1 /* src/port/crypt.c */
2 /*	$NetBSD: crypt.c,v 1.18 2001/03/01 14:37:35 wiz Exp $	*/
3 
4 /*
5  * Copyright (c) 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Tom Truscott.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *	  notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *	  notice, this list of conditions and the following disclaimer in the
18  *	  documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *	  may be used to endorse or promote products derived from this software
21  *	  without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 #if defined(LIBC_SCCS) && !defined(lint)
37 #if 0
38 static char sccsid[] = "@(#)crypt.c	8.1.1.1 (Berkeley) 8/18/93";
39 #else
40 __RCSID("$NetBSD: crypt.c,v 1.18 2001/03/01 14:37:35 wiz Exp $");
41 #endif
42 #endif							/* not lint */
43 
44 #include "c.h"
45 
46 #include <limits.h>
47 
48 #ifndef WIN32
49 #include <unistd.h>
50 #endif
51 
52 static int	des_setkey(const char *key);
53 static int	des_cipher(const char *in, char *out, long salt, int num_iter);
54 
55 /*
56  * UNIX password, and DES, encryption.
57  * By Tom Truscott, trt@rti.rti.org,
58  * from algorithms by Robert W. Baldwin and James Gillogly.
59  *
60  * References:
61  * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
62  * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
63  *
64  * "Password Security: A Case History," R. Morris and Ken Thompson,
65  * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
66  *
67  * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
68  * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
69  */
70 
71 /* =====  Configuration ==================== */
72 
73 /*
74  * define "MUST_ALIGN" if your compiler cannot load/store
75  * long integers at arbitrary (e.g. odd) memory locations.
76  * (Either that or never pass unaligned addresses to des_cipher!)
77  */
78 /* #define	MUST_ALIGN */
79 
80 #ifdef CHAR_BITS
81 #if CHAR_BITS != 8
82 #error C_block structure assumes 8 bit characters
83 #endif
84 #endif
85 
86 /*
87  * define "B64" to be the declaration for a 64 bit integer.
88  * XXX this feature is currently unused, see "endian" comment below.
89  */
90 /* #define B64 int64 */
91 
92 /*
93  * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
94  * of lookup tables.  This speeds up des_setkey() and des_cipher(), but has
95  * little effect on crypt().
96  */
97 /* #define	LARGEDATA */
98 
99 /* compile with "-DSTATIC=void" when profiling */
100 #ifndef STATIC
101 #define STATIC	static void
102 #endif
103 
104 /*
105  * Define the "int32_t" type for integral type with a width of at least
106  * 32 bits.
107  */
108 typedef int int32_t;
109 
110 /* ==================================== */
111 
112 #define _PASSWORD_EFMT1 '_'		/* extended encryption format */
113 
114 /*
115  * Cipher-block representation (Bob Baldwin):
116  *
117  * DES operates on groups of 64 bits, numbered 1..64 (sigh).  One
118  * representation is to store one bit per byte in an array of bytes.  Bit N of
119  * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
120  * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
121  * first byte, 9..16 in the second, and so on.  The DES spec apparently has
122  * bit 1 in the MSB of the first byte, but that is particularly noxious so we
123  * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
124  * the MSB of the first byte.  Specifically, the 64-bit input data and key are
125  * converted to LSB format, and the output 64-bit block is converted back into
126  * MSB format.
127  *
128  * DES operates internally on groups of 32 bits which are expanded to 48 bits
129  * by permutation E and shrunk back to 32 bits by the S boxes.  To speed up
130  * the computation, the expansion is applied only once, the expanded
131  * representation is maintained during the encryption, and a compression
132  * permutation is applied only at the end.  To speed up the S-box lookups,
133  * the 48 bits are maintained as eight 6 bit groups, one per byte, which
134  * directly feed the eight S-boxes.  Within each byte, the 6 bits are the
135  * most significant ones.  The low two bits of each byte are zero.  (Thus,
136  * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
137  * first byte in the eight byte representation, bit 2 of the 48 bit value is
138  * the "8"-valued bit, and so on.)	In fact, a combined "SPE"-box lookup is
139  * used, in which the output is the 64 bit result of an S-box lookup which
140  * has been permuted by P and expanded by E, and is ready for use in the next
141  * iteration.  Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
142  * lookup.  Since each byte in the 48 bit path is a multiple of four, indexed
143  * lookup of SPE[0] and SPE[1] is simple and fast.  The key schedule and
144  * "salt" are also converted to this 8*(6+2) format.  The SPE table size is
145  * 8*64*8 = 4K bytes.
146  *
147  * To speed up bit-parallel operations (such as XOR), the 8 byte
148  * representation is "union"ed with 32 bit values "i0" and "i1", and, on
149  * machines which support it, a 64 bit value "b64".  This data structure,
150  * "C_block", has two problems.  First, alignment restrictions must be
151  * honored.  Second, the byte-order (e.g. little-endian or big-endian) of
152  * the architecture becomes visible.
153  *
154  * The byte-order problem is unfortunate, since on the one hand it is good
155  * to have a machine-independent C_block representation (bits 1..8 in the
156  * first byte, etc.), and on the other hand it is good for the LSB of the
157  * first byte to be the LSB of i0.  We cannot have both these things, so we
158  * currently use the "little-endian" representation and avoid any multi-byte
159  * operations that depend on byte order.  This largely precludes use of the
160  * 64-bit datatype since the relative order of i0 and i1 are unknown.  It
161  * also inhibits grouping the SPE table to look up 12 bits at a time.  (The
162  * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
163  * high-order zero, providing fast indexing into a 64-bit wide SPE.)  On the
164  * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
165  * requires a 128 kilobyte table, so perhaps this is not a big loss.
166  *
167  * Permutation representation (Jim Gillogly):
168  *
169  * A transformation is defined by its effect on each of the 8 bytes of the
170  * 64-bit input.  For each byte we give a 64-bit output that has the bits in
171  * the input distributed appropriately.  The transformation is then the OR
172  * of the 8 sets of 64-bits.  This uses 8*256*8 = 16K bytes of storage for
173  * each transformation.  Unless LARGEDATA is defined, however, a more compact
174  * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
175  * The smaller table uses 16*16*8 = 2K bytes for each transformation.  This
176  * is slower but tolerable, particularly for password encryption in which
177  * the SPE transformation is iterated many times.  The small tables total 9K
178  * bytes, the large tables total 72K bytes.
179  *
180  * The transformations used are:
181  * IE3264: MSB->LSB conversion, initial permutation, and expansion.
182  *	This is done by collecting the 32 even-numbered bits and applying
183  *	a 32->64 bit transformation, and then collecting the 32 odd-numbered
184  *	bits and applying the same transformation.  Since there are only
185  *	32 input bits, the IE3264 transformation table is half the size of
186  *	the usual table.
187  * CF6464: Compression, final permutation, and LSB->MSB conversion.
188  *	This is done by two trivial 48->32 bit compressions to obtain
189  *	a 64-bit block (the bit numbering is given in the "CIFP" table)
190  *	followed by a 64->64 bit "cleanup" transformation.  (It would
191  *	be possible to group the bits in the 64-bit block so that 2
192  *	identical 32->32 bit transformations could be used instead,
193  *	saving a factor of 4 in space and possibly 2 in time, but
194  *	byte-ordering and other complications rear their ugly head.
195  *	Similar opportunities/problems arise in the key schedule
196  *	transforms.)
197  * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
198  *	This admittedly baroque 64->64 bit transformation is used to
199  *	produce the first code (in 8*(6+2) format) of the key schedule.
200  * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
201  *	It would be possible to define 15 more transformations, each
202  *	with a different rotation, to generate the entire key schedule.
203  *	To save space, however, we instead permute each code into the
204  *	next by using a transformation that "undoes" the PC2 permutation,
205  *	rotates the code, and then applies PC2.  Unfortunately, PC2
206  *	transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
207  *	invertible.  We get around that problem by using a modified PC2
208  *	which retains the 8 otherwise-lost bits in the unused low-order
209  *	bits of each byte.  The low-order bits are cleared when the
210  *	codes are stored into the key schedule.
211  * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
212  *	This is faster than applying PC2ROT[0] twice,
213  *
214  * The Bell Labs "salt" (Bob Baldwin):
215  *
216  * The salting is a simple permutation applied to the 48-bit result of E.
217  * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
218  * i+24 of the result are swapped.  The salt is thus a 24 bit number, with
219  * 16777216 possible values.  (The original salt was 12 bits and could not
220  * swap bits 13..24 with 36..48.)
221  *
222  * It is possible, but ugly, to warp the SPE table to account for the salt
223  * permutation.  Fortunately, the conditional bit swapping requires only
224  * about four machine instructions and can be done on-the-fly with about an
225  * 8% performance penalty.
226  */
227 
228 typedef union
229 {
230 	unsigned char b[8];
231 	struct
232 	{
233 		int32_t		i0;
234 		int32_t		i1;
235 	}			b32;
236 #if defined(B64)
237 	B64			b64;
238 #endif
239 } C_block;
240 
241 /*
242  * Convert twenty-four-bit long in host-order
243  * to six bits (and 2 low-order zeroes) per char little-endian format.
244  */
245 #define TO_SIX_BIT(rslt, src) {				\
246 		C_block cvt;				\
247 		cvt.b[0] = src; src >>= 6;		\
248 		cvt.b[1] = src; src >>= 6;		\
249 		cvt.b[2] = src; src >>= 6;		\
250 		cvt.b[3] = src;				\
251 		rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
252 	}
253 
254 /*
255  * These macros may someday permit efficient use of 64-bit integers.
256  */
257 #define ZERO(d,d0,d1)			d0 = 0, d1 = 0
258 #define LOAD(d,d0,d1,bl)		d0 = (bl).b32.i0, d1 = (bl).b32.i1
259 #define LOADREG(d,d0,d1,s,s0,s1)	d0 = s0, d1 = s1
260 #define OR(d,d0,d1,bl)			d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
261 #define STORE(s,s0,s1,bl)		(bl).b32.i0 = s0, (bl).b32.i1 = s1
262 #define DCL_BLOCK(d,d0,d1)		int32_t d0, d1
263 
264 #if defined(LARGEDATA)
265  /* Waste memory like crazy.  Also, do permutations in line */
266 #define LGCHUNKBITS 3
267 #define CHUNKBITS	(1<<LGCHUNKBITS)
268 #define PERM6464(d,d0,d1,cpp,p)				\
269 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
270 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
271 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
272 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);		\
273 	OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]);		\
274 	OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]);		\
275 	OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]);		\
276 	OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
277 #define PERM3264(d,d0,d1,cpp,p)				\
278 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
279 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
280 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
281 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
282 #else
283  /* "small data" */
284 #define LGCHUNKBITS 2
285 #define CHUNKBITS	(1<<LGCHUNKBITS)
286 #define PERM6464(d,d0,d1,cpp,p)				\
287 	{ C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
288 #define PERM3264(d,d0,d1,cpp,p)				\
289 	{ C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
290 #endif							/* LARGEDATA */
291 
292 STATIC		init_des(void);
293 STATIC		init_perm(C_block[64 / CHUNKBITS][1 << CHUNKBITS], unsigned char[64], int, int);
294 
295 #ifndef LARGEDATA
296 STATIC		permute(unsigned char *, C_block *, C_block *, int);
297 #endif
298 #ifdef DEBUG
299 STATIC		prtab(char *, unsigned char *, int);
300 #endif
301 
302 
303 #ifndef LARGEDATA
304 STATIC
permute(cp,out,p,chars_in)305 permute(cp, out, p, chars_in)
306 unsigned char *cp;
307 C_block    *out;
308 C_block    *p;
309 int			chars_in;
310 
311 {
312 	DCL_BLOCK(D, D0, D1);
313 	C_block    *tp;
314 	int			t;
315 
316 	ZERO(D, D0, D1);
317 	do
318 	{
319 		t = *cp++;
320 		tp = &p[t & 0xf];
321 		OR(D, D0, D1, *tp);
322 		p += (1 << CHUNKBITS);
323 		tp = &p[t >> 4];
324 		OR(D, D0, D1, *tp);
325 		p += (1 << CHUNKBITS);
326 	} while (--chars_in > 0);
327 	STORE(D, D0, D1, *out);
328 }
329 #endif							/* LARGEDATA */
330 
331 
332 /* =====  (mostly) Standard DES Tables ==================== */
333 
334 static const unsigned char IP[] = { /* initial permutation */
335 	58, 50, 42, 34, 26, 18, 10, 2,
336 	60, 52, 44, 36, 28, 20, 12, 4,
337 	62, 54, 46, 38, 30, 22, 14, 6,
338 	64, 56, 48, 40, 32, 24, 16, 8,
339 	57, 49, 41, 33, 25, 17, 9, 1,
340 	59, 51, 43, 35, 27, 19, 11, 3,
341 	61, 53, 45, 37, 29, 21, 13, 5,
342 	63, 55, 47, 39, 31, 23, 15, 7,
343 };
344 
345 /* The final permutation is the inverse of IP - no table is necessary */
346 
347 static const unsigned char ExpandTr[] = {	/* expansion operation */
348 	32, 1, 2, 3, 4, 5,
349 	4, 5, 6, 7, 8, 9,
350 	8, 9, 10, 11, 12, 13,
351 	12, 13, 14, 15, 16, 17,
352 	16, 17, 18, 19, 20, 21,
353 	20, 21, 22, 23, 24, 25,
354 	24, 25, 26, 27, 28, 29,
355 	28, 29, 30, 31, 32, 1,
356 };
357 
358 static const unsigned char PC1[] = {	/* permuted choice table 1 */
359 	57, 49, 41, 33, 25, 17, 9,
360 	1, 58, 50, 42, 34, 26, 18,
361 	10, 2, 59, 51, 43, 35, 27,
362 	19, 11, 3, 60, 52, 44, 36,
363 
364 	63, 55, 47, 39, 31, 23, 15,
365 	7, 62, 54, 46, 38, 30, 22,
366 	14, 6, 61, 53, 45, 37, 29,
367 	21, 13, 5, 28, 20, 12, 4,
368 };
369 
370 static const unsigned char Rotates[] = {	/* PC1 rotation schedule */
371 	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
372 };
373 
374 /* note: each "row" of PC2 is left-padded with bits that make it invertible */
375 static const unsigned char PC2[] = {	/* permuted choice table 2 */
376 	9, 18, 14, 17, 11, 24, 1, 5,
377 	22, 25, 3, 28, 15, 6, 21, 10,
378 	35, 38, 23, 19, 12, 4, 26, 8,
379 	43, 54, 16, 7, 27, 20, 13, 2,
380 
381 	0, 0, 41, 52, 31, 37, 47, 55,
382 	0, 0, 30, 40, 51, 45, 33, 48,
383 	0, 0, 44, 49, 39, 56, 34, 53,
384 	0, 0, 46, 42, 50, 36, 29, 32,
385 };
386 
387 static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */
388 	/* S[1]			*/
389 	{14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
390 		0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
391 		4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
392 	15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13},
393 	/* S[2]			*/
394 	{15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
395 		3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
396 		0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
397 	13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9},
398 	/* S[3]			*/
399 	{10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
400 		13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
401 		13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
402 	1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12},
403 	/* S[4]			*/
404 	{7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
405 		13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
406 		10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
407 	3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14},
408 	/* S[5]			*/
409 	{2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
410 		14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
411 		4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
412 	11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3},
413 	/* S[6]			*/
414 	{12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
415 		10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
416 		9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
417 	4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13},
418 	/* S[7]			*/
419 	{4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
420 		13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
421 		1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
422 	6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12},
423 	/* S[8]			*/
424 	{13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
425 		1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
426 		7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
427 	2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11}
428 };
429 
430 static const unsigned char P32Tr[] = {	/* 32-bit permutation function */
431 	16, 7, 20, 21,
432 	29, 12, 28, 17,
433 	1, 15, 23, 26,
434 	5, 18, 31, 10,
435 	2, 8, 24, 14,
436 	32, 27, 3, 9,
437 	19, 13, 30, 6,
438 	22, 11, 4, 25,
439 };
440 
441 static const unsigned char CIFP[] = {	/* compressed/interleaved permutation */
442 	1, 2, 3, 4, 17, 18, 19, 20,
443 	5, 6, 7, 8, 21, 22, 23, 24,
444 	9, 10, 11, 12, 25, 26, 27, 28,
445 	13, 14, 15, 16, 29, 30, 31, 32,
446 
447 	33, 34, 35, 36, 49, 50, 51, 52,
448 	37, 38, 39, 40, 53, 54, 55, 56,
449 	41, 42, 43, 44, 57, 58, 59, 60,
450 	45, 46, 47, 48, 61, 62, 63, 64,
451 };
452 
453 static const unsigned char itoa64[] =	/* 0..63 => ascii-64 */
454 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
455 
456 
457 /* =====  Tables that are initialized at run time  ==================== */
458 
459 
460 static unsigned char a64toi[128];	/* ascii-64 => 0..63 */
461 
462 /* Initial key schedule permutation */
463 static C_block PC1ROT[64 / CHUNKBITS][1 << CHUNKBITS];
464 
465 /* Subsequent key schedule rotation permutations */
466 static C_block PC2ROT[2][64 / CHUNKBITS][1 << CHUNKBITS];
467 
468 /* Initial permutation/expansion table */
469 static C_block IE3264[32 / CHUNKBITS][1 << CHUNKBITS];
470 
471 /* Table that combines the S, P, and E operations.  */
472 static int32_t SPE[2][8][64];
473 
474 /* compressed/interleaved => final permutation table */
475 static C_block CF6464[64 / CHUNKBITS][1 << CHUNKBITS];
476 
477 
478 /* ==================================== */
479 
480 
481 static C_block constdatablock;	/* encryption constant */
482 static char cryptresult[1 + 4 + 4 + 11 + 1];	/* encrypted result */
483 
484 extern char *__md5crypt(const char *, const char *);	/* XXX */
485 extern char *__bcrypt(const char *, const char *);	/* XXX */
486 
487 
488 /*
489  * Return a pointer to static data consisting of the "setting"
490  * followed by an encryption produced by the "key" and "setting".
491  */
492 char *
crypt(key,setting)493 crypt(key, setting)
494 const char *key;
495 const char *setting;
496 {
497 	char	   *encp;
498 	int32_t		i;
499 	int			t;
500 	int32_t		salt;
501 	int			num_iter,
502 				salt_size;
503 	C_block		keyblock,
504 				rsltblock;
505 
506 #if 0
507 	/* Non-DES encryption schemes hook in here. */
508 	if (setting[0] == _PASSWORD_NONDES)
509 	{
510 		switch (setting[1])
511 		{
512 			case '2':
513 				return (__bcrypt(key, setting));
514 			case '1':
515 			default:
516 				return (__md5crypt(key, setting));
517 		}
518 	}
519 #endif
520 
521 	for (i = 0; i < 8; i++)
522 	{
523 		if ((t = 2 * (unsigned char) (*key)) != 0)
524 			key++;
525 		keyblock.b[i] = t;
526 	}
527 	if (des_setkey((char *) keyblock.b))	/* also initializes "a64toi" */
528 		return (NULL);
529 
530 	encp = &cryptresult[0];
531 	switch (*setting)
532 	{
533 		case _PASSWORD_EFMT1:
534 
535 			/*
536 			 * Involve the rest of the password 8 characters at a time.
537 			 */
538 			while (*key)
539 			{
540 				if (des_cipher((char *) (void *) &keyblock,
541 							   (char *) (void *) &keyblock, 0L, 1))
542 					return (NULL);
543 				for (i = 0; i < 8; i++)
544 				{
545 					if ((t = 2 * (unsigned char) (*key)) != 0)
546 						key++;
547 					keyblock.b[i] ^= t;
548 				}
549 				if (des_setkey((char *) keyblock.b))
550 					return (NULL);
551 			}
552 
553 			*encp++ = *setting++;
554 
555 			/* get iteration count */
556 			num_iter = 0;
557 			for (i = 4; --i >= 0;)
558 			{
559 				if ((t = (unsigned char) setting[i]) == '\0')
560 					t = '.';
561 				encp[i] = t;
562 				num_iter = (num_iter << 6) | a64toi[t];
563 			}
564 			setting += 4;
565 			encp += 4;
566 			salt_size = 4;
567 			break;
568 		default:
569 			num_iter = 25;
570 			salt_size = 2;
571 	}
572 
573 	salt = 0;
574 	for (i = salt_size; --i >= 0;)
575 	{
576 		if ((t = (unsigned char) setting[i]) == '\0')
577 			t = '.';
578 		encp[i] = t;
579 		salt = (salt << 6) | a64toi[t];
580 	}
581 	encp += salt_size;
582 	if (des_cipher((char *) (void *) &constdatablock,
583 				   (char *) (void *) &rsltblock, salt, num_iter))
584 		return (NULL);
585 
586 	/*
587 	 * Encode the 64 cipher bits as 11 ascii characters.
588 	 */
589 	i = ((int32_t) ((rsltblock.b[0] << 8) | rsltblock.b[1]) << 8) |
590 		rsltblock.b[2];
591 	encp[3] = itoa64[i & 0x3f];
592 	i >>= 6;
593 	encp[2] = itoa64[i & 0x3f];
594 	i >>= 6;
595 	encp[1] = itoa64[i & 0x3f];
596 	i >>= 6;
597 	encp[0] = itoa64[i];
598 	encp += 4;
599 	i = ((int32_t) ((rsltblock.b[3] << 8) | rsltblock.b[4]) << 8) |
600 		rsltblock.b[5];
601 	encp[3] = itoa64[i & 0x3f];
602 	i >>= 6;
603 	encp[2] = itoa64[i & 0x3f];
604 	i >>= 6;
605 	encp[1] = itoa64[i & 0x3f];
606 	i >>= 6;
607 	encp[0] = itoa64[i];
608 	encp += 4;
609 	i = ((int32_t) ((rsltblock.b[6]) << 8) | rsltblock.b[7]) << 2;
610 	encp[2] = itoa64[i & 0x3f];
611 	i >>= 6;
612 	encp[1] = itoa64[i & 0x3f];
613 	i >>= 6;
614 	encp[0] = itoa64[i];
615 
616 	encp[3] = 0;
617 
618 	return (cryptresult);
619 }
620 
621 
622 /*
623  * The Key Schedule, filled in by des_setkey() or setkey().
624  */
625 #define KS_SIZE 16
626 static C_block KS[KS_SIZE];
627 
628 static volatile int des_ready = 0;
629 
630 /*
631  * Set up the key schedule from the key.
632  */
633 static int
des_setkey(key)634 des_setkey(key)
635 const char *key;
636 {
637 	DCL_BLOCK(K, K0, K1);
638 	C_block    *ptabp;
639 	int			i;
640 
641 	if (!des_ready)
642 		init_des();
643 
644 	PERM6464(K, K0, K1, (unsigned char *) key, (C_block *) PC1ROT);
645 	key = (char *) &KS[0];
646 	STORE(K & ~0x03030303L, K0 & ~0x03030303L, K1, *(C_block *) key);
647 	for (i = 1; i < 16; i++)
648 	{
649 		key += sizeof(C_block);
650 		STORE(K, K0, K1, *(C_block *) key);
651 		ptabp = (C_block *) PC2ROT[Rotates[i] - 1];
652 		PERM6464(K, K0, K1, (unsigned char *) key, ptabp);
653 		STORE(K & ~0x03030303L, K0 & ~0x03030303L, K1, *(C_block *) key);
654 	}
655 	return (0);
656 }
657 
658 /*
659  * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
660  * iterations of DES, using the given 24-bit salt and the pre-computed key
661  * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
662  *
663  * NOTE: the performance of this routine is critically dependent on your
664  * compiler and machine architecture.
665  */
666 static int
des_cipher(in,out,salt,num_iter)667 des_cipher(in, out, salt, num_iter)
668 const char *in;
669 char	   *out;
670 long		salt;
671 int			num_iter;
672 {
673 	/* variables that we want in registers, most important first */
674 #if defined(pdp11)
675 	int			j;
676 #endif
677 	int32_t		L0,
678 				L1,
679 				R0,
680 				R1,
681 				k;
682 	C_block    *kp;
683 	int			ks_inc,
684 				loop_count;
685 	C_block		B;
686 
687 	L0 = salt;
688 	TO_SIX_BIT(salt, L0);		/* convert to 4*(6+2) format */
689 
690 #if defined(__vax__) || defined(pdp11)
691 	salt = ~salt;				/* "x &~ y" is faster than "x & y". */
692 #define SALT (~salt)
693 #else
694 #define SALT salt
695 #endif
696 
697 #if defined(MUST_ALIGN)
698 	B.b[0] = in[0];
699 	B.b[1] = in[1];
700 	B.b[2] = in[2];
701 	B.b[3] = in[3];
702 	B.b[4] = in[4];
703 	B.b[5] = in[5];
704 	B.b[6] = in[6];
705 	B.b[7] = in[7];
706 	LOAD(L, L0, L1, B);
707 #else
708 	LOAD(L, L0, L1, *(C_block *) in);
709 #endif
710 	LOADREG(R, R0, R1, L, L0, L1);
711 	L0 &= 0x55555555L;
712 	L1 &= 0x55555555L;
713 	L0 = (L0 << 1) | L1;		/* L0 is the even-numbered input bits */
714 	R0 &= 0xaaaaaaaaL;
715 	R1 = (R1 >> 1) & 0x55555555L;
716 	L1 = R0 | R1;				/* L1 is the odd-numbered input bits */
717 	STORE(L, L0, L1, B);
718 	PERM3264(L, L0, L1, B.b, (C_block *) IE3264);	/* even bits */
719 	PERM3264(R, R0, R1, B.b + 4, (C_block *) IE3264);	/* odd bits */
720 
721 	if (num_iter >= 0)
722 	{							/* encryption */
723 		kp = &KS[0];
724 		ks_inc = sizeof(*kp);
725 	}
726 	else
727 	{							/* decryption */
728 		num_iter = -num_iter;
729 		kp = &KS[KS_SIZE - 1];
730 		ks_inc = -(long) sizeof(*kp);
731 	}
732 
733 	while (--num_iter >= 0)
734 	{
735 		loop_count = 8;
736 		do
737 		{
738 
739 #define SPTAB(t, i) \
740 		(*(int32_t *)((unsigned char *)(t) + (i)*(sizeof(int32_t)/4)))
741 #if defined(gould)
742 			/* use this if B.b[i] is evaluated just once ... */
743 #define DOXOR(x,y,i)	x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
744 #else
745 #if defined(pdp11)
746 			/* use this if your "long" int indexing is slow */
747 #define DOXOR(x,y,i)	j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
748 #else
749 			/* use this if "k" is allocated to a register ... */
750 #define DOXOR(x,y,i)	k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
751 #endif
752 #endif
753 
754 #define CRUNCH(p0, p1, q0, q1)	\
755 			k = ((q0) ^ (q1)) & SALT;				\
756 			B.b32.i0 = k ^ (q0) ^ kp->b32.i0;		\
757 			B.b32.i1 = k ^ (q1) ^ kp->b32.i1;		\
758 			kp = (C_block *)((char *)kp+ks_inc);	\
759 							\
760 			DOXOR(p0, p1, 0);		\
761 			DOXOR(p0, p1, 1);		\
762 			DOXOR(p0, p1, 2);		\
763 			DOXOR(p0, p1, 3);		\
764 			DOXOR(p0, p1, 4);		\
765 			DOXOR(p0, p1, 5);		\
766 			DOXOR(p0, p1, 6);		\
767 			DOXOR(p0, p1, 7);
768 
769 			CRUNCH(L0, L1, R0, R1);
770 			CRUNCH(R0, R1, L0, L1);
771 		} while (--loop_count != 0);
772 		kp = (C_block *) ((char *) kp - (ks_inc * KS_SIZE));
773 
774 
775 		/* swap L and R */
776 		L0 ^= R0;
777 		L1 ^= R1;
778 		R0 ^= L0;
779 		R1 ^= L1;
780 		L0 ^= R0;
781 		L1 ^= R1;
782 	}
783 
784 	/* store the encrypted (or decrypted) result */
785 	L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
786 	L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
787 	STORE(L, L0, L1, B);
788 	PERM6464(L, L0, L1, B.b, (C_block *) CF6464);
789 #if defined(MUST_ALIGN)
790 	STORE(L, L0, L1, B);
791 	out[0] = B.b[0];
792 	out[1] = B.b[1];
793 	out[2] = B.b[2];
794 	out[3] = B.b[3];
795 	out[4] = B.b[4];
796 	out[5] = B.b[5];
797 	out[6] = B.b[6];
798 	out[7] = B.b[7];
799 #else
800 	STORE(L, L0, L1, *(C_block *) out);
801 #endif
802 	return (0);
803 }
804 
805 
806 /*
807  * Initialize various tables.  This need only be done once.  It could even be
808  * done at compile time, if the compiler were capable of that sort of thing.
809  */
810 STATIC
init_des()811 init_des()
812 {
813 	int			i,
814 				j;
815 	int32_t		k;
816 	int			tableno;
817 	static unsigned char perm[64],
818 				tmp32[32];		/* "static" for speed */
819 
820 /*	static volatile long init_start = 0; not used */
821 
822 	/*
823 	 * table that converts chars "./0-9A-Za-z"to integers 0-63.
824 	 */
825 	for (i = 0; i < 64; i++)
826 		a64toi[itoa64[i]] = i;
827 
828 	/*
829 	 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
830 	 */
831 	for (i = 0; i < 64; i++)
832 		perm[i] = 0;
833 	for (i = 0; i < 64; i++)
834 	{
835 		if ((k = PC2[i]) == 0)
836 			continue;
837 		k += Rotates[0] - 1;
838 		if ((k % 28) < Rotates[0])
839 			k -= 28;
840 		k = PC1[k];
841 		if (k > 0)
842 		{
843 			k--;
844 			k = (k | 07) - (k & 07);
845 			k++;
846 		}
847 		perm[i] = k;
848 	}
849 #ifdef DEBUG
850 	prtab("pc1tab", perm, 8);
851 #endif
852 	init_perm(PC1ROT, perm, 8, 8);
853 
854 	/*
855 	 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
856 	 */
857 	for (j = 0; j < 2; j++)
858 	{
859 		unsigned char pc2inv[64];
860 
861 		for (i = 0; i < 64; i++)
862 			perm[i] = pc2inv[i] = 0;
863 		for (i = 0; i < 64; i++)
864 		{
865 			if ((k = PC2[i]) == 0)
866 				continue;
867 			pc2inv[k - 1] = i + 1;
868 		}
869 		for (i = 0; i < 64; i++)
870 		{
871 			if ((k = PC2[i]) == 0)
872 				continue;
873 			k += j;
874 			if ((k % 28) <= j)
875 				k -= 28;
876 			perm[i] = pc2inv[k];
877 		}
878 #ifdef DEBUG
879 		prtab("pc2tab", perm, 8);
880 #endif
881 		init_perm(PC2ROT[j], perm, 8, 8);
882 	}
883 
884 	/*
885 	 * Bit reverse, then initial permutation, then expansion.
886 	 */
887 	for (i = 0; i < 8; i++)
888 	{
889 		for (j = 0; j < 8; j++)
890 		{
891 			k = (j < 2) ? 0 : IP[ExpandTr[i * 6 + j - 2] - 1];
892 			if (k > 32)
893 				k -= 32;
894 			else if (k > 0)
895 				k--;
896 			if (k > 0)
897 			{
898 				k--;
899 				k = (k | 07) - (k & 07);
900 				k++;
901 			}
902 			perm[i * 8 + j] = k;
903 		}
904 	}
905 #ifdef DEBUG
906 	prtab("ietab", perm, 8);
907 #endif
908 	init_perm(IE3264, perm, 4, 8);
909 
910 	/*
911 	 * Compression, then final permutation, then bit reverse.
912 	 */
913 	for (i = 0; i < 64; i++)
914 	{
915 		k = IP[CIFP[i] - 1];
916 		if (k > 0)
917 		{
918 			k--;
919 			k = (k | 07) - (k & 07);
920 			k++;
921 		}
922 		perm[k - 1] = i + 1;
923 	}
924 #ifdef DEBUG
925 	prtab("cftab", perm, 8);
926 #endif
927 	init_perm(CF6464, perm, 8, 8);
928 
929 	/*
930 	 * SPE table
931 	 */
932 	for (i = 0; i < 48; i++)
933 		perm[i] = P32Tr[ExpandTr[i] - 1];
934 	for (tableno = 0; tableno < 8; tableno++)
935 	{
936 		for (j = 0; j < 64; j++)
937 		{
938 			k = (((j >> 0) & 01) << 5) |
939 				(((j >> 1) & 01) << 3) |
940 				(((j >> 2) & 01) << 2) |
941 				(((j >> 3) & 01) << 1) |
942 				(((j >> 4) & 01) << 0) |
943 				(((j >> 5) & 01) << 4);
944 			k = S[tableno][k];
945 			k = (((k >> 3) & 01) << 0) |
946 				(((k >> 2) & 01) << 1) |
947 				(((k >> 1) & 01) << 2) |
948 				(((k >> 0) & 01) << 3);
949 			for (i = 0; i < 32; i++)
950 				tmp32[i] = 0;
951 			for (i = 0; i < 4; i++)
952 				tmp32[4 * tableno + i] = (k >> i) & 01;
953 			k = 0;
954 			for (i = 24; --i >= 0;)
955 				k = (k << 1) | tmp32[perm[i] - 1];
956 			TO_SIX_BIT(SPE[0][tableno][j], k);
957 			k = 0;
958 			for (i = 24; --i >= 0;)
959 				k = (k << 1) | tmp32[perm[i + 24] - 1];
960 			TO_SIX_BIT(SPE[1][tableno][j], k);
961 		}
962 	}
963 
964 	des_ready = 1;
965 }
966 
967 /*
968  * Initialize "perm" to represent transformation "p", which rearranges
969  * (perhaps with expansion and/or contraction) one packed array of bits
970  * (of size "chars_in" characters) into another array (of size "chars_out"
971  * characters).
972  *
973  * "perm" must be all-zeroes on entry to this routine.
974  */
975 STATIC
init_perm(perm,p,chars_in,chars_out)976 init_perm(perm, p, chars_in, chars_out)
977 C_block		perm[64 / CHUNKBITS][1 << CHUNKBITS];
978 unsigned char p[64];
979 int			chars_in,
980 			chars_out;
981 
982 {
983 	int			i,
984 				j,
985 				k,
986 				l;
987 
988 	for (k = 0; k < chars_out * 8; k++)
989 	{							/* each output bit position */
990 		l = p[k] - 1;			/* where this bit comes from */
991 		if (l < 0)
992 			continue;			/* output bit is always 0 */
993 		i = l >> LGCHUNKBITS;	/* which chunk this bit comes from */
994 		l = 1 << (l & (CHUNKBITS - 1)); /* mask for this bit */
995 		for (j = 0; j < (1 << CHUNKBITS); j++)
996 		{						/* each chunk value */
997 			if ((j & l) != 0)
998 				perm[i][j].b[k >> 3] |= 1 << (k & 07);
999 		}
1000 	}
1001 }
1002 
1003 /*
1004  * "setkey" routine (for backwards compatibility)
1005  */
1006 #ifdef NOT_USED
1007 int
setkey(key)1008 setkey(key)
1009 const char *key;
1010 {
1011 	int			i,
1012 				j,
1013 				k;
1014 	C_block		keyblock;
1015 
1016 	for (i = 0; i < 8; i++)
1017 	{
1018 		k = 0;
1019 		for (j = 0; j < 8; j++)
1020 		{
1021 			k <<= 1;
1022 			k |= (unsigned char) *key++;
1023 		}
1024 		keyblock.b[i] = k;
1025 	}
1026 	return (des_setkey((char *) keyblock.b));
1027 }
1028 
1029 /*
1030  * "encrypt" routine (for backwards compatibility)
1031  */
1032 static int
encrypt(block,flag)1033 encrypt(block, flag)
1034 char	   *block;
1035 int			flag;
1036 {
1037 	int			i,
1038 				j,
1039 				k;
1040 	C_block		cblock;
1041 
1042 	for (i = 0; i < 8; i++)
1043 	{
1044 		k = 0;
1045 		for (j = 0; j < 8; j++)
1046 		{
1047 			k <<= 1;
1048 			k |= (unsigned char) *block++;
1049 		}
1050 		cblock.b[i] = k;
1051 	}
1052 	if (des_cipher((char *) &cblock, (char *) &cblock, 0L, (flag ? -1 : 1)))
1053 		return (1);
1054 	for (i = 7; i >= 0; i--)
1055 	{
1056 		k = cblock.b[i];
1057 		for (j = 7; j >= 0; j--)
1058 		{
1059 			*--block = k & 01;
1060 			k >>= 1;
1061 		}
1062 	}
1063 	return (0);
1064 }
1065 #endif
1066 
1067 #ifdef DEBUG
1068 STATIC
prtab(s,t,num_rows)1069 prtab(s, t, num_rows)
1070 char	   *s;
1071 unsigned char *t;
1072 int			num_rows;
1073 
1074 {
1075 	int			i,
1076 				j;
1077 
1078 	(void) printf("%s:\n", s);
1079 	for (i = 0; i < num_rows; i++)
1080 	{
1081 		for (j = 0; j < 8; j++)
1082 			(void) printf("%3d", t[i * 8 + j]);
1083 		(void) printf("\n");
1084 	}
1085 	(void) printf("\n");
1086 }
1087 
1088 #endif
1089