate to do so, to reflect the fact that the bulk of the
2434 		 * target evaluation will happen in workers.
2435 		 */
2436 		gpath->subpath = (Path *)
2437 			create_projection_path(root,
2438 								   gpath->subpath->parent,
2439 								   gpath->subpath,
2440 								   target);
2441 	}
2442 	else if (path->parallel_safe &&
2443 			 !is_parallel_safe(root, (Node *) target->exprs))
2444 	{
2445 		/*
2446 		 * We're inserting a parallel-restricted target list into a path
2447 		 * currently marked parallel-safe, so we have to mark it as no longer
2448 		 * safe.
2449 		 */
2450 		path->parallel_safe = false;
2451 	}
2452 
2453 	return path;
2454 }
2455 
2456 /*
2457  * create_set_projection_path
2458  *	  Creates a pathnode that represents performing a projection that
2459  *	  includes set-returning functions.
2460  *
2461  * 'rel' is the parent relation associated with the result
2462  * 'subpath' is the path representing the source of data
2463  * 'target' is the PathTarget to be computed
2464  */
2465 ProjectSetPath *
create_set_projection_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,PathTarget * target)2466 create_set_projection_path(PlannerInfo *root,
2467 						   RelOptInfo *rel,
2468 						   Path *subpath,
2469 						   PathTarget *target)
2470 {
2471 	ProjectSetPath *pathnode = makeNode(ProjectSetPath);
2472 	double		tlist_rows;
2473 	ListCell   *lc;
2474 
2475 	pathnode->path.pathtype = T_ProjectSet;
2476 	pathnode->path.parent = rel;
2477 	pathnode->path.pathtarget = target;
2478 	/* For now, assume we are above any joins, so no parameterization */
2479 	pathnode->path.param_info = NULL;
2480 	pathnode->path.parallel_aware = false;
2481 	pathnode->path.parallel_safe = rel->consider_parallel &&
2482 		subpath->parallel_safe &&
2483 		is_parallel_safe(root, (Node *) target->exprs);
2484 	pathnode->path.parallel_workers = subpath->parallel_workers;
2485 	/* Projection does not change the sort order XXX? */
2486 	pathnode->path.pathkeys = subpath->pathkeys;
2487 
2488 	pathnode->subpath = subpath;
2489 
2490 	/*
2491 	 * Estimate number of rows produced by SRFs for each row of input; if
2492 	 * there's more than one in this node, use the maximum.
2493 	 */
2494 	tlist_rows = 1;
2495 	foreach(lc, target->exprs)
2496 	{
2497 		Node	   *node = (Node *) lfirst(lc);
2498 		double		itemrows;
2499 
2500 		itemrows = expression_returns_set_rows(node);
2501 		if (tlist_rows < itemrows)
2502 			tlist_rows = itemrows;
2503 	}
2504 
2505 	/*
2506 	 * In addition to the cost of evaluating the tlist, charge cpu_tuple_cost
2507 	 * per input row, and half of cpu_tuple_cost for each added output row.
2508 	 * This is slightly bizarre maybe, but it's what 9.6 did; we may revisit
2509 	 * this estimate later.
2510 	 */
2511 	pathnode->path.rows = subpath->rows * tlist_rows;
2512 	pathnode->path.startup_cost = subpath->startup_cost +
2513 		target->cost.startup;
2514 	pathnode->path.total_cost = subpath->total_cost +
2515 		target->cost.startup +
2516 		(cpu_tuple_cost + target->cost.per_tuple) * subpath->rows +
2517 		(pathnode->path.rows - subpath->rows) * cpu_tuple_cost / 2;
2518 
2519 	return pathnode;
2520 }
2521 
2522 /*
2523  * create_sort_path
2524  *	  Creates a pathnode that represents performing an explicit sort.
2525  *
2526  * 'rel' is the parent relation associated with the result
2527  * 'subpath' is the path representing the source of data
2528  * 'pathkeys' represents the desired sort order
2529  * 'limit_tuples' is the estimated bound on the number of output tuples,
2530  *		or -1 if no LIMIT or couldn't estimate
2531  */
2532 SortPath *
create_sort_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,List * pathkeys,double limit_tuples)2533 create_sort_path(PlannerInfo *root,
2534 				 RelOptInfo *rel,
2535 				 Path *subpath,
2536 				 List *pathkeys,
2537 				 double limit_tuples)
2538 {
2539 	SortPath   *pathnode = makeNode(SortPath);
2540 
2541 	pathnode->path.pathtype = T_Sort;
2542 	pathnode->path.parent = rel;
2543 	/* Sort doesn't project, so use source path's pathtarget */
2544 	pathnode->path.pathtarget = subpath->pathtarget;
2545 	/* For now, assume we are above any joins, so no parameterization */
2546 	pathnode->path.param_info = NULL;
2547 	pathnode->path.parallel_aware = false;
2548 	pathnode->path.parallel_safe = rel->consider_parallel &&
2549 		subpath->parallel_safe;
2550 	pathnode->path.parallel_workers = subpath->parallel_workers;
2551 	pathnode->path.pathkeys = pathkeys;
2552 
2553 	pathnode->subpath = subpath;
2554 
2555 	cost_sort(&pathnode->path, root, pathkeys,
2556 			  subpath->total_cost,
2557 			  subpath->rows,
2558 			  subpath->pathtarget->width,
2559 			  0.0,				/* XXX comparison_cost shouldn't be 0? */
2560 			  work_mem, limit_tuples);
2561 
2562 	return pathnode;
2563 }
2564 
2565 /*
2566  * create_group_path
2567  *	  Creates a pathnode that represents performing grouping of presorted input
2568  *
2569  * 'rel' is the parent relation associated with the result
2570  * 'subpath' is the path representing the source of data
2571  * 'target' is the PathTarget to be computed
2572  * 'groupClause' is a list of SortGroupClause's representing the grouping
2573  * 'qual' is the HAVING quals if any
2574  * 'numGroups' is the estimated number of groups
2575  */
2576 GroupPath *
create_group_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,PathTarget * target,List * groupClause,List * qual,double numGroups)2577 create_group_path(PlannerInfo *root,
2578 				  RelOptInfo *rel,
2579 				  Path *subpath,
2580 				  PathTarget *target,
2581 				  List *groupClause,
2582 				  List *qual,
2583 				  double numGroups)
2584 {
2585 	GroupPath  *pathnode = makeNode(GroupPath);
2586 
2587 	pathnode->path.pathtype = T_Group;
2588 	pathnode->path.parent = rel;
2589 	pathnode->path.pathtarget = target;
2590 	/* For now, assume we are above any joins, so no parameterization */
2591 	pathnode->path.param_info = NULL;
2592 	pathnode->path.parallel_aware = false;
2593 	pathnode->path.parallel_safe = rel->consider_parallel &&
2594 		subpath->parallel_safe;
2595 	pathnode->path.parallel_workers = subpath->parallel_workers;
2596 	/* Group doesn't change sort ordering */
2597 	pathnode->path.pathkeys = subpath->pathkeys;
2598 
2599 	pathnode->subpath = subpath;
2600 
2601 	pathnode->groupClause = groupClause;
2602 	pathnode->qual = qual;
2603 
2604 	cost_group(&pathnode->path, root,
2605 			   list_length(groupClause),
2606 			   numGroups,
2607 			   subpath->startup_cost, subpath->total_cost,
2608 			   subpath->rows);
2609 
2610 	/* add tlist eval cost for each output row */
2611 	pathnode->path.startup_cost += target->cost.startup;
2612 	pathnode->path.total_cost += target->cost.startup +
2613 		target->cost.per_tuple * pathnode->path.rows;
2614 
2615 	return pathnode;
2616 }
2617 
2618 /*
2619  * create_upper_unique_path
2620  *	  Creates a pathnode that represents performing an explicit Unique step
2621  *	  on presorted input.
2622  *
2623  * This produces a Unique plan node, but the use-case is so different from
2624  * create_unique_path that it doesn't seem worth trying to merge the two.
2625  *
2626  * 'rel' is the parent relation associated with the result
2627  * 'subpath' is the path representing the source of data
2628  * 'numCols' is the number of grouping columns
2629  * 'numGroups' is the estimated number of groups
2630  *
2631  * The input path must be sorted on the grouping columns, plus possibly
2632  * additional columns; so the first numCols pathkeys are the grouping columns
2633  */
2634 UpperUniquePath *
create_upper_unique_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,int numCols,double numGroups)2635 create_upper_unique_path(PlannerInfo *root,
2636 						 RelOptInfo *rel,
2637 						 Path *subpath,
2638 						 int numCols,
2639 						 double numGroups)
2640 {
2641 	UpperUniquePath *pathnode = makeNode(UpperUniquePath);
2642 
2643 	pathnode->path.pathtype = T_Unique;
2644 	pathnode->path.parent = rel;
2645 	/* Unique doesn't project, so use source path's pathtarget */
2646 	pathnode->path.pathtarget = subpath->pathtarget;
2647 	/* For now, assume we are above any joins, so no parameterization */
2648 	pathnode->path.param_info = NULL;
2649 	pathnode->path.parallel_aware = false;
2650 	pathnode->path.parallel_safe = rel->consider_parallel &&
2651 		subpath->parallel_safe;
2652 	pathnode->path.parallel_workers = subpath->parallel_workers;
2653 	/* Unique doesn't change the input ordering */
2654 	pathnode->path.pathkeys = subpath->pathkeys;
2655 
2656 	pathnode->subpath = subpath;
2657 	pathnode->numkeys = numCols;
2658 
2659 	/*
2660 	 * Charge one cpu_operator_cost per comparison per input tuple. We assume
2661 	 * all columns get compared at most of the tuples.  (XXX probably this is
2662 	 * an overestimate.)
2663 	 */
2664 	pathnode->path.startup_cost = subpath->startup_cost;
2665 	pathnode->path.total_cost = subpath->total_cost +
2666 		cpu_operator_cost * subpath->rows * numCols;
2667 	pathnode->path.rows = numGroups;
2668 
2669 	return pathnode;
2670 }
2671 
2672 /*
2673  * create_agg_path
2674  *	  Creates a pathnode that represents performing aggregation/grouping
2675  *
2676  * 'rel' is the parent relation associated with the result
2677  * 'subpath' is the path representing the source of data
2678  * 'target' is the PathTarget to be computed
2679  * 'aggstrategy' is the Agg node's basic implementation strategy
2680  * 'aggsplit' is the Agg node's aggregate-splitting mode
2681  * 'groupClause' is a list of SortGroupClause's representing the grouping
2682  * 'qual' is the HAVING quals if any
2683  * 'aggcosts' contains cost info about the aggregate functions to be computed
2684  * 'numGroups' is the estimated number of groups (1 if not grouping)
2685  */
2686 AggPath *
create_agg_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,PathTarget * target,AggStrategy aggstrategy,AggSplit aggsplit,List * groupClause,List * qual,const AggClauseCosts * aggcosts,double numGroups)2687 create_agg_path(PlannerInfo *root,
2688 				RelOptInfo *rel,
2689 				Path *subpath,
2690 				PathTarget *target,
2691 				AggStrategy aggstrategy,
2692 				AggSplit aggsplit,
2693 				List *groupClause,
2694 				List *qual,
2695 				const AggClauseCosts *aggcosts,
2696 				double numGroups)
2697 {
2698 	AggPath    *pathnode = makeNode(AggPath);
2699 
2700 	pathnode->path.pathtype = T_Agg;
2701 	pathnode->path.parent = rel;
2702 	pathnode->path.pathtarget = target;
2703 	/* For now, assume we are above any joins, so no parameterization */
2704 	pathnode->path.param_info = NULL;
2705 	pathnode->path.parallel_aware = false;
2706 	pathnode->path.parallel_safe = rel->consider_parallel &&
2707 		subpath->parallel_safe;
2708 	pathnode->path.parallel_workers = subpath->parallel_workers;
2709 	if (aggstrategy == AGG_SORTED)
2710 		pathnode->path.pathkeys = subpath->pathkeys;	/* preserves order */
2711 	else
2712 		pathnode->path.pathkeys = NIL;	/* output is unordered */
2713 	pathnode->subpath = subpath;
2714 
2715 	pathnode->aggstrategy = aggstrategy;
2716 	pathnode->aggsplit = aggsplit;
2717 	pathnode->numGroups = numGroups;
2718 	pathnode->groupClause = groupClause;
2719 	pathnode->qual = qual;
2720 
2721 	cost_agg(&pathnode->path, root,
2722 			 aggstrategy, aggcosts,
2723 			 list_length(groupClause), numGroups,
2724 			 subpath->startup_cost, subpath->total_cost,
2725 			 subpath->rows);
2726 
2727 	/* add tlist eval cost for each output row */
2728 	pathnode->path.startup_cost += target->cost.startup;
2729 	pathnode->path.total_cost += target->cost.startup +
2730 		target->cost.per_tuple * pathnode->path.rows;
2731 
2732 	return pathnode;
2733 }
2734 
2735 /*
2736  * create_groupingsets_path
2737  *	  Creates a pathnode that represents performing GROUPING SETS aggregation
2738  *
2739  * GroupingSetsPath represents sorted grouping with one or more grouping sets.
2740  * The input path's result must be sorted to match the last entry in
2741  * rollup_groupclauses.
2742  *
2743  * 'rel' is the parent relation associated with the result
2744  * 'subpath' is the path representing the source of data
2745  * 'target' is the PathTarget to be computed
2746  * 'having_qual' is the HAVING quals if any
2747  * 'rollups' is a list of RollupData nodes
2748  * 'agg_costs' contains cost info about the aggregate functions to be computed
2749  * 'numGroups' is the estimated total number of groups
2750  */
2751 GroupingSetsPath *
create_groupingsets_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,PathTarget * target,List * having_qual,AggStrategy aggstrategy,List * rollups,const AggClauseCosts * agg_costs,double numGroups)2752 create_groupingsets_path(PlannerInfo *root,
2753 						 RelOptInfo *rel,
2754 						 Path *subpath,
2755 						 PathTarget *target,
2756 						 List *having_qual,
2757 						 AggStrategy aggstrategy,
2758 						 List *rollups,
2759 						 const AggClauseCosts *agg_costs,
2760 						 double numGroups)
2761 {
2762 	GroupingSetsPath *pathnode = makeNode(GroupingSetsPath);
2763 	ListCell   *lc;
2764 	bool		is_first = true;
2765 	bool		is_first_sort = true;
2766 
2767 	/* The topmost generated Plan node will be an Agg */
2768 	pathnode->path.pathtype = T_Agg;
2769 	pathnode->path.parent = rel;
2770 	pathnode->path.pathtarget = target;
2771 	pathnode->path.param_info = subpath->param_info;
2772 	pathnode->path.parallel_aware = false;
2773 	pathnode->path.parallel_safe = rel->consider_parallel &&
2774 		subpath->parallel_safe;
2775 	pathnode->path.parallel_workers = subpath->parallel_workers;
2776 	pathnode->subpath = subpath;
2777 
2778 	/*
2779 	 * Simplify callers by downgrading AGG_SORTED to AGG_PLAIN, and AGG_MIXED
2780 	 * to AGG_HASHED, here if possible.
2781 	 */
2782 	if (aggstrategy == AGG_SORTED &&
2783 		list_length(rollups) == 1 &&
2784 		((RollupData *) linitial(rollups))->groupClause == NIL)
2785 		aggstrategy = AGG_PLAIN;
2786 
2787 	if (aggstrategy == AGG_MIXED &&
2788 		list_length(rollups) == 1)
2789 		aggstrategy = AGG_HASHED;
2790 
2791 	/*
2792 	 * Output will be in sorted order by group_pathkeys if, and only if, there
2793 	 * is a single rollup operation on a non-empty list of grouping
2794 	 * expressions.
2795 	 */
2796 	if (aggstrategy == AGG_SORTED && list_length(rollups) == 1)
2797 		pathnode->path.pathkeys = root->group_pathkeys;
2798 	else
2799 		pathnode->path.pathkeys = NIL;
2800 
2801 	pathnode->aggstrategy = aggstrategy;
2802 	pathnode->rollups = rollups;
2803 	pathnode->qual = having_qual;
2804 
2805 	Assert(rollups != NIL);
2806 	Assert(aggstrategy != AGG_PLAIN || list_length(rollups) == 1);
2807 	Assert(aggstrategy != AGG_MIXED || list_length(rollups) > 1);
2808 
2809 	foreach(lc, rollups)
2810 	{
2811 		RollupData *rollup = lfirst(lc);
2812 		List	   *gsets = rollup->gsets;
2813 		int			numGroupCols = list_length(linitial(gsets));
2814 
2815 		/*
2816 		 * In AGG_SORTED or AGG_PLAIN mode, the first rollup takes the
2817 		 * (already-sorted) input, and following ones do their own sort.
2818 		 *
2819 		 * In AGG_HASHED mode, there is one rollup for each grouping set.
2820 		 *
2821 		 * In AGG_MIXED mode, the first rollups are hashed, the first
2822 		 * non-hashed one takes the (already-sorted) input, and following ones
2823 		 * do their own sort.
2824 		 */
2825 		if (is_first)
2826 		{
2827 			cost_agg(&pathnode->path, root,
2828 					 aggstrategy,
2829 					 agg_costs,
2830 					 numGroupCols,
2831 					 rollup->numGroups,
2832 					 subpath->startup_cost,
2833 					 subpath->total_cost,
2834 					 subpath->rows);
2835 			is_first = false;
2836 			if (!rollup->is_hashed)
2837 				is_first_sort = false;
2838 		}
2839 		else
2840 		{
2841 			Path		sort_path;	/* dummy for result of cost_sort */
2842 			Path		agg_path;	/* dummy for result of cost_agg */
2843 
2844 			if (rollup->is_hashed || is_first_sort)
2845 			{
2846 				/*
2847 				 * Account for cost of aggregation, but don't charge input
2848 				 * cost again
2849 				 */
2850 				cost_agg(&agg_path, root,
2851 						 rollup->is_hashed ? AGG_HASHED : AGG_SORTED,
2852 						 agg_costs,
2853 						 numGroupCols,
2854 						 rollup->numGroups,
2855 						 0.0, 0.0,
2856 						 subpath->rows);
2857 				if (!rollup->is_hashed)
2858 					is_first_sort = false;
2859 			}
2860 			else
2861 			{
2862 				/* Account for cost of sort, but don't charge input cost again */
2863 				cost_sort(&sort_path, root, NIL,
2864 						  0.0,
2865 						  subpath->rows,
2866 						  subpath->pathtarget->width,
2867 						  0.0,
2868 						  work_mem,
2869 						  -1.0);
2870 
2871 				/* Account for cost of aggregation */
2872 
2873 				cost_agg(&agg_path, root,
2874 						 AGG_SORTED,
2875 						 agg_costs,
2876 						 numGroupCols,
2877 						 rollup->numGroups,
2878 						 sort_path.startup_cost,
2879 						 sort_path.total_cost,
2880 						 sort_path.rows);
2881 			}
2882 
2883 			pathnode->path.total_cost += agg_path.total_cost;
2884 			pathnode->path.rows += agg_path.rows;
2885 		}
2886 	}
2887 
2888 	/* add tlist eval cost for each output row */
2889 	pathnode->path.startup_cost += target->cost.startup;
2890 	pathnode->path.total_cost += target->cost.startup +
2891 		target->cost.per_tuple * pathnode->path.rows;
2892 
2893 	return pathnode;
2894 }
2895 
2896 /*
2897  * create_minmaxagg_path
2898  *	  Creates a pathnode that represents computation of MIN/MAX aggregates
2899  *
2900  * 'rel' is the parent relation associated with the result
2901  * 'target' is the PathTarget to be computed
2902  * 'mmaggregates' is a list of MinMaxAggInfo structs
2903  * 'quals' is the HAVING quals if any
2904  */
2905 MinMaxAggPath *
create_minmaxagg_path(PlannerInfo * root,RelOptInfo * rel,PathTarget * target,List * mmaggregates,List * quals)2906 create_minmaxagg_path(PlannerInfo *root,
2907 					  RelOptInfo *rel,
2908 					  PathTarget *target,
2909 					  List *mmaggregates,
2910 					  List *quals)
2911 {
2912 	MinMaxAggPath *pathnode = makeNode(MinMaxAggPath);
2913 	Cost		initplan_cost;
2914 	ListCell   *lc;
2915 
2916 	/* The topmost generated Plan node will be a Result */
2917 	pathnode->path.pathtype = T_Result;
2918 	pathnode->path.parent = rel;
2919 	pathnode->path.pathtarget = target;
2920 	/* For now, assume we are above any joins, so no parameterization */
2921 	pathnode->path.param_info = NULL;
2922 	pathnode->path.parallel_aware = false;
2923 	/* A MinMaxAggPath implies use of subplans, so cannot be parallel-safe */
2924 	pathnode->path.parallel_safe = false;
2925 	pathnode->path.parallel_workers = 0;
2926 	/* Result is one unordered row */
2927 	pathnode->path.rows = 1;
2928 	pathnode->path.pathkeys = NIL;
2929 
2930 	pathnode->mmaggregates = mmaggregates;
2931 	pathnode->quals = quals;
2932 
2933 	/* Calculate cost of all the initplans ... */
2934 	initplan_cost = 0;
2935 	foreach(lc, mmaggregates)
2936 	{
2937 		MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
2938 
2939 		initplan_cost += mminfo->pathcost;
2940 	}
2941 
2942 	/* add tlist eval cost for each output row, plus cpu_tuple_cost */
2943 	pathnode->path.startup_cost = initplan_cost + target->cost.startup;
2944 	pathnode->path.total_cost = initplan_cost + target->cost.startup +
2945 		target->cost.per_tuple + cpu_tuple_cost;
2946 
2947 	return pathnode;
2948 }
2949 
2950 /*
2951  * create_windowagg_path
2952  *	  Creates a pathnode that represents computation of window functions
2953  *
2954  * 'rel' is the parent relation associated with the result
2955  * 'subpath' is the path representing the source of data
2956  * 'target' is the PathTarget to be computed
2957  * 'windowFuncs' is a list of WindowFunc structs
2958  * 'winclause' is a WindowClause that is common to all the WindowFuncs
2959  * 'winpathkeys' is the pathkeys for the PARTITION keys + ORDER keys
2960  *
2961  * The actual sort order of the input must match winpathkeys, but might
2962  * have additional keys after those.
2963  */
2964 WindowAggPath *
create_windowagg_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,PathTarget * target,List * windowFuncs,WindowClause * winclause,List * winpathkeys)2965 create_windowagg_path(PlannerInfo *root,
2966 					  RelOptInfo *rel,
2967 					  Path *subpath,
2968 					  PathTarget *target,
2969 					  List *windowFuncs,
2970 					  WindowClause *winclause,
2971 					  List *winpathkeys)
2972 {
2973 	WindowAggPath *pathnode = makeNode(WindowAggPath);
2974 
2975 	pathnode->path.pathtype = T_WindowAgg;
2976 	pathnode->path.parent = rel;
2977 	pathnode->path.pathtarget = target;
2978 	/* For now, assume we are above any joins, so no parameterization */
2979 	pathnode->path.param_info = NULL;
2980 	pathnode->path.parallel_aware = false;
2981 	pathnode->path.parallel_safe = rel->consider_parallel &&
2982 		subpath->parallel_safe;
2983 	pathnode->path.parallel_workers = subpath->parallel_workers;
2984 	/* WindowAgg preserves the input sort order */
2985 	pathnode->path.pathkeys = subpath->pathkeys;
2986 
2987 	pathnode->subpath = subpath;
2988 	pathnode->winclause = winclause;
2989 	pathnode->winpathkeys = winpathkeys;
2990 
2991 	/*
2992 	 * For costing purposes, assume that there are no redundant partitioning
2993 	 * or ordering columns; it's not worth the trouble to deal with that
2994 	 * corner case here.  So we just pass the unmodified list lengths to
2995 	 * cost_windowagg.
2996 	 */
2997 	cost_windowagg(&pathnode->path, root,
2998 				   windowFuncs,
2999 				   list_length(winclause->partitionClause),
3000 				   list_length(winclause->orderClause),
3001 				   subpath->startup_cost,
3002 				   subpath->total_cost,
3003 				   subpath->rows);
3004 
3005 	/* add tlist eval cost for each output row */
3006 	pathnode->path.startup_cost += target->cost.startup;
3007 	pathnode->path.total_cost += target->cost.startup +
3008 		target->cost.per_tuple * pathnode->path.rows;
3009 
3010 	return pathnode;
3011 }
3012 
3013 /*
3014  * create_setop_path
3015  *	  Creates a pathnode that represents computation of INTERSECT or EXCEPT
3016  *
3017  * 'rel' is the parent relation associated with the result
3018  * 'subpath' is the path representing the source of data
3019  * 'cmd' is the specific semantics (INTERSECT or EXCEPT, with/without ALL)
3020  * 'strategy' is the implementation strategy (sorted or hashed)
3021  * 'distinctList' is a list of SortGroupClause's representing the grouping
3022  * 'flagColIdx' is the column number where the flag column will be, if any
3023  * 'firstFlag' is the flag value for the first input relation when hashing;
3024  *		or -1 when sorting
3025  * 'numGroups' is the estimated number of distinct groups
3026  * 'outputRows' is the estimated number of output rows
3027  */
3028 SetOpPath *
create_setop_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,SetOpCmd cmd,SetOpStrategy strategy,List * distinctList,AttrNumber flagColIdx,int firstFlag,double numGroups,double outputRows)3029 create_setop_path(PlannerInfo *root,
3030 				  RelOptInfo *rel,
3031 				  Path *subpath,
3032 				  SetOpCmd cmd,
3033 				  SetOpStrategy strategy,
3034 				  List *distinctList,
3035 				  AttrNumber flagColIdx,
3036 				  int firstFlag,
3037 				  double numGroups,
3038 				  double outputRows)
3039 {
3040 	SetOpPath  *pathnode = makeNode(SetOpPath);
3041 
3042 	pathnode->path.pathtype = T_SetOp;
3043 	pathnode->path.parent = rel;
3044 	/* SetOp doesn't project, so use source path's pathtarget */
3045 	pathnode->path.pathtarget = subpath->pathtarget;
3046 	/* For now, assume we are above any joins, so no parameterization */
3047 	pathnode->path.param_info = NULL;
3048 	pathnode->path.parallel_aware = false;
3049 	pathnode->path.parallel_safe = rel->consider_parallel &&
3050 		subpath->parallel_safe;
3051 	pathnode->path.parallel_workers = subpath->parallel_workers;
3052 	/* SetOp preserves the input sort order if in sort mode */
3053 	pathnode->path.pathkeys =
3054 		(strategy == SETOP_SORTED) ? subpath->pathkeys : NIL;
3055 
3056 	pathnode->subpath = subpath;
3057 	pathnode->cmd = cmd;
3058 	pathnode->strategy = strategy;
3059 	pathnode->distinctList = distinctList;
3060 	pathnode->flagColIdx = flagColIdx;
3061 	pathnode->firstFlag = firstFlag;
3062 	pathnode->numGroups = numGroups;
3063 
3064 	/*
3065 	 * Charge one cpu_operator_cost per comparison per input tuple. We assume
3066 	 * all columns get compared at most of the tuples.
3067 	 */
3068 	pathnode->path.startup_cost = subpath->startup_cost;
3069 	pathnode->path.total_cost = subpath->total_cost +
3070 		cpu_operator_cost * subpath->rows * list_length(distinctList);
3071 	pathnode->path.rows = outputRows;
3072 
3073 	return pathnode;
3074 }
3075 
3076 /*
3077  * create_recursiveunion_path
3078  *	  Creates a pathnode that represents a recursive UNION node
3079  *
3080  * 'rel' is the parent relation associated with the result
3081  * 'leftpath' is the source of data for the non-recursive term
3082  * 'rightpath' is the source of data for the recursive term
3083  * 'target' is the PathTarget to be computed
3084  * 'distinctList' is a list of SortGroupClause's representing the grouping
3085  * 'wtParam' is the ID of Param representing work table
3086  * 'numGroups' is the estimated number of groups
3087  *
3088  * For recursive UNION ALL, distinctList is empty and numGroups is zero
3089  */
3090 RecursiveUnionPath *
create_recursiveunion_path(PlannerInfo * root,RelOptInfo * rel,Path * leftpath,Path * rightpath,PathTarget * target,List * distinctList,int wtParam,double numGroups)3091 create_recursiveunion_path(PlannerInfo *root,
3092 						   RelOptInfo *rel,
3093 						   Path *leftpath,
3094 						   Path *rightpath,
3095 						   PathTarget *target,
3096 						   List *distinctList,
3097 						   int wtParam,
3098 						   double numGroups)
3099 {
3100 	RecursiveUnionPath *pathnode = makeNode(RecursiveUnionPath);
3101 
3102 	pathnode->path.pathtype = T_RecursiveUnion;
3103 	pathnode->path.parent = rel;
3104 	pathnode->path.pathtarget = target;
3105 	/* For now, assume we are above any joins, so no parameterization */
3106 	pathnode->path.param_info = NULL;
3107 	pathnode->path.parallel_aware = false;
3108 	pathnode->path.parallel_safe = rel->consider_parallel &&
3109 		leftpath->parallel_safe && rightpath->parallel_safe;
3110 	/* Foolish, but we'll do it like joins for now: */
3111 	pathnode->path.parallel_workers = leftpath->parallel_workers;
3112 	/* RecursiveUnion result is always unsorted */
3113 	pathnode->path.pathkeys = NIL;
3114 
3115 	pathnode->leftpath = leftpath;
3116 	pathnode->rightpath = rightpath;
3117 	pathnode->distinctList = distinctList;
3118 	pathnode->wtParam = wtParam;
3119 	pathnode->numGroups = numGroups;
3120 
3121 	cost_recursive_union(&pathnode->path, leftpath, rightpath);
3122 
3123 	return pathnode;
3124 }
3125 
3126 /*
3127  * create_lockrows_path
3128  *	  Creates a pathnode that represents acquiring row locks
3129  *
3130  * 'rel' is the parent relation associated with the result
3131  * 'subpath' is the path representing the source of data
3132  * 'rowMarks' is a list of PlanRowMark's
3133  * 'epqParam' is the ID of Param for EvalPlanQual re-eval
3134  */
3135 LockRowsPath *
create_lockrows_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,List * rowMarks,int epqParam)3136 create_lockrows_path(PlannerInfo *root, RelOptInfo *rel,
3137 					 Path *subpath, List *rowMarks, int epqParam)
3138 {
3139 	LockRowsPath *pathnode = makeNode(LockRowsPath);
3140 
3141 	pathnode->path.pathtype = T_LockRows;
3142 	pathnode->path.parent = rel;
3143 	/* LockRows doesn't project, so use source path's pathtarget */
3144 	pathnode->path.pathtarget = subpath->pathtarget;
3145 	/* For now, assume we are above any joins, so no parameterization */
3146 	pathnode->path.param_info = NULL;
3147 	pathnode->path.parallel_aware = false;
3148 	pathnode->path.parallel_safe = false;
3149 	pathnode->path.parallel_workers = 0;
3150 	pathnode->path.rows = subpath->rows;
3151 
3152 	/*
3153 	 * The result cannot be assumed sorted, since locking might cause the sort
3154 	 * key columns to be replaced with new values.
3155 	 */
3156 	pathnode->path.pathkeys = NIL;
3157 
3158 	pathnode->subpath = subpath;
3159 	pathnode->rowMarks = rowMarks;
3160 	pathnode->epqParam = epqParam;
3161 
3162 	/*
3163 	 * We should charge something extra for the costs of row locking and
3164 	 * possible refetches, but it's hard to say how much.  For now, use
3165 	 * cpu_tuple_cost per row.
3166 	 */
3167 	pathnode->path.startup_cost = subpath->startup_cost;
3168 	pathnode->path.total_cost = subpath->total_cost +
3169 		cpu_tuple_cost * subpath->rows;
3170 
3171 	return pathnode;
3172 }
3173 
3174 /*
3175  * create_modifytable_path
3176  *	  Creates a pathnode that represents performing INSERT/UPDATE/DELETE mods
3177  *
3178  * 'rel' is the parent relation associated with the result
3179  * 'operation' is the operation type
3180  * 'canSetTag' is true if we set the command tag/es_processed
3181  * 'nominalRelation' is the parent RT index for use of EXPLAIN
3182  * 'partitioned_rels' is an integer list of RT indexes of non-leaf tables in
3183  *		the partition tree, if this is an UPDATE/DELETE to a partitioned table.
3184  *		Otherwise NIL.
3185  * 'resultRelations' is an integer list of actual RT indexes of target rel(s)
3186  * 'subpaths' is a list of Path(s) producing source data (one per rel)
3187  * 'subroots' is a list of PlannerInfo structs (one per rel)
3188  * 'withCheckOptionLists' is a list of WCO lists (one per rel)
3189  * 'returningLists' is a list of RETURNING tlists (one per rel)
3190  * 'rowMarks' is a list of PlanRowMarks (non-locking only)
3191  * 'onconflict' is the ON CONFLICT clause, or NULL
3192  * 'epqParam' is the ID of Param for EvalPlanQual re-eval
3193  */
3194 ModifyTablePath *
create_modifytable_path(PlannerInfo * root,RelOptInfo * rel,CmdType operation,bool canSetTag,Index nominalRelation,List * partitioned_rels,List * resultRelations,List * subpaths,List * subroots,List * withCheckOptionLists,List * returningLists,List * rowMarks,OnConflictExpr * onconflict,int epqParam)3195 create_modifytable_path(PlannerInfo *root, RelOptInfo *rel,
3196 						CmdType operation, bool canSetTag,
3197 						Index nominalRelation, List *partitioned_rels,
3198 						List *resultRelations, List *subpaths,
3199 						List *subroots,
3200 						List *withCheckOptionLists, List *returningLists,
3201 						List *rowMarks, OnConflictExpr *onconflict,
3202 						int epqParam)
3203 {
3204 	ModifyTablePath *pathnode = makeNode(ModifyTablePath);
3205 	double		total_size;
3206 	ListCell   *lc;
3207 
3208 	Assert(list_length(resultRelations) == list_length(subpaths));
3209 	Assert(list_length(resultRelations) == list_length(subroots));
3210 	Assert(withCheckOptionLists == NIL ||
3211 		   list_length(resultRelations) == list_length(withCheckOptionLists));
3212 	Assert(returningLists == NIL ||
3213 		   list_length(resultRelations) == list_length(returningLists));
3214 
3215 	pathnode->path.pathtype = T_ModifyTable;
3216 	pathnode->path.parent = rel;
3217 	/* pathtarget is not interesting, just make it minimally valid */
3218 	pathnode->path.pathtarget = rel->reltarget;
3219 	/* For now, assume we are above any joins, so no parameterization */
3220 	pathnode->path.param_info = NULL;
3221 	pathnode->path.parallel_aware = false;
3222 	pathnode->path.parallel_safe = false;
3223 	pathnode->path.parallel_workers = 0;
3224 	pathnode->path.pathkeys = NIL;
3225 
3226 	/*
3227 	 * Compute cost & rowcount as sum of subpath costs & rowcounts.
3228 	 *
3229 	 * Currently, we don't charge anything extra for the actual table
3230 	 * modification work, nor for the WITH CHECK OPTIONS or RETURNING
3231 	 * expressions if any.  It would only be window dressing, since
3232 	 * ModifyTable is always a top-level node and there is no way for the
3233 	 * costs to change any higher-level planning choices.  But we might want
3234 	 * to make it look better sometime.
3235 	 */
3236 	pathnode->path.startup_cost = 0;
3237 	pathnode->path.total_cost = 0;
3238 	pathnode->path.rows = 0;
3239 	total_size = 0;
3240 	foreach(lc, subpaths)
3241 	{
3242 		Path	   *subpath = (Path *) lfirst(lc);
3243 
3244 		if (lc == list_head(subpaths))	/* first node? */
3245 			pathnode->path.startup_cost = subpath->startup_cost;
3246 		pathnode->path.total_cost += subpath->total_cost;
3247 		pathnode->path.rows += subpath->rows;
3248 		total_size += subpath->pathtarget->width * subpath->rows;
3249 	}
3250 
3251 	/*
3252 	 * Set width to the average width of the subpath outputs.  XXX this is
3253 	 * totally wrong: we should report zero if no RETURNING, else an average
3254 	 * of the RETURNING tlist widths.  But it's what happened historically,
3255 	 * and improving it is a task for another day.
3256 	 */
3257 	if (pathnode->path.rows > 0)
3258 		total_size /= pathnode->path.rows;
3259 	pathnode->path.pathtarget->width = rint(total_size);
3260 
3261 	pathnode->operation = operation;
3262 	pathnode->canSetTag = canSetTag;
3263 	pathnode->nominalRelation = nominalRelation;
3264 	pathnode->partitioned_rels = list_copy(partitioned_rels);
3265 	pathnode->resultRelations = resultRelations;
3266 	pathnode->subpaths = subpaths;
3267 	pathnode->subroots = subroots;
3268 	pathnode->withCheckOptionLists = withCheckOptionLists;
3269 	pathnode->returningLists = returningLists;
3270 	pathnode->rowMarks = rowMarks;
3271 	pathnode->onconflict = onconflict;
3272 	pathnode->epqParam = epqParam;
3273 
3274 	return pathnode;
3275 }
3276 
3277 /*
3278  * create_limit_path
3279  *	  Creates a pathnode that represents performing LIMIT/OFFSET
3280  *
3281  * In addition to providing the actual OFFSET and LIMIT expressions,
3282  * the caller must provide estimates of their values for costing purposes.
3283  * The estimates are as computed by preprocess_limit(), ie, 0 represents
3284  * the clause not being present, and -1 means it's present but we could
3285  * not estimate its value.
3286  *
3287  * 'rel' is the parent relation associated with the result
3288  * 'subpath' is the path representing the source of data
3289  * 'limitOffset' is the actual OFFSET expression, or NULL
3290  * 'limitCount' is the actual LIMIT expression, or NULL
3291  * 'offset_est' is the estimated value of the OFFSET expression
3292  * 'count_est' is the estimated value of the LIMIT expression
3293  */
3294 LimitPath *
create_limit_path(PlannerInfo * root,RelOptInfo * rel,Path * subpath,Node * limitOffset,Node * limitCount,int64 offset_est,int64 count_est)3295 create_limit_path(PlannerInfo *root, RelOptInfo *rel,
3296 				  Path *subpath,
3297 				  Node *limitOffset, Node *limitCount,
3298 				  int64 offset_est, int64 count_est)
3299 {
3300 	LimitPath  *pathnode = makeNode(LimitPath);
3301 
3302 	pathnode->path.pathtype = T_Limit;
3303 	pathnode->path.parent = rel;
3304 	/* Limit doesn't project, so use source path's pathtarget */
3305 	pathnode->path.pathtarget = subpath->pathtarget;
3306 	/* For now, assume we are above any joins, so no parameterization */
3307 	pathnode->path.param_info = NULL;
3308 	pathnode->path.parallel_aware = false;
3309 	pathnode->path.parallel_safe = rel->consider_parallel &&
3310 		subpath->parallel_safe;
3311 	pathnode->path.parallel_workers = subpath->parallel_workers;
3312 	pathnode->path.rows = subpath->rows;
3313 	pathnode->path.startup_cost = subpath->startup_cost;
3314 	pathnode->path.total_cost = subpath->total_cost;
3315 	pathnode->path.pathkeys = subpath->pathkeys;
3316 	pathnode->subpath = subpath;
3317 	pathnode->limitOffset = limitOffset;
3318 	pathnode->limitCount = limitCount;
3319 
3320 	/*
3321 	 * Adjust the output rows count and costs according to the offset/limit.
3322 	 * This is only a cosmetic issue if we are at top level, but if we are
3323 	 * building a subquery then it's important to report correct info to the
3324 	 * outer planner.
3325 	 *
3326 	 * When the offset or count couldn't be estimated, use 10% of the
3327 	 * estimated number of rows emitted from the subpath.
3328 	 *
3329 	 * XXX we don't bother to add eval costs of the offset/limit expressions
3330 	 * themselves to the path costs.  In theory we should, but in most cases
3331 	 * those expressions are trivial and it's just not worth the trouble.
3332 	 */
3333 	if (offset_est != 0)
3334 	{
3335 		double		offset_rows;
3336 
3337 		if (offset_est > 0)
3338 			offset_rows = (double) offset_est;
3339 		else
3340 			offset_rows = clamp_row_est(subpath->rows * 0.10);
3341 		if (offset_rows > pathnode->path.rows)
3342 			offset_rows = pathnode->path.rows;
3343 		if (subpath->rows > 0)
3344 			pathnode->path.startup_cost +=
3345 				(subpath->total_cost - subpath->startup_cost)
3346 				* offset_rows / subpath->rows;
3347 		pathnode->path.rows -= offset_rows;
3348 		if (pathnode->path.rows < 1)
3349 			pathnode->path.rows = 1;
3350 	}
3351 
3352 	if (count_est != 0)
3353 	{
3354 		double		count_rows;
3355 
3356 		if (count_est > 0)
3357 			count_rows = (double) count_est;
3358 		else
3359 			count_rows = clamp_row_est(subpath->rows * 0.10);
3360 		if (count_rows > pathnode->path.rows)
3361 			count_rows = pathnode->path.rows;
3362 		if (subpath->rows > 0)
3363 			pathnode->path.total_cost = pathnode->path.startup_cost +
3364 				(subpath->total_cost - subpath->startup_cost)
3365 				* count_rows / subpath->rows;
3366 		pathnode->path.rows = count_rows;
3367 		if (pathnode->path.rows < 1)
3368 			pathnode->path.rows = 1;
3369 	}
3370 
3371 	return pathnode;
3372 }
3373 
3374 
3375 /*
3376  * reparameterize_path
3377  *		Attempt to modify a Path to have greater parameterization
3378  *
3379  * We use this to attempt to bring all child paths of an appendrel to the
3380  * same parameterization level, ensuring that they all enforce the same set
3381  * of join quals (and thus that that parameterization can be attributed to
3382  * an append path built from such paths).  Currently, only a few path types
3383  * are supported here, though more could be added at need.  We return NULL
3384  * if we can't reparameterize the given path.
3385  *
3386  * Note: we intentionally do not pass created paths to add_path(); it would
3387  * possibly try to delete them on the grounds of being cost-inferior to the
3388  * paths they were made from, and we don't want that.  Paths made here are
3389  * not necessarily of general-purpose usefulness, but they can be useful
3390  * as members of an append path.
3391  */
3392 Path *
reparameterize_path(PlannerInfo * root,Path * path,Relids required_outer,double loop_count)3393 reparameterize_path(PlannerInfo *root, Path *path,
3394 					Relids required_outer,
3395 					double loop_count)
3396 {
3397 	RelOptInfo *rel = path->parent;
3398 
3399 	/* Can only increase, not decrease, path's parameterization */
3400 	if (!bms_is_subset(PATH_REQ_OUTER(path), required_outer))
3401 		return NULL;
3402 	switch (path->pathtype)
3403 	{
3404 		case T_SeqScan:
3405 			return create_seqscan_path(root, rel, required_outer, 0);
3406 		case T_SampleScan:
3407 			return (Path *) create_samplescan_path(root, rel, required_outer);
3408 		case T_IndexScan:
3409 		case T_IndexOnlyScan:
3410 			{
3411 				IndexPath  *ipath = (IndexPath *) path;
3412 				IndexPath  *newpath = makeNode(IndexPath);
3413 
3414 				/*
3415 				 * We can't use create_index_path directly, and would not want
3416 				 * to because it would re-compute the indexqual conditions
3417 				 * which is wasted effort.  Instead we hack things a bit:
3418 				 * flat-copy the path node, revise its param_info, and redo
3419 				 * the cost estimate.
3420 				 */
3421 				memcpy(newpath, ipath, sizeof(IndexPath));
3422 				newpath->path.param_info =
3423 					get_baserel_parampathinfo(root, rel, required_outer);
3424 				cost_index(newpath, root, loop_count, false);
3425 				return (Path *) newpath;
3426 			}
3427 		case T_BitmapHeapScan:
3428 			{
3429 				BitmapHeapPath *bpath = (BitmapHeapPath *) path;
3430 
3431 				return (Path *) create_bitmap_heap_path(root,
3432 														rel,
3433 														bpath->bitmapqual,
3434 														required_outer,
3435 														loop_count, 0);
3436 			}
3437 		case T_SubqueryScan:
3438 			{
3439 				SubqueryScanPath *spath = (SubqueryScanPath *) path;
3440 
3441 				return (Path *) create_subqueryscan_path(root,
3442 														 rel,
3443 														 spath->subpath,
3444 														 spath->path.pathkeys,
3445 														 required_outer);
3446 			}
3447 		case T_Append:
3448 			{
3449 				AppendPath *apath = (AppendPath *) path;
3450 				List	   *childpaths = NIL;
3451 				ListCell   *lc;
3452 
3453 				/* Reparameterize the children */
3454 				foreach(lc, apath->subpaths)
3455 				{
3456 					Path	   *spath = (Path *) lfirst(lc);
3457 
3458 					spath = reparameterize_path(root, spath,
3459 												required_outer,
3460 												loop_count);
3461 					if (spath == NULL)
3462 						return NULL;
3463 					childpaths = lappend(childpaths, spath);
3464 				}
3465 				return (Path *)
3466 					create_append_path(rel, childpaths,
3467 									   required_outer,
3468 									   apath->path.parallel_workers,
3469 									   apath->partitioned_rels);
3470 			}
3471 		default:
3472 			break;
3473 	}
3474 	return NULL;
3475 }
3476