1 /*-------------------------------------------------------------------------
2  *
3  * freelist.c
4  *	  routines for managing the buffer pool's replacement strategy.
5  *
6  *
7  * Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
8  * Portions Copyright (c) 1994, Regents of the University of California
9  *
10  *
11  * IDENTIFICATION
12  *	  src/backend/storage/buffer/freelist.c
13  *
14  *-------------------------------------------------------------------------
15  */
16 #include "postgres.h"
17 
18 #include "port/atomics.h"
19 #include "storage/buf_internals.h"
20 #include "storage/bufmgr.h"
21 #include "storage/proc.h"
22 
23 #define INT_ACCESS_ONCE(var)	((int)(*((volatile int *)&(var))))
24 
25 
26 /*
27  * The shared freelist control information.
28  */
29 typedef struct
30 {
31 	/* Spinlock: protects the values below */
32 	slock_t		buffer_strategy_lock;
33 
34 	/*
35 	 * Clock sweep hand: index of next buffer to consider grabbing. Note that
36 	 * this isn't a concrete buffer - we only ever increase the value. So, to
37 	 * get an actual buffer, it needs to be used modulo NBuffers.
38 	 */
39 	pg_atomic_uint32 nextVictimBuffer;
40 
41 	int			firstFreeBuffer;	/* Head of list of unused buffers */
42 	int			lastFreeBuffer; /* Tail of list of unused buffers */
43 
44 	/*
45 	 * NOTE: lastFreeBuffer is undefined when firstFreeBuffer is -1 (that is,
46 	 * when the list is empty)
47 	 */
48 
49 	/*
50 	 * Statistics.  These counters should be wide enough that they can't
51 	 * overflow during a single bgwriter cycle.
52 	 */
53 	uint32		completePasses; /* Complete cycles of the clock sweep */
54 	pg_atomic_uint32 numBufferAllocs;	/* Buffers allocated since last reset */
55 
56 	/*
57 	 * Bgworker process to be notified upon activity or -1 if none. See
58 	 * StrategyNotifyBgWriter.
59 	 */
60 	int			bgwprocno;
61 } BufferStrategyControl;
62 
63 /* Pointers to shared state */
64 static BufferStrategyControl *StrategyControl = NULL;
65 
66 /*
67  * Private (non-shared) state for managing a ring of shared buffers to re-use.
68  * This is currently the only kind of BufferAccessStrategy object, but someday
69  * we might have more kinds.
70  */
71 typedef struct BufferAccessStrategyData
72 {
73 	/* Overall strategy type */
74 	BufferAccessStrategyType btype;
75 	/* Number of elements in buffers[] array */
76 	int			ring_size;
77 
78 	/*
79 	 * Index of the "current" slot in the ring, ie, the one most recently
80 	 * returned by GetBufferFromRing.
81 	 */
82 	int			current;
83 
84 	/*
85 	 * True if the buffer just returned by StrategyGetBuffer had been in the
86 	 * ring already.
87 	 */
88 	bool		current_was_in_ring;
89 
90 	/*
91 	 * Array of buffer numbers.  InvalidBuffer (that is, zero) indicates we
92 	 * have not yet selected a buffer for this ring slot.  For allocation
93 	 * simplicity this is palloc'd together with the fixed fields of the
94 	 * struct.
95 	 */
96 	Buffer		buffers[FLEXIBLE_ARRAY_MEMBER];
97 }			BufferAccessStrategyData;
98 
99 
100 /* Prototypes for internal functions */
101 static BufferDesc *GetBufferFromRing(BufferAccessStrategy strategy,
102 				  uint32 *buf_state);
103 static void AddBufferToRing(BufferAccessStrategy strategy,
104 				BufferDesc *buf);
105 
106 /*
107  * ClockSweepTick - Helper routine for StrategyGetBuffer()
108  *
109  * Move the clock hand one buffer ahead of its current position and return the
110  * id of the buffer now under the hand.
111  */
112 static inline uint32
ClockSweepTick(void)113 ClockSweepTick(void)
114 {
115 	uint32		victim;
116 
117 	/*
118 	 * Atomically move hand ahead one buffer - if there's several processes
119 	 * doing this, this can lead to buffers being returned slightly out of
120 	 * apparent order.
121 	 */
122 	victim =
123 		pg_atomic_fetch_add_u32(&StrategyControl->nextVictimBuffer, 1);
124 
125 	if (victim >= NBuffers)
126 	{
127 		uint32		originalVictim = victim;
128 
129 		/* always wrap what we look up in BufferDescriptors */
130 		victim = victim % NBuffers;
131 
132 		/*
133 		 * If we're the one that just caused a wraparound, force
134 		 * completePasses to be incremented while holding the spinlock. We
135 		 * need the spinlock so StrategySyncStart() can return a consistent
136 		 * value consisting of nextVictimBuffer and completePasses.
137 		 */
138 		if (victim == 0)
139 		{
140 			uint32		expected;
141 			uint32		wrapped;
142 			bool		success = false;
143 
144 			expected = originalVictim + 1;
145 
146 			while (!success)
147 			{
148 				/*
149 				 * Acquire the spinlock while increasing completePasses. That
150 				 * allows other readers to read nextVictimBuffer and
151 				 * completePasses in a consistent manner which is required for
152 				 * StrategySyncStart().  In theory delaying the increment
153 				 * could lead to an overflow of nextVictimBuffers, but that's
154 				 * highly unlikely and wouldn't be particularly harmful.
155 				 */
156 				SpinLockAcquire(&StrategyControl->buffer_strategy_lock);
157 
158 				wrapped = expected % NBuffers;
159 
160 				success = pg_atomic_compare_exchange_u32(&StrategyControl->nextVictimBuffer,
161 														 &expected, wrapped);
162 				if (success)
163 					StrategyControl->completePasses++;
164 				SpinLockRelease(&StrategyControl->buffer_strategy_lock);
165 			}
166 		}
167 	}
168 	return victim;
169 }
170 
171 /*
172  * have_free_buffer -- a lockless check to see if there is a free buffer in
173  *					   buffer pool.
174  *
175  * If the result is true that will become stale once free buffers are moved out
176  * by other operations, so the caller who strictly want to use a free buffer
177  * should not call this.
178  */
179 bool
have_free_buffer()180 have_free_buffer()
181 {
182 	if (StrategyControl->firstFreeBuffer >= 0)
183 		return true;
184 	else
185 		return false;
186 }
187 
188 /*
189  * StrategyGetBuffer
190  *
191  *	Called by the bufmgr to get the next candidate buffer to use in
192  *	BufferAlloc(). The only hard requirement BufferAlloc() has is that
193  *	the selected buffer must not currently be pinned by anyone.
194  *
195  *	strategy is a BufferAccessStrategy object, or NULL for default strategy.
196  *
197  *	To ensure that no one else can pin the buffer before we do, we must
198  *	return the buffer with the buffer header spinlock still held.
199  */
200 BufferDesc *
StrategyGetBuffer(BufferAccessStrategy strategy,uint32 * buf_state)201 StrategyGetBuffer(BufferAccessStrategy strategy, uint32 *buf_state)
202 {
203 	BufferDesc *buf;
204 	int			bgwprocno;
205 	int			trycounter;
206 	uint32		local_buf_state;	/* to avoid repeated (de-)referencing */
207 
208 	/*
209 	 * If given a strategy object, see whether it can select a buffer. We
210 	 * assume strategy objects don't need buffer_strategy_lock.
211 	 */
212 	if (strategy != NULL)
213 	{
214 		buf = GetBufferFromRing(strategy, buf_state);
215 		if (buf != NULL)
216 			return buf;
217 	}
218 
219 	/*
220 	 * If asked, we need to waken the bgwriter. Since we don't want to rely on
221 	 * a spinlock for this we force a read from shared memory once, and then
222 	 * set the latch based on that value. We need to go through that length
223 	 * because otherwise bgprocno might be reset while/after we check because
224 	 * the compiler might just reread from memory.
225 	 *
226 	 * This can possibly set the latch of the wrong process if the bgwriter
227 	 * dies in the wrong moment. But since PGPROC->procLatch is never
228 	 * deallocated the worst consequence of that is that we set the latch of
229 	 * some arbitrary process.
230 	 */
231 	bgwprocno = INT_ACCESS_ONCE(StrategyControl->bgwprocno);
232 	if (bgwprocno != -1)
233 	{
234 		/* reset bgwprocno first, before setting the latch */
235 		StrategyControl->bgwprocno = -1;
236 
237 		/*
238 		 * Not acquiring ProcArrayLock here which is slightly icky. It's
239 		 * actually fine because procLatch isn't ever freed, so we just can
240 		 * potentially set the wrong process' (or no process') latch.
241 		 */
242 		SetLatch(&ProcGlobal->allProcs[bgwprocno].procLatch);
243 	}
244 
245 	/*
246 	 * We count buffer allocation requests so that the bgwriter can estimate
247 	 * the rate of buffer consumption.  Note that buffers recycled by a
248 	 * strategy object are intentionally not counted here.
249 	 */
250 	pg_atomic_fetch_add_u32(&StrategyControl->numBufferAllocs, 1);
251 
252 	/*
253 	 * First check, without acquiring the lock, whether there's buffers in the
254 	 * freelist. Since we otherwise don't require the spinlock in every
255 	 * StrategyGetBuffer() invocation, it'd be sad to acquire it here -
256 	 * uselessly in most cases. That obviously leaves a race where a buffer is
257 	 * put on the freelist but we don't see the store yet - but that's pretty
258 	 * harmless, it'll just get used during the next buffer acquisition.
259 	 *
260 	 * If there's buffers on the freelist, acquire the spinlock to pop one
261 	 * buffer of the freelist. Then check whether that buffer is usable and
262 	 * repeat if not.
263 	 *
264 	 * Note that the freeNext fields are considered to be protected by the
265 	 * buffer_strategy_lock not the individual buffer spinlocks, so it's OK to
266 	 * manipulate them without holding the spinlock.
267 	 */
268 	if (StrategyControl->firstFreeBuffer >= 0)
269 	{
270 		while (true)
271 		{
272 			/* Acquire the spinlock to remove element from the freelist */
273 			SpinLockAcquire(&StrategyControl->buffer_strategy_lock);
274 
275 			if (StrategyControl->firstFreeBuffer < 0)
276 			{
277 				SpinLockRelease(&StrategyControl->buffer_strategy_lock);
278 				break;
279 			}
280 
281 			buf = GetBufferDescriptor(StrategyControl->firstFreeBuffer);
282 			Assert(buf->freeNext != FREENEXT_NOT_IN_LIST);
283 
284 			/* Unconditionally remove buffer from freelist */
285 			StrategyControl->firstFreeBuffer = buf->freeNext;
286 			buf->freeNext = FREENEXT_NOT_IN_LIST;
287 
288 			/*
289 			 * Release the lock so someone else can access the freelist while
290 			 * we check out this buffer.
291 			 */
292 			SpinLockRelease(&StrategyControl->buffer_strategy_lock);
293 
294 			/*
295 			 * If the buffer is pinned or has a nonzero usage_count, we cannot
296 			 * use it; discard it and retry.  (This can only happen if VACUUM
297 			 * put a valid buffer in the freelist and then someone else used
298 			 * it before we got to it.  It's probably impossible altogether as
299 			 * of 8.3, but we'd better check anyway.)
300 			 */
301 			local_buf_state = LockBufHdr(buf);
302 			if (BUF_STATE_GET_REFCOUNT(local_buf_state) == 0
303 				&& BUF_STATE_GET_USAGECOUNT(local_buf_state) == 0)
304 			{
305 				if (strategy != NULL)
306 					AddBufferToRing(strategy, buf);
307 				*buf_state = local_buf_state;
308 				return buf;
309 			}
310 			UnlockBufHdr(buf, local_buf_state);
311 
312 		}
313 	}
314 
315 	/* Nothing on the freelist, so run the "clock sweep" algorithm */
316 	trycounter = NBuffers;
317 	for (;;)
318 	{
319 		buf = GetBufferDescriptor(ClockSweepTick());
320 
321 		/*
322 		 * If the buffer is pinned or has a nonzero usage_count, we cannot use
323 		 * it; decrement the usage_count (unless pinned) and keep scanning.
324 		 */
325 		local_buf_state = LockBufHdr(buf);
326 
327 		if (BUF_STATE_GET_REFCOUNT(local_buf_state) == 0)
328 		{
329 			if (BUF_STATE_GET_USAGECOUNT(local_buf_state) != 0)
330 			{
331 				local_buf_state -= BUF_USAGECOUNT_ONE;
332 
333 				trycounter = NBuffers;
334 			}
335 			else
336 			{
337 				/* Found a usable buffer */
338 				if (strategy != NULL)
339 					AddBufferToRing(strategy, buf);
340 				*buf_state = local_buf_state;
341 				return buf;
342 			}
343 		}
344 		else if (--trycounter == 0)
345 		{
346 			/*
347 			 * We've scanned all the buffers without making any state changes,
348 			 * so all the buffers are pinned (or were when we looked at them).
349 			 * We could hope that someone will free one eventually, but it's
350 			 * probably better to fail than to risk getting stuck in an
351 			 * infinite loop.
352 			 */
353 			UnlockBufHdr(buf, local_buf_state);
354 			elog(ERROR, "no unpinned buffers available");
355 		}
356 		UnlockBufHdr(buf, local_buf_state);
357 	}
358 }
359 
360 /*
361  * StrategyFreeBuffer: put a buffer on the freelist
362  */
363 void
StrategyFreeBuffer(BufferDesc * buf)364 StrategyFreeBuffer(BufferDesc *buf)
365 {
366 	SpinLockAcquire(&StrategyControl->buffer_strategy_lock);
367 
368 	/*
369 	 * It is possible that we are told to put something in the freelist that
370 	 * is already in it; don't screw up the list if so.
371 	 */
372 	if (buf->freeNext == FREENEXT_NOT_IN_LIST)
373 	{
374 		buf->freeNext = StrategyControl->firstFreeBuffer;
375 		if (buf->freeNext < 0)
376 			StrategyControl->lastFreeBuffer = buf->buf_id;
377 		StrategyControl->firstFreeBuffer = buf->buf_id;
378 	}
379 
380 	SpinLockRelease(&StrategyControl->buffer_strategy_lock);
381 }
382 
383 /*
384  * StrategySyncStart -- tell BufferSync where to start syncing
385  *
386  * The result is the buffer index of the best buffer to sync first.
387  * BufferSync() will proceed circularly around the buffer array from there.
388  *
389  * In addition, we return the completed-pass count (which is effectively
390  * the higher-order bits of nextVictimBuffer) and the count of recent buffer
391  * allocs if non-NULL pointers are passed.  The alloc count is reset after
392  * being read.
393  */
394 int
StrategySyncStart(uint32 * complete_passes,uint32 * num_buf_alloc)395 StrategySyncStart(uint32 *complete_passes, uint32 *num_buf_alloc)
396 {
397 	uint32		nextVictimBuffer;
398 	int			result;
399 
400 	SpinLockAcquire(&StrategyControl->buffer_strategy_lock);
401 	nextVictimBuffer = pg_atomic_read_u32(&StrategyControl->nextVictimBuffer);
402 	result = nextVictimBuffer % NBuffers;
403 
404 	if (complete_passes)
405 	{
406 		*complete_passes = StrategyControl->completePasses;
407 
408 		/*
409 		 * Additionally add the number of wraparounds that happened before
410 		 * completePasses could be incremented. C.f. ClockSweepTick().
411 		 */
412 		*complete_passes += nextVictimBuffer / NBuffers;
413 	}
414 
415 	if (num_buf_alloc)
416 	{
417 		*num_buf_alloc = pg_atomic_exchange_u32(&StrategyControl->numBufferAllocs, 0);
418 	}
419 	SpinLockRelease(&StrategyControl->buffer_strategy_lock);
420 	return result;
421 }
422 
423 /*
424  * StrategyNotifyBgWriter -- set or clear allocation notification latch
425  *
426  * If bgwprocno isn't -1, the next invocation of StrategyGetBuffer will
427  * set that latch.  Pass -1 to clear the pending notification before it
428  * happens.  This feature is used by the bgwriter process to wake itself up
429  * from hibernation, and is not meant for anybody else to use.
430  */
431 void
StrategyNotifyBgWriter(int bgwprocno)432 StrategyNotifyBgWriter(int bgwprocno)
433 {
434 	/*
435 	 * We acquire buffer_strategy_lock just to ensure that the store appears
436 	 * atomic to StrategyGetBuffer.  The bgwriter should call this rather
437 	 * infrequently, so there's no performance penalty from being safe.
438 	 */
439 	SpinLockAcquire(&StrategyControl->buffer_strategy_lock);
440 	StrategyControl->bgwprocno = bgwprocno;
441 	SpinLockRelease(&StrategyControl->buffer_strategy_lock);
442 }
443 
444 
445 /*
446  * StrategyShmemSize
447  *
448  * estimate the size of shared memory used by the freelist-related structures.
449  *
450  * Note: for somewhat historical reasons, the buffer lookup hashtable size
451  * is also determined here.
452  */
453 Size
StrategyShmemSize(void)454 StrategyShmemSize(void)
455 {
456 	Size		size = 0;
457 
458 	/* size of lookup hash table ... see comment in StrategyInitialize */
459 	size = add_size(size, BufTableShmemSize(NBuffers + NUM_BUFFER_PARTITIONS));
460 
461 	/* size of the shared replacement strategy control block */
462 	size = add_size(size, MAXALIGN(sizeof(BufferStrategyControl)));
463 
464 	return size;
465 }
466 
467 /*
468  * StrategyInitialize -- initialize the buffer cache replacement
469  *		strategy.
470  *
471  * Assumes: All of the buffers are already built into a linked list.
472  *		Only called by postmaster and only during initialization.
473  */
474 void
StrategyInitialize(bool init)475 StrategyInitialize(bool init)
476 {
477 	bool		found;
478 
479 	/*
480 	 * Initialize the shared buffer lookup hashtable.
481 	 *
482 	 * Since we can't tolerate running out of lookup table entries, we must be
483 	 * sure to specify an adequate table size here.  The maximum steady-state
484 	 * usage is of course NBuffers entries, but BufferAlloc() tries to insert
485 	 * a new entry before deleting the old.  In principle this could be
486 	 * happening in each partition concurrently, so we could need as many as
487 	 * NBuffers + NUM_BUFFER_PARTITIONS entries.
488 	 */
489 	InitBufTable(NBuffers + NUM_BUFFER_PARTITIONS);
490 
491 	/*
492 	 * Get or create the shared strategy control block
493 	 */
494 	StrategyControl = (BufferStrategyControl *)
495 		ShmemInitStruct("Buffer Strategy Status",
496 						sizeof(BufferStrategyControl),
497 						&found);
498 
499 	if (!found)
500 	{
501 		/*
502 		 * Only done once, usually in postmaster
503 		 */
504 		Assert(init);
505 
506 		SpinLockInit(&StrategyControl->buffer_strategy_lock);
507 
508 		/*
509 		 * Grab the whole linked list of free buffers for our strategy. We
510 		 * assume it was previously set up by InitBufferPool().
511 		 */
512 		StrategyControl->firstFreeBuffer = 0;
513 		StrategyControl->lastFreeBuffer = NBuffers - 1;
514 
515 		/* Initialize the clock sweep pointer */
516 		pg_atomic_init_u32(&StrategyControl->nextVictimBuffer, 0);
517 
518 		/* Clear statistics */
519 		StrategyControl->completePasses = 0;
520 		pg_atomic_init_u32(&StrategyControl->numBufferAllocs, 0);
521 
522 		/* No pending notification */
523 		StrategyControl->bgwprocno = -1;
524 	}
525 	else
526 		Assert(!init);
527 }
528 
529 
530 /* ----------------------------------------------------------------
531  *				Backend-private buffer ring management
532  * ----------------------------------------------------------------
533  */
534 
535 
536 /*
537  * GetAccessStrategy -- create a BufferAccessStrategy object
538  *
539  * The object is allocated in the current memory context.
540  */
541 BufferAccessStrategy
GetAccessStrategy(BufferAccessStrategyType btype)542 GetAccessStrategy(BufferAccessStrategyType btype)
543 {
544 	BufferAccessStrategy strategy;
545 	int			ring_size;
546 
547 	/*
548 	 * Select ring size to use.  See buffer/README for rationales.
549 	 *
550 	 * Note: if you change the ring size for BAS_BULKREAD, see also
551 	 * SYNC_SCAN_REPORT_INTERVAL in access/heap/syncscan.c.
552 	 */
553 	switch (btype)
554 	{
555 		case BAS_NORMAL:
556 			/* if someone asks for NORMAL, just give 'em a "default" object */
557 			return NULL;
558 
559 		case BAS_BULKREAD:
560 			ring_size = 256 * 1024 / BLCKSZ;
561 			break;
562 		case BAS_BULKWRITE:
563 			ring_size = 16 * 1024 * 1024 / BLCKSZ;
564 			break;
565 		case BAS_VACUUM:
566 			ring_size = 256 * 1024 / BLCKSZ;
567 			break;
568 
569 		default:
570 			elog(ERROR, "unrecognized buffer access strategy: %d",
571 				 (int) btype);
572 			return NULL;		/* keep compiler quiet */
573 	}
574 
575 	/* Make sure ring isn't an undue fraction of shared buffers */
576 	ring_size = Min(NBuffers / 8, ring_size);
577 
578 	/* Allocate the object and initialize all elements to zeroes */
579 	strategy = (BufferAccessStrategy)
580 		palloc0(offsetof(BufferAccessStrategyData, buffers) +
581 				ring_size * sizeof(Buffer));
582 
583 	/* Set fields that don't start out zero */
584 	strategy->btype = btype;
585 	strategy->ring_size = ring_size;
586 
587 	return strategy;
588 }
589 
590 /*
591  * FreeAccessStrategy -- release a BufferAccessStrategy object
592  *
593  * A simple pfree would do at the moment, but we would prefer that callers
594  * don't assume that much about the representation of BufferAccessStrategy.
595  */
596 void
FreeAccessStrategy(BufferAccessStrategy strategy)597 FreeAccessStrategy(BufferAccessStrategy strategy)
598 {
599 	/* don't crash if called on a "default" strategy */
600 	if (strategy != NULL)
601 		pfree(strategy);
602 }
603 
604 /*
605  * GetBufferFromRing -- returns a buffer from the ring, or NULL if the
606  *		ring is empty.
607  *
608  * The bufhdr spin lock is held on the returned buffer.
609  */
610 static BufferDesc *
GetBufferFromRing(BufferAccessStrategy strategy,uint32 * buf_state)611 GetBufferFromRing(BufferAccessStrategy strategy, uint32 *buf_state)
612 {
613 	BufferDesc *buf;
614 	Buffer		bufnum;
615 	uint32		local_buf_state;	/* to avoid repeated (de-)referencing */
616 
617 
618 	/* Advance to next ring slot */
619 	if (++strategy->current >= strategy->ring_size)
620 		strategy->current = 0;
621 
622 	/*
623 	 * If the slot hasn't been filled yet, tell the caller to allocate a new
624 	 * buffer with the normal allocation strategy.  He will then fill this
625 	 * slot by calling AddBufferToRing with the new buffer.
626 	 */
627 	bufnum = strategy->buffers[strategy->current];
628 	if (bufnum == InvalidBuffer)
629 	{
630 		strategy->current_was_in_ring = false;
631 		return NULL;
632 	}
633 
634 	/*
635 	 * If the buffer is pinned we cannot use it under any circumstances.
636 	 *
637 	 * If usage_count is 0 or 1 then the buffer is fair game (we expect 1,
638 	 * since our own previous usage of the ring element would have left it
639 	 * there, but it might've been decremented by clock sweep since then). A
640 	 * higher usage_count indicates someone else has touched the buffer, so we
641 	 * shouldn't re-use it.
642 	 */
643 	buf = GetBufferDescriptor(bufnum - 1);
644 	local_buf_state = LockBufHdr(buf);
645 	if (BUF_STATE_GET_REFCOUNT(local_buf_state) == 0
646 		&& BUF_STATE_GET_USAGECOUNT(local_buf_state) <= 1)
647 	{
648 		strategy->current_was_in_ring = true;
649 		*buf_state = local_buf_state;
650 		return buf;
651 	}
652 	UnlockBufHdr(buf, local_buf_state);
653 
654 	/*
655 	 * Tell caller to allocate a new buffer with the normal allocation
656 	 * strategy.  He'll then replace this ring element via AddBufferToRing.
657 	 */
658 	strategy->current_was_in_ring = false;
659 	return NULL;
660 }
661 
662 /*
663  * AddBufferToRing -- add a buffer to the buffer ring
664  *
665  * Caller must hold the buffer header spinlock on the buffer.  Since this
666  * is called with the spinlock held, it had better be quite cheap.
667  */
668 static void
AddBufferToRing(BufferAccessStrategy strategy,BufferDesc * buf)669 AddBufferToRing(BufferAccessStrategy strategy, BufferDesc *buf)
670 {
671 	strategy->buffers[strategy->current] = BufferDescriptorGetBuffer(buf);
672 }
673 
674 /*
675  * StrategyRejectBuffer -- consider rejecting a dirty buffer
676  *
677  * When a nondefault strategy is used, the buffer manager calls this function
678  * when it turns out that the buffer selected by StrategyGetBuffer needs to
679  * be written out and doing so would require flushing WAL too.  This gives us
680  * a chance to choose a different victim.
681  *
682  * Returns true if buffer manager should ask for a new victim, and false
683  * if this buffer should be written and re-used.
684  */
685 bool
StrategyRejectBuffer(BufferAccessStrategy strategy,BufferDesc * buf)686 StrategyRejectBuffer(BufferAccessStrategy strategy, BufferDesc *buf)
687 {
688 	/* We only do this in bulkread mode */
689 	if (strategy->btype != BAS_BULKREAD)
690 		return false;
691 
692 	/* Don't muck with behavior of normal buffer-replacement strategy */
693 	if (!strategy->current_was_in_ring ||
694 		strategy->buffers[strategy->current] != BufferDescriptorGetBuffer(buf))
695 		return false;
696 
697 	/*
698 	 * Remove the dirty buffer from the ring; necessary to prevent infinite
699 	 * loop if all ring members are dirty.
700 	 */
701 	strategy->buffers[strategy->current] = InvalidBuffer;
702 
703 	return true;
704 }
705