1 /*-------------------------------------------------------------------------
2  *
3  * primnodes.h
4  *	  Definitions for "primitive" node types, those that are used in more
5  *	  than one of the parse/plan/execute stages of the query pipeline.
6  *	  Currently, these are mostly nodes for executable expressions
7  *	  and join trees.
8  *
9  *
10  * Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
11  * Portions Copyright (c) 1994, Regents of the University of California
12  *
13  * src/include/nodes/primnodes.h
14  *
15  *-------------------------------------------------------------------------
16  */
17 #ifndef PRIMNODES_H
18 #define PRIMNODES_H
19 
20 #include "access/attnum.h"
21 #include "nodes/bitmapset.h"
22 #include "nodes/pg_list.h"
23 
24 
25 /* ----------------------------------------------------------------
26  *						node definitions
27  * ----------------------------------------------------------------
28  */
29 
30 /*
31  * Alias -
32  *	  specifies an alias for a range variable; the alias might also
33  *	  specify renaming of columns within the table.
34  *
35  * Note: colnames is a list of Value nodes (always strings).  In Alias structs
36  * associated with RTEs, there may be entries corresponding to dropped
37  * columns; these are normally empty strings ("").  See parsenodes.h for info.
38  */
39 typedef struct Alias
40 {
41 	NodeTag		type;
42 	char	   *aliasname;		/* aliased rel name (never qualified) */
43 	List	   *colnames;		/* optional list of column aliases */
44 } Alias;
45 
46 /* What to do at commit time for temporary relations */
47 typedef enum OnCommitAction
48 {
49 	ONCOMMIT_NOOP,				/* No ON COMMIT clause (do nothing) */
50 	ONCOMMIT_PRESERVE_ROWS,		/* ON COMMIT PRESERVE ROWS (do nothing) */
51 	ONCOMMIT_DELETE_ROWS,		/* ON COMMIT DELETE ROWS */
52 	ONCOMMIT_DROP				/* ON COMMIT DROP */
53 } OnCommitAction;
54 
55 /*
56  * RangeVar - range variable, used in FROM clauses
57  *
58  * Also used to represent table names in utility statements; there, the alias
59  * field is not used, and inh tells whether to apply the operation
60  * recursively to child tables.  In some contexts it is also useful to carry
61  * a TEMP table indication here.
62  */
63 typedef struct RangeVar
64 {
65 	NodeTag		type;
66 	char	   *catalogname;	/* the catalog (database) name, or NULL */
67 	char	   *schemaname;		/* the schema name, or NULL */
68 	char	   *relname;		/* the relation/sequence name */
69 	bool		inh;			/* expand rel by inheritance? recursively act
70 								 * on children? */
71 	char		relpersistence; /* see RELPERSISTENCE_* in pg_class.h */
72 	Alias	   *alias;			/* table alias & optional column aliases */
73 	int			location;		/* token location, or -1 if unknown */
74 } RangeVar;
75 
76 /*
77  * TableFunc - node for a table function, such as XMLTABLE.
78  *
79  * Entries in the ns_names list are either string Value nodes containing
80  * literal namespace names, or NULL pointers to represent DEFAULT.
81  */
82 typedef struct TableFunc
83 {
84 	NodeTag		type;
85 	List	   *ns_uris;		/* list of namespace URI expressions */
86 	List	   *ns_names;		/* list of namespace names or NULL */
87 	Node	   *docexpr;		/* input document expression */
88 	Node	   *rowexpr;		/* row filter expression */
89 	List	   *colnames;		/* column names (list of String) */
90 	List	   *coltypes;		/* OID list of column type OIDs */
91 	List	   *coltypmods;		/* integer list of column typmods */
92 	List	   *colcollations;	/* OID list of column collation OIDs */
93 	List	   *colexprs;		/* list of column filter expressions */
94 	List	   *coldefexprs;	/* list of column default expressions */
95 	Bitmapset  *notnulls;		/* nullability flag for each output column */
96 	int			ordinalitycol;	/* counts from 0; -1 if none specified */
97 	int			location;		/* token location, or -1 if unknown */
98 } TableFunc;
99 
100 /*
101  * IntoClause - target information for SELECT INTO, CREATE TABLE AS, and
102  * CREATE MATERIALIZED VIEW
103  *
104  * For CREATE MATERIALIZED VIEW, viewQuery is the parsed-but-not-rewritten
105  * SELECT Query for the view; otherwise it's NULL.  (Although it's actually
106  * Query*, we declare it as Node* to avoid a forward reference.)
107  */
108 typedef struct IntoClause
109 {
110 	NodeTag		type;
111 
112 	RangeVar   *rel;			/* target relation name */
113 	List	   *colNames;		/* column names to assign, or NIL */
114 	List	   *options;		/* options from WITH clause */
115 	OnCommitAction onCommit;	/* what do we do at COMMIT? */
116 	char	   *tableSpaceName; /* table space to use, or NULL */
117 	Node	   *viewQuery;		/* materialized view's SELECT query */
118 	bool		skipData;		/* true for WITH NO DATA */
119 } IntoClause;
120 
121 
122 /* ----------------------------------------------------------------
123  *					node types for executable expressions
124  * ----------------------------------------------------------------
125  */
126 
127 /*
128  * Expr - generic superclass for executable-expression nodes
129  *
130  * All node types that are used in executable expression trees should derive
131  * from Expr (that is, have Expr as their first field).  Since Expr only
132  * contains NodeTag, this is a formality, but it is an easy form of
133  * documentation.  See also the ExprState node types in execnodes.h.
134  */
135 typedef struct Expr
136 {
137 	NodeTag		type;
138 } Expr;
139 
140 /*
141  * Var - expression node representing a variable (ie, a table column)
142  *
143  * Note: during parsing/planning, varnoold/varoattno are always just copies
144  * of varno/varattno.  At the tail end of planning, Var nodes appearing in
145  * upper-level plan nodes are reassigned to point to the outputs of their
146  * subplans; for example, in a join node varno becomes INNER_VAR or OUTER_VAR
147  * and varattno becomes the index of the proper element of that subplan's
148  * target list.  Similarly, INDEX_VAR is used to identify Vars that reference
149  * an index column rather than a heap column.  (In ForeignScan and CustomScan
150  * plan nodes, INDEX_VAR is abused to signify references to columns of a
151  * custom scan tuple type.)  In all these cases, varnoold/varoattno hold the
152  * original values.  The code doesn't really need varnoold/varoattno, but they
153  * are very useful for debugging and interpreting completed plans, so we keep
154  * them around.
155  */
156 #define    INNER_VAR		65000	/* reference to inner subplan */
157 #define    OUTER_VAR		65001	/* reference to outer subplan */
158 #define    INDEX_VAR		65002	/* reference to index column */
159 
160 #define IS_SPECIAL_VARNO(varno)		((varno) >= INNER_VAR)
161 
162 /* Symbols for the indexes of the special RTE entries in rules */
163 #define    PRS2_OLD_VARNO			1
164 #define    PRS2_NEW_VARNO			2
165 
166 typedef struct Var
167 {
168 	Expr		xpr;
169 	Index		varno;			/* index of this var's relation in the range
170 								 * table, or INNER_VAR/OUTER_VAR/INDEX_VAR */
171 	AttrNumber	varattno;		/* attribute number of this var, or zero for
172 								 * all attrs ("whole-row Var") */
173 	Oid			vartype;		/* pg_type OID for the type of this var */
174 	int32		vartypmod;		/* pg_attribute typmod value */
175 	Oid			varcollid;		/* OID of collation, or InvalidOid if none */
176 	Index		varlevelsup;	/* for subquery variables referencing outer
177 								 * relations; 0 in a normal var, >0 means N
178 								 * levels up */
179 	Index		varnoold;		/* original value of varno, for debugging */
180 	AttrNumber	varoattno;		/* original value of varattno */
181 	int			location;		/* token location, or -1 if unknown */
182 } Var;
183 
184 /*
185  * Const
186  *
187  * Note: for varlena data types, we make a rule that a Const node's value
188  * must be in non-extended form (4-byte header, no compression or external
189  * references).  This ensures that the Const node is self-contained and makes
190  * it more likely that equal() will see logically identical values as equal.
191  */
192 typedef struct Const
193 {
194 	Expr		xpr;
195 	Oid			consttype;		/* pg_type OID of the constant's datatype */
196 	int32		consttypmod;	/* typmod value, if any */
197 	Oid			constcollid;	/* OID of collation, or InvalidOid if none */
198 	int			constlen;		/* typlen of the constant's datatype */
199 	Datum		constvalue;		/* the constant's value */
200 	bool		constisnull;	/* whether the constant is null (if true,
201 								 * constvalue is undefined) */
202 	bool		constbyval;		/* whether this datatype is passed by value.
203 								 * If true, then all the information is stored
204 								 * in the Datum. If false, then the Datum
205 								 * contains a pointer to the information. */
206 	int			location;		/* token location, or -1 if unknown */
207 } Const;
208 
209 /*
210  * Param
211  *
212  *		paramkind specifies the kind of parameter. The possible values
213  *		for this field are:
214  *
215  *		PARAM_EXTERN:  The parameter value is supplied from outside the plan.
216  *				Such parameters are numbered from 1 to n.
217  *
218  *		PARAM_EXEC:  The parameter is an internal executor parameter, used
219  *				for passing values into and out of sub-queries or from
220  *				nestloop joins to their inner scans.
221  *				For historical reasons, such parameters are numbered from 0.
222  *				These numbers are independent of PARAM_EXTERN numbers.
223  *
224  *		PARAM_SUBLINK:	The parameter represents an output column of a SubLink
225  *				node's sub-select.  The column number is contained in the
226  *				`paramid' field.  (This type of Param is converted to
227  *				PARAM_EXEC during planning.)
228  *
229  *		PARAM_MULTIEXPR:  Like PARAM_SUBLINK, the parameter represents an
230  *				output column of a SubLink node's sub-select, but here, the
231  *				SubLink is always a MULTIEXPR SubLink.  The high-order 16 bits
232  *				of the `paramid' field contain the SubLink's subLinkId, and
233  *				the low-order 16 bits contain the column number.  (This type
234  *				of Param is also converted to PARAM_EXEC during planning.)
235  */
236 typedef enum ParamKind
237 {
238 	PARAM_EXTERN,
239 	PARAM_EXEC,
240 	PARAM_SUBLINK,
241 	PARAM_MULTIEXPR
242 } ParamKind;
243 
244 typedef struct Param
245 {
246 	Expr		xpr;
247 	ParamKind	paramkind;		/* kind of parameter. See above */
248 	int			paramid;		/* numeric ID for parameter */
249 	Oid			paramtype;		/* pg_type OID of parameter's datatype */
250 	int32		paramtypmod;	/* typmod value, if known */
251 	Oid			paramcollid;	/* OID of collation, or InvalidOid if none */
252 	int			location;		/* token location, or -1 if unknown */
253 } Param;
254 
255 /*
256  * Aggref
257  *
258  * The aggregate's args list is a targetlist, ie, a list of TargetEntry nodes.
259  *
260  * For a normal (non-ordered-set) aggregate, the non-resjunk TargetEntries
261  * represent the aggregate's regular arguments (if any) and resjunk TLEs can
262  * be added at the end to represent ORDER BY expressions that are not also
263  * arguments.  As in a top-level Query, the TLEs can be marked with
264  * ressortgroupref indexes to let them be referenced by SortGroupClause
265  * entries in the aggorder and/or aggdistinct lists.  This represents ORDER BY
266  * and DISTINCT operations to be applied to the aggregate input rows before
267  * they are passed to the transition function.  The grammar only allows a
268  * simple "DISTINCT" specifier for the arguments, but we use the full
269  * query-level representation to allow more code sharing.
270  *
271  * For an ordered-set aggregate, the args list represents the WITHIN GROUP
272  * (aggregated) arguments, all of which will be listed in the aggorder list.
273  * DISTINCT is not supported in this case, so aggdistinct will be NIL.
274  * The direct arguments appear in aggdirectargs (as a list of plain
275  * expressions, not TargetEntry nodes).
276  *
277  * aggtranstype is the data type of the state transition values for this
278  * aggregate (resolved to an actual type, if agg's transtype is polymorphic).
279  * This is determined during planning and is InvalidOid before that.
280  *
281  * aggargtypes is an OID list of the data types of the direct and regular
282  * arguments.  Normally it's redundant with the aggdirectargs and args lists,
283  * but in a combining aggregate, it's not because the args list has been
284  * replaced with a single argument representing the partial-aggregate
285  * transition values.
286  *
287  * aggsplit indicates the expected partial-aggregation mode for the Aggref's
288  * parent plan node.  It's always set to AGGSPLIT_SIMPLE in the parser, but
289  * the planner might change it to something else.  We use this mainly as
290  * a crosscheck that the Aggrefs match the plan; but note that when aggsplit
291  * indicates a non-final mode, aggtype reflects the transition data type
292  * not the SQL-level output type of the aggregate.
293  */
294 typedef struct Aggref
295 {
296 	Expr		xpr;
297 	Oid			aggfnoid;		/* pg_proc Oid of the aggregate */
298 	Oid			aggtype;		/* type Oid of result of the aggregate */
299 	Oid			aggcollid;		/* OID of collation of result */
300 	Oid			inputcollid;	/* OID of collation that function should use */
301 	Oid			aggtranstype;	/* type Oid of aggregate's transition value */
302 	List	   *aggargtypes;	/* type Oids of direct and aggregated args */
303 	List	   *aggdirectargs;	/* direct arguments, if an ordered-set agg */
304 	List	   *args;			/* aggregated arguments and sort expressions */
305 	List	   *aggorder;		/* ORDER BY (list of SortGroupClause) */
306 	List	   *aggdistinct;	/* DISTINCT (list of SortGroupClause) */
307 	Expr	   *aggfilter;		/* FILTER expression, if any */
308 	bool		aggstar;		/* true if argument list was really '*' */
309 	bool		aggvariadic;	/* true if variadic arguments have been
310 								 * combined into an array last argument */
311 	char		aggkind;		/* aggregate kind (see pg_aggregate.h) */
312 	Index		agglevelsup;	/* > 0 if agg belongs to outer query */
313 	AggSplit	aggsplit;		/* expected agg-splitting mode of parent Agg */
314 	int			location;		/* token location, or -1 if unknown */
315 } Aggref;
316 
317 /*
318  * GroupingFunc
319  *
320  * A GroupingFunc is a GROUPING(...) expression, which behaves in many ways
321  * like an aggregate function (e.g. it "belongs" to a specific query level,
322  * which might not be the one immediately containing it), but also differs in
323  * an important respect: it never evaluates its arguments, they merely
324  * designate expressions from the GROUP BY clause of the query level to which
325  * it belongs.
326  *
327  * The spec defines the evaluation of GROUPING() purely by syntactic
328  * replacement, but we make it a real expression for optimization purposes so
329  * that one Agg node can handle multiple grouping sets at once.  Evaluating the
330  * result only needs the column positions to check against the grouping set
331  * being projected.  However, for EXPLAIN to produce meaningful output, we have
332  * to keep the original expressions around, since expression deparse does not
333  * give us any feasible way to get at the GROUP BY clause.
334  *
335  * Also, we treat two GroupingFunc nodes as equal if they have equal arguments
336  * lists and agglevelsup, without comparing the refs and cols annotations.
337  *
338  * In raw parse output we have only the args list; parse analysis fills in the
339  * refs list, and the planner fills in the cols list.
340  */
341 typedef struct GroupingFunc
342 {
343 	Expr		xpr;
344 	List	   *args;			/* arguments, not evaluated but kept for
345 								 * benefit of EXPLAIN etc. */
346 	List	   *refs;			/* ressortgrouprefs of arguments */
347 	List	   *cols;			/* actual column positions set by planner */
348 	Index		agglevelsup;	/* same as Aggref.agglevelsup */
349 	int			location;		/* token location */
350 } GroupingFunc;
351 
352 /*
353  * WindowFunc
354  */
355 typedef struct WindowFunc
356 {
357 	Expr		xpr;
358 	Oid			winfnoid;		/* pg_proc Oid of the function */
359 	Oid			wintype;		/* type Oid of result of the window function */
360 	Oid			wincollid;		/* OID of collation of result */
361 	Oid			inputcollid;	/* OID of collation that function should use */
362 	List	   *args;			/* arguments to the window function */
363 	Expr	   *aggfilter;		/* FILTER expression, if any */
364 	Index		winref;			/* index of associated WindowClause */
365 	bool		winstar;		/* true if argument list was really '*' */
366 	bool		winagg;			/* is function a simple aggregate? */
367 	int			location;		/* token location, or -1 if unknown */
368 } WindowFunc;
369 
370 /* ----------------
371  *	ArrayRef: describes an array subscripting operation
372  *
373  * An ArrayRef can describe fetching a single element from an array,
374  * fetching a subarray (array slice), storing a single element into
375  * an array, or storing a slice.  The "store" cases work with an
376  * initial array value and a source value that is inserted into the
377  * appropriate part of the array; the result of the operation is an
378  * entire new modified array value.
379  *
380  * If reflowerindexpr = NIL, then we are fetching or storing a single array
381  * element at the subscripts given by refupperindexpr.  Otherwise we are
382  * fetching or storing an array slice, that is a rectangular subarray
383  * with lower and upper bounds given by the index expressions.
384  * reflowerindexpr must be the same length as refupperindexpr when it
385  * is not NIL.
386  *
387  * In the slice case, individual expressions in the subscript lists can be
388  * NULL, meaning "substitute the array's current lower or upper bound".
389  *
390  * Note: the result datatype is the element type when fetching a single
391  * element; but it is the array type when doing subarray fetch or either
392  * type of store.
393  *
394  * Note: for the cases where an array is returned, if refexpr yields a R/W
395  * expanded array, then the implementation is allowed to modify that object
396  * in-place and return the same object.)
397  * ----------------
398  */
399 typedef struct ArrayRef
400 {
401 	Expr		xpr;
402 	Oid			refarraytype;	/* type of the array proper */
403 	Oid			refelemtype;	/* type of the array elements */
404 	int32		reftypmod;		/* typmod of the array (and elements too) */
405 	Oid			refcollid;		/* OID of collation, or InvalidOid if none */
406 	List	   *refupperindexpr;	/* expressions that evaluate to upper
407 									 * array indexes */
408 	List	   *reflowerindexpr;	/* expressions that evaluate to lower
409 									 * array indexes, or NIL for single array
410 									 * element */
411 	Expr	   *refexpr;		/* the expression that evaluates to an array
412 								 * value */
413 	Expr	   *refassgnexpr;	/* expression for the source value, or NULL if
414 								 * fetch */
415 } ArrayRef;
416 
417 /*
418  * CoercionContext - distinguishes the allowed set of type casts
419  *
420  * NB: ordering of the alternatives is significant; later (larger) values
421  * allow more casts than earlier ones.
422  */
423 typedef enum CoercionContext
424 {
425 	COERCION_IMPLICIT,			/* coercion in context of expression */
426 	COERCION_ASSIGNMENT,		/* coercion in context of assignment */
427 	COERCION_EXPLICIT			/* explicit cast operation */
428 } CoercionContext;
429 
430 /*
431  * CoercionForm - how to display a node that could have come from a cast
432  *
433  * NB: equal() ignores CoercionForm fields, therefore this *must* not carry
434  * any semantically significant information.  We need that behavior so that
435  * the planner will consider equivalent implicit and explicit casts to be
436  * equivalent.  In cases where those actually behave differently, the coercion
437  * function's arguments will be different.
438  */
439 typedef enum CoercionForm
440 {
441 	COERCE_EXPLICIT_CALL,		/* display as a function call */
442 	COERCE_EXPLICIT_CAST,		/* display as an explicit cast */
443 	COERCE_IMPLICIT_CAST		/* implicit cast, so hide it */
444 } CoercionForm;
445 
446 /*
447  * FuncExpr - expression node for a function call
448  */
449 typedef struct FuncExpr
450 {
451 	Expr		xpr;
452 	Oid			funcid;			/* PG_PROC OID of the function */
453 	Oid			funcresulttype; /* PG_TYPE OID of result value */
454 	bool		funcretset;		/* true if function returns set */
455 	bool		funcvariadic;	/* true if variadic arguments have been
456 								 * combined into an array last argument */
457 	CoercionForm funcformat;	/* how to display this function call */
458 	Oid			funccollid;		/* OID of collation of result */
459 	Oid			inputcollid;	/* OID of collation that function should use */
460 	List	   *args;			/* arguments to the function */
461 	int			location;		/* token location, or -1 if unknown */
462 } FuncExpr;
463 
464 /*
465  * NamedArgExpr - a named argument of a function
466  *
467  * This node type can only appear in the args list of a FuncCall or FuncExpr
468  * node.  We support pure positional call notation (no named arguments),
469  * named notation (all arguments are named), and mixed notation (unnamed
470  * arguments followed by named ones).
471  *
472  * Parse analysis sets argnumber to the positional index of the argument,
473  * but doesn't rearrange the argument list.
474  *
475  * The planner will convert argument lists to pure positional notation
476  * during expression preprocessing, so execution never sees a NamedArgExpr.
477  */
478 typedef struct NamedArgExpr
479 {
480 	Expr		xpr;
481 	Expr	   *arg;			/* the argument expression */
482 	char	   *name;			/* the name */
483 	int			argnumber;		/* argument's number in positional notation */
484 	int			location;		/* argument name location, or -1 if unknown */
485 } NamedArgExpr;
486 
487 /*
488  * OpExpr - expression node for an operator invocation
489  *
490  * Semantically, this is essentially the same as a function call.
491  *
492  * Note that opfuncid is not necessarily filled in immediately on creation
493  * of the node.  The planner makes sure it is valid before passing the node
494  * tree to the executor, but during parsing/planning opfuncid can be 0.
495  */
496 typedef struct OpExpr
497 {
498 	Expr		xpr;
499 	Oid			opno;			/* PG_OPERATOR OID of the operator */
500 	Oid			opfuncid;		/* PG_PROC OID of underlying function */
501 	Oid			opresulttype;	/* PG_TYPE OID of result value */
502 	bool		opretset;		/* true if operator returns set */
503 	Oid			opcollid;		/* OID of collation of result */
504 	Oid			inputcollid;	/* OID of collation that operator should use */
505 	List	   *args;			/* arguments to the operator (1 or 2) */
506 	int			location;		/* token location, or -1 if unknown */
507 } OpExpr;
508 
509 /*
510  * DistinctExpr - expression node for "x IS DISTINCT FROM y"
511  *
512  * Except for the nodetag, this is represented identically to an OpExpr
513  * referencing the "=" operator for x and y.
514  * We use "=", not the more obvious "<>", because more datatypes have "="
515  * than "<>".  This means the executor must invert the operator result.
516  * Note that the operator function won't be called at all if either input
517  * is NULL, since then the result can be determined directly.
518  */
519 typedef OpExpr DistinctExpr;
520 
521 /*
522  * NullIfExpr - a NULLIF expression
523  *
524  * Like DistinctExpr, this is represented the same as an OpExpr referencing
525  * the "=" operator for x and y.
526  */
527 typedef OpExpr NullIfExpr;
528 
529 /*
530  * ScalarArrayOpExpr - expression node for "scalar op ANY/ALL (array)"
531  *
532  * The operator must yield boolean.  It is applied to the left operand
533  * and each element of the righthand array, and the results are combined
534  * with OR or AND (for ANY or ALL respectively).  The node representation
535  * is almost the same as for the underlying operator, but we need a useOr
536  * flag to remember whether it's ANY or ALL, and we don't have to store
537  * the result type (or the collation) because it must be boolean.
538  */
539 typedef struct ScalarArrayOpExpr
540 {
541 	Expr		xpr;
542 	Oid			opno;			/* PG_OPERATOR OID of the operator */
543 	Oid			opfuncid;		/* PG_PROC OID of underlying function */
544 	bool		useOr;			/* true for ANY, false for ALL */
545 	Oid			inputcollid;	/* OID of collation that operator should use */
546 	List	   *args;			/* the scalar and array operands */
547 	int			location;		/* token location, or -1 if unknown */
548 } ScalarArrayOpExpr;
549 
550 /*
551  * BoolExpr - expression node for the basic Boolean operators AND, OR, NOT
552  *
553  * Notice the arguments are given as a List.  For NOT, of course the list
554  * must always have exactly one element.  For AND and OR, there can be two
555  * or more arguments.
556  */
557 typedef enum BoolExprType
558 {
559 	AND_EXPR, OR_EXPR, NOT_EXPR
560 } BoolExprType;
561 
562 typedef struct BoolExpr
563 {
564 	Expr		xpr;
565 	BoolExprType boolop;
566 	List	   *args;			/* arguments to this expression */
567 	int			location;		/* token location, or -1 if unknown */
568 } BoolExpr;
569 
570 /*
571  * SubLink
572  *
573  * A SubLink represents a subselect appearing in an expression, and in some
574  * cases also the combining operator(s) just above it.  The subLinkType
575  * indicates the form of the expression represented:
576  *	EXISTS_SUBLINK		EXISTS(SELECT ...)
577  *	ALL_SUBLINK			(lefthand) op ALL (SELECT ...)
578  *	ANY_SUBLINK			(lefthand) op ANY (SELECT ...)
579  *	ROWCOMPARE_SUBLINK	(lefthand) op (SELECT ...)
580  *	EXPR_SUBLINK		(SELECT with single targetlist item ...)
581  *	MULTIEXPR_SUBLINK	(SELECT with multiple targetlist items ...)
582  *	ARRAY_SUBLINK		ARRAY(SELECT with single targetlist item ...)
583  *	CTE_SUBLINK			WITH query (never actually part of an expression)
584  * For ALL, ANY, and ROWCOMPARE, the lefthand is a list of expressions of the
585  * same length as the subselect's targetlist.  ROWCOMPARE will *always* have
586  * a list with more than one entry; if the subselect has just one target
587  * then the parser will create an EXPR_SUBLINK instead (and any operator
588  * above the subselect will be represented separately).
589  * ROWCOMPARE, EXPR, and MULTIEXPR require the subselect to deliver at most
590  * one row (if it returns no rows, the result is NULL).
591  * ALL, ANY, and ROWCOMPARE require the combining operators to deliver boolean
592  * results.  ALL and ANY combine the per-row results using AND and OR
593  * semantics respectively.
594  * ARRAY requires just one target column, and creates an array of the target
595  * column's type using any number of rows resulting from the subselect.
596  *
597  * SubLink is classed as an Expr node, but it is not actually executable;
598  * it must be replaced in the expression tree by a SubPlan node during
599  * planning.
600  *
601  * NOTE: in the raw output of gram.y, testexpr contains just the raw form
602  * of the lefthand expression (if any), and operName is the String name of
603  * the combining operator.  Also, subselect is a raw parsetree.  During parse
604  * analysis, the parser transforms testexpr into a complete boolean expression
605  * that compares the lefthand value(s) to PARAM_SUBLINK nodes representing the
606  * output columns of the subselect.  And subselect is transformed to a Query.
607  * This is the representation seen in saved rules and in the rewriter.
608  *
609  * In EXISTS, EXPR, MULTIEXPR, and ARRAY SubLinks, testexpr and operName
610  * are unused and are always null.
611  *
612  * subLinkId is currently used only for MULTIEXPR SubLinks, and is zero in
613  * other SubLinks.  This number identifies different multiple-assignment
614  * subqueries within an UPDATE statement's SET list.  It is unique only
615  * within a particular targetlist.  The output column(s) of the MULTIEXPR
616  * are referenced by PARAM_MULTIEXPR Params appearing elsewhere in the tlist.
617  *
618  * The CTE_SUBLINK case never occurs in actual SubLink nodes, but it is used
619  * in SubPlans generated for WITH subqueries.
620  */
621 typedef enum SubLinkType
622 {
623 	EXISTS_SUBLINK,
624 	ALL_SUBLINK,
625 	ANY_SUBLINK,
626 	ROWCOMPARE_SUBLINK,
627 	EXPR_SUBLINK,
628 	MULTIEXPR_SUBLINK,
629 	ARRAY_SUBLINK,
630 	CTE_SUBLINK					/* for SubPlans only */
631 } SubLinkType;
632 
633 
634 typedef struct SubLink
635 {
636 	Expr		xpr;
637 	SubLinkType subLinkType;	/* see above */
638 	int			subLinkId;		/* ID (1..n); 0 if not MULTIEXPR */
639 	Node	   *testexpr;		/* outer-query test for ALL/ANY/ROWCOMPARE */
640 	List	   *operName;		/* originally specified operator name */
641 	Node	   *subselect;		/* subselect as Query* or raw parsetree */
642 	int			location;		/* token location, or -1 if unknown */
643 } SubLink;
644 
645 /*
646  * SubPlan - executable expression node for a subplan (sub-SELECT)
647  *
648  * The planner replaces SubLink nodes in expression trees with SubPlan
649  * nodes after it has finished planning the subquery.  SubPlan references
650  * a sub-plantree stored in the subplans list of the toplevel PlannedStmt.
651  * (We avoid a direct link to make it easier to copy expression trees
652  * without causing multiple processing of the subplan.)
653  *
654  * In an ordinary subplan, testexpr points to an executable expression
655  * (OpExpr, an AND/OR tree of OpExprs, or RowCompareExpr) for the combining
656  * operator(s); the left-hand arguments are the original lefthand expressions,
657  * and the right-hand arguments are PARAM_EXEC Param nodes representing the
658  * outputs of the sub-select.  (NOTE: runtime coercion functions may be
659  * inserted as well.)  This is just the same expression tree as testexpr in
660  * the original SubLink node, but the PARAM_SUBLINK nodes are replaced by
661  * suitably numbered PARAM_EXEC nodes.
662  *
663  * If the sub-select becomes an initplan rather than a subplan, the executable
664  * expression is part of the outer plan's expression tree (and the SubPlan
665  * node itself is not, but rather is found in the outer plan's initPlan
666  * list).  In this case testexpr is NULL to avoid duplication.
667  *
668  * The planner also derives lists of the values that need to be passed into
669  * and out of the subplan.  Input values are represented as a list "args" of
670  * expressions to be evaluated in the outer-query context (currently these
671  * args are always just Vars, but in principle they could be any expression).
672  * The values are assigned to the global PARAM_EXEC params indexed by parParam
673  * (the parParam and args lists must have the same ordering).  setParam is a
674  * list of the PARAM_EXEC params that are computed by the sub-select, if it
675  * is an initplan; they are listed in order by sub-select output column
676  * position.  (parParam and setParam are integer Lists, not Bitmapsets,
677  * because their ordering is significant.)
678  *
679  * Also, the planner computes startup and per-call costs for use of the
680  * SubPlan.  Note that these include the cost of the subquery proper,
681  * evaluation of the testexpr if any, and any hashtable management overhead.
682  */
683 typedef struct SubPlan
684 {
685 	Expr		xpr;
686 	/* Fields copied from original SubLink: */
687 	SubLinkType subLinkType;	/* see above */
688 	/* The combining operators, transformed to an executable expression: */
689 	Node	   *testexpr;		/* OpExpr or RowCompareExpr expression tree */
690 	List	   *paramIds;		/* IDs of Params embedded in the above */
691 	/* Identification of the Plan tree to use: */
692 	int			plan_id;		/* Index (from 1) in PlannedStmt.subplans */
693 	/* Identification of the SubPlan for EXPLAIN and debugging purposes: */
694 	char	   *plan_name;		/* A name assigned during planning */
695 	/* Extra data useful for determining subplan's output type: */
696 	Oid			firstColType;	/* Type of first column of subplan result */
697 	int32		firstColTypmod; /* Typmod of first column of subplan result */
698 	Oid			firstColCollation;	/* Collation of first column of subplan
699 									 * result */
700 	/* Information about execution strategy: */
701 	bool		useHashTable;	/* true to store subselect output in a hash
702 								 * table (implies we are doing "IN") */
703 	bool		unknownEqFalse; /* true if it's okay to return FALSE when the
704 								 * spec result is UNKNOWN; this allows much
705 								 * simpler handling of null values */
706 	bool		parallel_safe;	/* is the subplan parallel-safe? */
707 	/* Note: parallel_safe does not consider contents of testexpr or args */
708 	/* Information for passing params into and out of the subselect: */
709 	/* setParam and parParam are lists of integers (param IDs) */
710 	List	   *setParam;		/* initplan subqueries have to set these
711 								 * Params for parent plan */
712 	List	   *parParam;		/* indices of input Params from parent plan */
713 	List	   *args;			/* exprs to pass as parParam values */
714 	/* Estimated execution costs: */
715 	Cost		startup_cost;	/* one-time setup cost */
716 	Cost		per_call_cost;	/* cost for each subplan evaluation */
717 } SubPlan;
718 
719 /*
720  * AlternativeSubPlan - expression node for a choice among SubPlans
721  *
722  * The subplans are given as a List so that the node definition need not
723  * change if there's ever more than two alternatives.  For the moment,
724  * though, there are always exactly two; and the first one is the fast-start
725  * plan.
726  */
727 typedef struct AlternativeSubPlan
728 {
729 	Expr		xpr;
730 	List	   *subplans;		/* SubPlan(s) with equivalent results */
731 } AlternativeSubPlan;
732 
733 /* ----------------
734  * FieldSelect
735  *
736  * FieldSelect represents the operation of extracting one field from a tuple
737  * value.  At runtime, the input expression is expected to yield a rowtype
738  * Datum.  The specified field number is extracted and returned as a Datum.
739  * ----------------
740  */
741 
742 typedef struct FieldSelect
743 {
744 	Expr		xpr;
745 	Expr	   *arg;			/* input expression */
746 	AttrNumber	fieldnum;		/* attribute number of field to extract */
747 	Oid			resulttype;		/* type of the field (result type of this
748 								 * node) */
749 	int32		resulttypmod;	/* output typmod (usually -1) */
750 	Oid			resultcollid;	/* OID of collation of the field */
751 } FieldSelect;
752 
753 /* ----------------
754  * FieldStore
755  *
756  * FieldStore represents the operation of modifying one field in a tuple
757  * value, yielding a new tuple value (the input is not touched!).  Like
758  * the assign case of ArrayRef, this is used to implement UPDATE of a
759  * portion of a column.
760  *
761  * resulttype is always a named composite type (not a domain).  To update
762  * a composite domain value, apply CoerceToDomain to the FieldStore.
763  *
764  * A single FieldStore can actually represent updates of several different
765  * fields.  The parser only generates FieldStores with single-element lists,
766  * but the planner will collapse multiple updates of the same base column
767  * into one FieldStore.
768  * ----------------
769  */
770 
771 typedef struct FieldStore
772 {
773 	Expr		xpr;
774 	Expr	   *arg;			/* input tuple value */
775 	List	   *newvals;		/* new value(s) for field(s) */
776 	List	   *fieldnums;		/* integer list of field attnums */
777 	Oid			resulttype;		/* type of result (same as type of arg) */
778 	/* Like RowExpr, we deliberately omit a typmod and collation here */
779 } FieldStore;
780 
781 /* ----------------
782  * RelabelType
783  *
784  * RelabelType represents a "dummy" type coercion between two binary-
785  * compatible datatypes, such as reinterpreting the result of an OID
786  * expression as an int4.  It is a no-op at runtime; we only need it
787  * to provide a place to store the correct type to be attributed to
788  * the expression result during type resolution.  (We can't get away
789  * with just overwriting the type field of the input expression node,
790  * so we need a separate node to show the coercion's result type.)
791  * ----------------
792  */
793 
794 typedef struct RelabelType
795 {
796 	Expr		xpr;
797 	Expr	   *arg;			/* input expression */
798 	Oid			resulttype;		/* output type of coercion expression */
799 	int32		resulttypmod;	/* output typmod (usually -1) */
800 	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
801 	CoercionForm relabelformat; /* how to display this node */
802 	int			location;		/* token location, or -1 if unknown */
803 } RelabelType;
804 
805 /* ----------------
806  * CoerceViaIO
807  *
808  * CoerceViaIO represents a type coercion between two types whose textual
809  * representations are compatible, implemented by invoking the source type's
810  * typoutput function then the destination type's typinput function.
811  * ----------------
812  */
813 
814 typedef struct CoerceViaIO
815 {
816 	Expr		xpr;
817 	Expr	   *arg;			/* input expression */
818 	Oid			resulttype;		/* output type of coercion */
819 	/* output typmod is not stored, but is presumed -1 */
820 	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
821 	CoercionForm coerceformat;	/* how to display this node */
822 	int			location;		/* token location, or -1 if unknown */
823 } CoerceViaIO;
824 
825 /* ----------------
826  * ArrayCoerceExpr
827  *
828  * ArrayCoerceExpr represents a type coercion from one array type to another,
829  * which is implemented by applying the per-element coercion expression
830  * "elemexpr" to each element of the source array.  Within elemexpr, the
831  * source element is represented by a CaseTestExpr node.  Note that even if
832  * elemexpr is a no-op (that is, just CaseTestExpr + RelabelType), the
833  * coercion still requires some effort: we have to fix the element type OID
834  * stored in the array header.
835  * ----------------
836  */
837 
838 typedef struct ArrayCoerceExpr
839 {
840 	Expr		xpr;
841 	Expr	   *arg;			/* input expression (yields an array) */
842 	Expr	   *elemexpr;		/* expression representing per-element work */
843 	Oid			resulttype;		/* output type of coercion (an array type) */
844 	int32		resulttypmod;	/* output typmod (also element typmod) */
845 	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
846 	CoercionForm coerceformat;	/* how to display this node */
847 	int			location;		/* token location, or -1 if unknown */
848 } ArrayCoerceExpr;
849 
850 /* ----------------
851  * ConvertRowtypeExpr
852  *
853  * ConvertRowtypeExpr represents a type coercion from one composite type
854  * to another, where the source type is guaranteed to contain all the columns
855  * needed for the destination type plus possibly others; the columns need not
856  * be in the same positions, but are matched up by name.  This is primarily
857  * used to convert a whole-row value of an inheritance child table into a
858  * valid whole-row value of its parent table's rowtype.  Both resulttype
859  * and the exposed type of "arg" must be named composite types (not domains).
860  * ----------------
861  */
862 
863 typedef struct ConvertRowtypeExpr
864 {
865 	Expr		xpr;
866 	Expr	   *arg;			/* input expression */
867 	Oid			resulttype;		/* output type (always a composite type) */
868 	/* Like RowExpr, we deliberately omit a typmod and collation here */
869 	CoercionForm convertformat; /* how to display this node */
870 	int			location;		/* token location, or -1 if unknown */
871 } ConvertRowtypeExpr;
872 
873 /*----------
874  * CollateExpr - COLLATE
875  *
876  * The planner replaces CollateExpr with RelabelType during expression
877  * preprocessing, so execution never sees a CollateExpr.
878  *----------
879  */
880 typedef struct CollateExpr
881 {
882 	Expr		xpr;
883 	Expr	   *arg;			/* input expression */
884 	Oid			collOid;		/* collation's OID */
885 	int			location;		/* token location, or -1 if unknown */
886 } CollateExpr;
887 
888 /*----------
889  * CaseExpr - a CASE expression
890  *
891  * We support two distinct forms of CASE expression:
892  *		CASE WHEN boolexpr THEN expr [ WHEN boolexpr THEN expr ... ]
893  *		CASE testexpr WHEN compexpr THEN expr [ WHEN compexpr THEN expr ... ]
894  * These are distinguishable by the "arg" field being NULL in the first case
895  * and the testexpr in the second case.
896  *
897  * In the raw grammar output for the second form, the condition expressions
898  * of the WHEN clauses are just the comparison values.  Parse analysis
899  * converts these to valid boolean expressions of the form
900  *		CaseTestExpr '=' compexpr
901  * where the CaseTestExpr node is a placeholder that emits the correct
902  * value at runtime.  This structure is used so that the testexpr need be
903  * evaluated only once.  Note that after parse analysis, the condition
904  * expressions always yield boolean.
905  *
906  * Note: we can test whether a CaseExpr has been through parse analysis
907  * yet by checking whether casetype is InvalidOid or not.
908  *----------
909  */
910 typedef struct CaseExpr
911 {
912 	Expr		xpr;
913 	Oid			casetype;		/* type of expression result */
914 	Oid			casecollid;		/* OID of collation, or InvalidOid if none */
915 	Expr	   *arg;			/* implicit equality comparison argument */
916 	List	   *args;			/* the arguments (list of WHEN clauses) */
917 	Expr	   *defresult;		/* the default result (ELSE clause) */
918 	int			location;		/* token location, or -1 if unknown */
919 } CaseExpr;
920 
921 /*
922  * CaseWhen - one arm of a CASE expression
923  */
924 typedef struct CaseWhen
925 {
926 	Expr		xpr;
927 	Expr	   *expr;			/* condition expression */
928 	Expr	   *result;			/* substitution result */
929 	int			location;		/* token location, or -1 if unknown */
930 } CaseWhen;
931 
932 /*
933  * Placeholder node for the test value to be processed by a CASE expression.
934  * This is effectively like a Param, but can be implemented more simply
935  * since we need only one replacement value at a time.
936  *
937  * We also abuse this node type for some other purposes, including:
938  *	* Placeholder for the current array element value in ArrayCoerceExpr;
939  *	  see build_coercion_expression().
940  *	* Nested FieldStore/ArrayRef assignment expressions in INSERT/UPDATE;
941  *	  see transformAssignmentIndirection().
942  *
943  * The uses in CaseExpr and ArrayCoerceExpr are safe only to the extent that
944  * there is not any other CaseExpr or ArrayCoerceExpr between the value source
945  * node and its child CaseTestExpr(s).  This is true in the parse analysis
946  * output, but the planner's function-inlining logic has to be careful not to
947  * break it.
948  *
949  * The nested-assignment-expression case is safe because the only node types
950  * that can be above such CaseTestExprs are FieldStore and ArrayRef.
951  */
952 typedef struct CaseTestExpr
953 {
954 	Expr		xpr;
955 	Oid			typeId;			/* type for substituted value */
956 	int32		typeMod;		/* typemod for substituted value */
957 	Oid			collation;		/* collation for the substituted value */
958 } CaseTestExpr;
959 
960 /*
961  * ArrayExpr - an ARRAY[] expression
962  *
963  * Note: if multidims is false, the constituent expressions all yield the
964  * scalar type identified by element_typeid.  If multidims is true, the
965  * constituent expressions all yield arrays of element_typeid (ie, the same
966  * type as array_typeid); at runtime we must check for compatible subscripts.
967  */
968 typedef struct ArrayExpr
969 {
970 	Expr		xpr;
971 	Oid			array_typeid;	/* type of expression result */
972 	Oid			array_collid;	/* OID of collation, or InvalidOid if none */
973 	Oid			element_typeid; /* common type of array elements */
974 	List	   *elements;		/* the array elements or sub-arrays */
975 	bool		multidims;		/* true if elements are sub-arrays */
976 	int			location;		/* token location, or -1 if unknown */
977 } ArrayExpr;
978 
979 /*
980  * RowExpr - a ROW() expression
981  *
982  * Note: the list of fields must have a one-for-one correspondence with
983  * physical fields of the associated rowtype, although it is okay for it
984  * to be shorter than the rowtype.  That is, the N'th list element must
985  * match up with the N'th physical field.  When the N'th physical field
986  * is a dropped column (attisdropped) then the N'th list element can just
987  * be a NULL constant.  (This case can only occur for named composite types,
988  * not RECORD types, since those are built from the RowExpr itself rather
989  * than vice versa.)  It is important not to assume that length(args) is
990  * the same as the number of columns logically present in the rowtype.
991  *
992  * colnames provides field names in cases where the names can't easily be
993  * obtained otherwise.  Names *must* be provided if row_typeid is RECORDOID.
994  * If row_typeid identifies a known composite type, colnames can be NIL to
995  * indicate the type's cataloged field names apply.  Note that colnames can
996  * be non-NIL even for a composite type, and typically is when the RowExpr
997  * was created by expanding a whole-row Var.  This is so that we can retain
998  * the column alias names of the RTE that the Var referenced (which would
999  * otherwise be very difficult to extract from the parsetree).  Like the
1000  * args list, colnames is one-for-one with physical fields of the rowtype.
1001  */
1002 typedef struct RowExpr
1003 {
1004 	Expr		xpr;
1005 	List	   *args;			/* the fields */
1006 	Oid			row_typeid;		/* RECORDOID or a composite type's ID */
1007 
1008 	/*
1009 	 * row_typeid cannot be a domain over composite, only plain composite.  To
1010 	 * create a composite domain value, apply CoerceToDomain to the RowExpr.
1011 	 *
1012 	 * Note: we deliberately do NOT store a typmod.  Although a typmod will be
1013 	 * associated with specific RECORD types at runtime, it will differ for
1014 	 * different backends, and so cannot safely be stored in stored
1015 	 * parsetrees.  We must assume typmod -1 for a RowExpr node.
1016 	 *
1017 	 * We don't need to store a collation either.  The result type is
1018 	 * necessarily composite, and composite types never have a collation.
1019 	 */
1020 	CoercionForm row_format;	/* how to display this node */
1021 	List	   *colnames;		/* list of String, or NIL */
1022 	int			location;		/* token location, or -1 if unknown */
1023 } RowExpr;
1024 
1025 /*
1026  * RowCompareExpr - row-wise comparison, such as (a, b) <= (1, 2)
1027  *
1028  * We support row comparison for any operator that can be determined to
1029  * act like =, <>, <, <=, >, or >= (we determine this by looking for the
1030  * operator in btree opfamilies).  Note that the same operator name might
1031  * map to a different operator for each pair of row elements, since the
1032  * element datatypes can vary.
1033  *
1034  * A RowCompareExpr node is only generated for the < <= > >= cases;
1035  * the = and <> cases are translated to simple AND or OR combinations
1036  * of the pairwise comparisons.  However, we include = and <> in the
1037  * RowCompareType enum for the convenience of parser logic.
1038  */
1039 typedef enum RowCompareType
1040 {
1041 	/* Values of this enum are chosen to match btree strategy numbers */
1042 	ROWCOMPARE_LT = 1,			/* BTLessStrategyNumber */
1043 	ROWCOMPARE_LE = 2,			/* BTLessEqualStrategyNumber */
1044 	ROWCOMPARE_EQ = 3,			/* BTEqualStrategyNumber */
1045 	ROWCOMPARE_GE = 4,			/* BTGreaterEqualStrategyNumber */
1046 	ROWCOMPARE_GT = 5,			/* BTGreaterStrategyNumber */
1047 	ROWCOMPARE_NE = 6			/* no such btree strategy */
1048 } RowCompareType;
1049 
1050 typedef struct RowCompareExpr
1051 {
1052 	Expr		xpr;
1053 	RowCompareType rctype;		/* LT LE GE or GT, never EQ or NE */
1054 	List	   *opnos;			/* OID list of pairwise comparison ops */
1055 	List	   *opfamilies;		/* OID list of containing operator families */
1056 	List	   *inputcollids;	/* OID list of collations for comparisons */
1057 	List	   *largs;			/* the left-hand input arguments */
1058 	List	   *rargs;			/* the right-hand input arguments */
1059 } RowCompareExpr;
1060 
1061 /*
1062  * CoalesceExpr - a COALESCE expression
1063  */
1064 typedef struct CoalesceExpr
1065 {
1066 	Expr		xpr;
1067 	Oid			coalescetype;	/* type of expression result */
1068 	Oid			coalescecollid; /* OID of collation, or InvalidOid if none */
1069 	List	   *args;			/* the arguments */
1070 	int			location;		/* token location, or -1 if unknown */
1071 } CoalesceExpr;
1072 
1073 /*
1074  * MinMaxExpr - a GREATEST or LEAST function
1075  */
1076 typedef enum MinMaxOp
1077 {
1078 	IS_GREATEST,
1079 	IS_LEAST
1080 } MinMaxOp;
1081 
1082 typedef struct MinMaxExpr
1083 {
1084 	Expr		xpr;
1085 	Oid			minmaxtype;		/* common type of arguments and result */
1086 	Oid			minmaxcollid;	/* OID of collation of result */
1087 	Oid			inputcollid;	/* OID of collation that function should use */
1088 	MinMaxOp	op;				/* function to execute */
1089 	List	   *args;			/* the arguments */
1090 	int			location;		/* token location, or -1 if unknown */
1091 } MinMaxExpr;
1092 
1093 /*
1094  * SQLValueFunction - parameterless functions with special grammar productions
1095  *
1096  * The SQL standard categorizes some of these as <datetime value function>
1097  * and others as <general value specification>.  We call 'em SQLValueFunctions
1098  * for lack of a better term.  We store type and typmod of the result so that
1099  * some code doesn't need to know each function individually, and because
1100  * we would need to store typmod anyway for some of the datetime functions.
1101  * Note that currently, all variants return non-collating datatypes, so we do
1102  * not need a collation field; also, all these functions are stable.
1103  */
1104 typedef enum SQLValueFunctionOp
1105 {
1106 	SVFOP_CURRENT_DATE,
1107 	SVFOP_CURRENT_TIME,
1108 	SVFOP_CURRENT_TIME_N,
1109 	SVFOP_CURRENT_TIMESTAMP,
1110 	SVFOP_CURRENT_TIMESTAMP_N,
1111 	SVFOP_LOCALTIME,
1112 	SVFOP_LOCALTIME_N,
1113 	SVFOP_LOCALTIMESTAMP,
1114 	SVFOP_LOCALTIMESTAMP_N,
1115 	SVFOP_CURRENT_ROLE,
1116 	SVFOP_CURRENT_USER,
1117 	SVFOP_USER,
1118 	SVFOP_SESSION_USER,
1119 	SVFOP_CURRENT_CATALOG,
1120 	SVFOP_CURRENT_SCHEMA
1121 } SQLValueFunctionOp;
1122 
1123 typedef struct SQLValueFunction
1124 {
1125 	Expr		xpr;
1126 	SQLValueFunctionOp op;		/* which function this is */
1127 	Oid			type;			/* result type/typmod */
1128 	int32		typmod;
1129 	int			location;		/* token location, or -1 if unknown */
1130 } SQLValueFunction;
1131 
1132 /*
1133  * XmlExpr - various SQL/XML functions requiring special grammar productions
1134  *
1135  * 'name' carries the "NAME foo" argument (already XML-escaped).
1136  * 'named_args' and 'arg_names' represent an xml_attribute list.
1137  * 'args' carries all other arguments.
1138  *
1139  * Note: result type/typmod/collation are not stored, but can be deduced
1140  * from the XmlExprOp.  The type/typmod fields are just used for display
1141  * purposes, and are NOT necessarily the true result type of the node.
1142  */
1143 typedef enum XmlExprOp
1144 {
1145 	IS_XMLCONCAT,				/* XMLCONCAT(args) */
1146 	IS_XMLELEMENT,				/* XMLELEMENT(name, xml_attributes, args) */
1147 	IS_XMLFOREST,				/* XMLFOREST(xml_attributes) */
1148 	IS_XMLPARSE,				/* XMLPARSE(text, is_doc, preserve_ws) */
1149 	IS_XMLPI,					/* XMLPI(name [, args]) */
1150 	IS_XMLROOT,					/* XMLROOT(xml, version, standalone) */
1151 	IS_XMLSERIALIZE,			/* XMLSERIALIZE(is_document, xmlval) */
1152 	IS_DOCUMENT					/* xmlval IS DOCUMENT */
1153 } XmlExprOp;
1154 
1155 typedef enum
1156 {
1157 	XMLOPTION_DOCUMENT,
1158 	XMLOPTION_CONTENT
1159 } XmlOptionType;
1160 
1161 typedef struct XmlExpr
1162 {
1163 	Expr		xpr;
1164 	XmlExprOp	op;				/* xml function ID */
1165 	char	   *name;			/* name in xml(NAME foo ...) syntaxes */
1166 	List	   *named_args;		/* non-XML expressions for xml_attributes */
1167 	List	   *arg_names;		/* parallel list of Value strings */
1168 	List	   *args;			/* list of expressions */
1169 	XmlOptionType xmloption;	/* DOCUMENT or CONTENT */
1170 	Oid			type;			/* target type/typmod for XMLSERIALIZE */
1171 	int32		typmod;
1172 	int			location;		/* token location, or -1 if unknown */
1173 } XmlExpr;
1174 
1175 /* ----------------
1176  * NullTest
1177  *
1178  * NullTest represents the operation of testing a value for NULLness.
1179  * The appropriate test is performed and returned as a boolean Datum.
1180  *
1181  * When argisrow is false, this simply represents a test for the null value.
1182  *
1183  * When argisrow is true, the input expression must yield a rowtype, and
1184  * the node implements "row IS [NOT] NULL" per the SQL standard.  This
1185  * includes checking individual fields for NULLness when the row datum
1186  * itself isn't NULL.
1187  *
1188  * NOTE: the combination of a rowtype input and argisrow==false does NOT
1189  * correspond to the SQL notation "row IS [NOT] NULL"; instead, this case
1190  * represents the SQL notation "row IS [NOT] DISTINCT FROM NULL".
1191  * ----------------
1192  */
1193 
1194 typedef enum NullTestType
1195 {
1196 	IS_NULL, IS_NOT_NULL
1197 } NullTestType;
1198 
1199 typedef struct NullTest
1200 {
1201 	Expr		xpr;
1202 	Expr	   *arg;			/* input expression */
1203 	NullTestType nulltesttype;	/* IS NULL, IS NOT NULL */
1204 	bool		argisrow;		/* T to perform field-by-field null checks */
1205 	int			location;		/* token location, or -1 if unknown */
1206 } NullTest;
1207 
1208 /*
1209  * BooleanTest
1210  *
1211  * BooleanTest represents the operation of determining whether a boolean
1212  * is TRUE, FALSE, or UNKNOWN (ie, NULL).  All six meaningful combinations
1213  * are supported.  Note that a NULL input does *not* cause a NULL result.
1214  * The appropriate test is performed and returned as a boolean Datum.
1215  */
1216 
1217 typedef enum BoolTestType
1218 {
1219 	IS_TRUE, IS_NOT_TRUE, IS_FALSE, IS_NOT_FALSE, IS_UNKNOWN, IS_NOT_UNKNOWN
1220 } BoolTestType;
1221 
1222 typedef struct BooleanTest
1223 {
1224 	Expr		xpr;
1225 	Expr	   *arg;			/* input expression */
1226 	BoolTestType booltesttype;	/* test type */
1227 	int			location;		/* token location, or -1 if unknown */
1228 } BooleanTest;
1229 
1230 /*
1231  * CoerceToDomain
1232  *
1233  * CoerceToDomain represents the operation of coercing a value to a domain
1234  * type.  At runtime (and not before) the precise set of constraints to be
1235  * checked will be determined.  If the value passes, it is returned as the
1236  * result; if not, an error is raised.  Note that this is equivalent to
1237  * RelabelType in the scenario where no constraints are applied.
1238  */
1239 typedef struct CoerceToDomain
1240 {
1241 	Expr		xpr;
1242 	Expr	   *arg;			/* input expression */
1243 	Oid			resulttype;		/* domain type ID (result type) */
1244 	int32		resulttypmod;	/* output typmod (currently always -1) */
1245 	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
1246 	CoercionForm coercionformat;	/* how to display this node */
1247 	int			location;		/* token location, or -1 if unknown */
1248 } CoerceToDomain;
1249 
1250 /*
1251  * Placeholder node for the value to be processed by a domain's check
1252  * constraint.  This is effectively like a Param, but can be implemented more
1253  * simply since we need only one replacement value at a time.
1254  *
1255  * Note: the typeId/typeMod/collation will be set from the domain's base type,
1256  * not the domain itself.  This is because we shouldn't consider the value
1257  * to be a member of the domain if we haven't yet checked its constraints.
1258  */
1259 typedef struct CoerceToDomainValue
1260 {
1261 	Expr		xpr;
1262 	Oid			typeId;			/* type for substituted value */
1263 	int32		typeMod;		/* typemod for substituted value */
1264 	Oid			collation;		/* collation for the substituted value */
1265 	int			location;		/* token location, or -1 if unknown */
1266 } CoerceToDomainValue;
1267 
1268 /*
1269  * Placeholder node for a DEFAULT marker in an INSERT or UPDATE command.
1270  *
1271  * This is not an executable expression: it must be replaced by the actual
1272  * column default expression during rewriting.  But it is convenient to
1273  * treat it as an expression node during parsing and rewriting.
1274  */
1275 typedef struct SetToDefault
1276 {
1277 	Expr		xpr;
1278 	Oid			typeId;			/* type for substituted value */
1279 	int32		typeMod;		/* typemod for substituted value */
1280 	Oid			collation;		/* collation for the substituted value */
1281 	int			location;		/* token location, or -1 if unknown */
1282 } SetToDefault;
1283 
1284 /*
1285  * Node representing [WHERE] CURRENT OF cursor_name
1286  *
1287  * CURRENT OF is a bit like a Var, in that it carries the rangetable index
1288  * of the target relation being constrained; this aids placing the expression
1289  * correctly during planning.  We can assume however that its "levelsup" is
1290  * always zero, due to the syntactic constraints on where it can appear.
1291  *
1292  * The referenced cursor can be represented either as a hardwired string
1293  * or as a reference to a run-time parameter of type REFCURSOR.  The latter
1294  * case is for the convenience of plpgsql.
1295  */
1296 typedef struct CurrentOfExpr
1297 {
1298 	Expr		xpr;
1299 	Index		cvarno;			/* RT index of target relation */
1300 	char	   *cursor_name;	/* name of referenced cursor, or NULL */
1301 	int			cursor_param;	/* refcursor parameter number, or 0 */
1302 } CurrentOfExpr;
1303 
1304 /*
1305  * NextValueExpr - get next value from sequence
1306  *
1307  * This has the same effect as calling the nextval() function, but it does not
1308  * check permissions on the sequence.  This is used for identity columns,
1309  * where the sequence is an implicit dependency without its own permissions.
1310  */
1311 typedef struct NextValueExpr
1312 {
1313 	Expr		xpr;
1314 	Oid			seqid;
1315 	Oid			typeId;
1316 } NextValueExpr;
1317 
1318 /*
1319  * InferenceElem - an element of a unique index inference specification
1320  *
1321  * This mostly matches the structure of IndexElems, but having a dedicated
1322  * primnode allows for a clean separation between the use of index parameters
1323  * by utility commands, and this node.
1324  */
1325 typedef struct InferenceElem
1326 {
1327 	Expr		xpr;
1328 	Node	   *expr;			/* expression to infer from, or NULL */
1329 	Oid			infercollid;	/* OID of collation, or InvalidOid */
1330 	Oid			inferopclass;	/* OID of att opclass, or InvalidOid */
1331 } InferenceElem;
1332 
1333 /*--------------------
1334  * TargetEntry -
1335  *	   a target entry (used in query target lists)
1336  *
1337  * Strictly speaking, a TargetEntry isn't an expression node (since it can't
1338  * be evaluated by ExecEvalExpr).  But we treat it as one anyway, since in
1339  * very many places it's convenient to process a whole query targetlist as a
1340  * single expression tree.
1341  *
1342  * In a SELECT's targetlist, resno should always be equal to the item's
1343  * ordinal position (counting from 1).  However, in an INSERT or UPDATE
1344  * targetlist, resno represents the attribute number of the destination
1345  * column for the item; so there may be missing or out-of-order resnos.
1346  * It is even legal to have duplicated resnos; consider
1347  *		UPDATE table SET arraycol[1] = ..., arraycol[2] = ..., ...
1348  * The two meanings come together in the executor, because the planner
1349  * transforms INSERT/UPDATE tlists into a normalized form with exactly
1350  * one entry for each column of the destination table.  Before that's
1351  * happened, however, it is risky to assume that resno == position.
1352  * Generally get_tle_by_resno() should be used rather than list_nth()
1353  * to fetch tlist entries by resno, and only in SELECT should you assume
1354  * that resno is a unique identifier.
1355  *
1356  * resname is required to represent the correct column name in non-resjunk
1357  * entries of top-level SELECT targetlists, since it will be used as the
1358  * column title sent to the frontend.  In most other contexts it is only
1359  * a debugging aid, and may be wrong or even NULL.  (In particular, it may
1360  * be wrong in a tlist from a stored rule, if the referenced column has been
1361  * renamed by ALTER TABLE since the rule was made.  Also, the planner tends
1362  * to store NULL rather than look up a valid name for tlist entries in
1363  * non-toplevel plan nodes.)  In resjunk entries, resname should be either
1364  * a specific system-generated name (such as "ctid") or NULL; anything else
1365  * risks confusing ExecGetJunkAttribute!
1366  *
1367  * ressortgroupref is used in the representation of ORDER BY, GROUP BY, and
1368  * DISTINCT items.  Targetlist entries with ressortgroupref=0 are not
1369  * sort/group items.  If ressortgroupref>0, then this item is an ORDER BY,
1370  * GROUP BY, and/or DISTINCT target value.  No two entries in a targetlist
1371  * may have the same nonzero ressortgroupref --- but there is no particular
1372  * meaning to the nonzero values, except as tags.  (For example, one must
1373  * not assume that lower ressortgroupref means a more significant sort key.)
1374  * The order of the associated SortGroupClause lists determine the semantics.
1375  *
1376  * resorigtbl/resorigcol identify the source of the column, if it is a
1377  * simple reference to a column of a base table (or view).  If it is not
1378  * a simple reference, these fields are zeroes.
1379  *
1380  * If resjunk is true then the column is a working column (such as a sort key)
1381  * that should be removed from the final output of the query.  Resjunk columns
1382  * must have resnos that cannot duplicate any regular column's resno.  Also
1383  * note that there are places that assume resjunk columns come after non-junk
1384  * columns.
1385  *--------------------
1386  */
1387 typedef struct TargetEntry
1388 {
1389 	Expr		xpr;
1390 	Expr	   *expr;			/* expression to evaluate */
1391 	AttrNumber	resno;			/* attribute number (see notes above) */
1392 	char	   *resname;		/* name of the column (could be NULL) */
1393 	Index		ressortgroupref;	/* nonzero if referenced by a sort/group
1394 									 * clause */
1395 	Oid			resorigtbl;		/* OID of column's source table */
1396 	AttrNumber	resorigcol;		/* column's number in source table */
1397 	bool		resjunk;		/* set to true to eliminate the attribute from
1398 								 * final target list */
1399 } TargetEntry;
1400 
1401 
1402 /* ----------------------------------------------------------------
1403  *					node types for join trees
1404  *
1405  * The leaves of a join tree structure are RangeTblRef nodes.  Above
1406  * these, JoinExpr nodes can appear to denote a specific kind of join
1407  * or qualified join.  Also, FromExpr nodes can appear to denote an
1408  * ordinary cross-product join ("FROM foo, bar, baz WHERE ...").
1409  * FromExpr is like a JoinExpr of jointype JOIN_INNER, except that it
1410  * may have any number of child nodes, not just two.
1411  *
1412  * NOTE: the top level of a Query's jointree is always a FromExpr.
1413  * Even if the jointree contains no rels, there will be a FromExpr.
1414  *
1415  * NOTE: the qualification expressions present in JoinExpr nodes are
1416  * *in addition to* the query's main WHERE clause, which appears as the
1417  * qual of the top-level FromExpr.  The reason for associating quals with
1418  * specific nodes in the jointree is that the position of a qual is critical
1419  * when outer joins are present.  (If we enforce a qual too soon or too late,
1420  * that may cause the outer join to produce the wrong set of NULL-extended
1421  * rows.)  If all joins are inner joins then all the qual positions are
1422  * semantically interchangeable.
1423  *
1424  * NOTE: in the raw output of gram.y, a join tree contains RangeVar,
1425  * RangeSubselect, and RangeFunction nodes, which are all replaced by
1426  * RangeTblRef nodes during the parse analysis phase.  Also, the top-level
1427  * FromExpr is added during parse analysis; the grammar regards FROM and
1428  * WHERE as separate.
1429  * ----------------------------------------------------------------
1430  */
1431 
1432 /*
1433  * RangeTblRef - reference to an entry in the query's rangetable
1434  *
1435  * We could use direct pointers to the RT entries and skip having these
1436  * nodes, but multiple pointers to the same node in a querytree cause
1437  * lots of headaches, so it seems better to store an index into the RT.
1438  */
1439 typedef struct RangeTblRef
1440 {
1441 	NodeTag		type;
1442 	int			rtindex;
1443 } RangeTblRef;
1444 
1445 /*----------
1446  * JoinExpr - for SQL JOIN expressions
1447  *
1448  * isNatural, usingClause, and quals are interdependent.  The user can write
1449  * only one of NATURAL, USING(), or ON() (this is enforced by the grammar).
1450  * If he writes NATURAL then parse analysis generates the equivalent USING()
1451  * list, and from that fills in "quals" with the right equality comparisons.
1452  * If he writes USING() then "quals" is filled with equality comparisons.
1453  * If he writes ON() then only "quals" is set.  Note that NATURAL/USING
1454  * are not equivalent to ON() since they also affect the output column list.
1455  *
1456  * alias is an Alias node representing the AS alias-clause attached to the
1457  * join expression, or NULL if no clause.  NB: presence or absence of the
1458  * alias has a critical impact on semantics, because a join with an alias
1459  * restricts visibility of the tables/columns inside it.
1460  *
1461  * During parse analysis, an RTE is created for the Join, and its index
1462  * is filled into rtindex.  This RTE is present mainly so that Vars can
1463  * be created that refer to the outputs of the join.  The planner sometimes
1464  * generates JoinExprs internally; these can have rtindex = 0 if there are
1465  * no join alias variables referencing such joins.
1466  *----------
1467  */
1468 typedef struct JoinExpr
1469 {
1470 	NodeTag		type;
1471 	JoinType	jointype;		/* type of join */
1472 	bool		isNatural;		/* Natural join? Will need to shape table */
1473 	Node	   *larg;			/* left subtree */
1474 	Node	   *rarg;			/* right subtree */
1475 	List	   *usingClause;	/* USING clause, if any (list of String) */
1476 	Node	   *quals;			/* qualifiers on join, if any */
1477 	Alias	   *alias;			/* user-written alias clause, if any */
1478 	int			rtindex;		/* RT index assigned for join, or 0 */
1479 } JoinExpr;
1480 
1481 /*----------
1482  * FromExpr - represents a FROM ... WHERE ... construct
1483  *
1484  * This is both more flexible than a JoinExpr (it can have any number of
1485  * children, including zero) and less so --- we don't need to deal with
1486  * aliases and so on.  The output column set is implicitly just the union
1487  * of the outputs of the children.
1488  *----------
1489  */
1490 typedef struct FromExpr
1491 {
1492 	NodeTag		type;
1493 	List	   *fromlist;		/* List of join subtrees */
1494 	Node	   *quals;			/* qualifiers on join, if any */
1495 } FromExpr;
1496 
1497 /*----------
1498  * OnConflictExpr - represents an ON CONFLICT DO ... expression
1499  *
1500  * The optimizer requires a list of inference elements, and optionally a WHERE
1501  * clause to infer a unique index.  The unique index (or, occasionally,
1502  * indexes) inferred are used to arbitrate whether or not the alternative ON
1503  * CONFLICT path is taken.
1504  *----------
1505  */
1506 typedef struct OnConflictExpr
1507 {
1508 	NodeTag		type;
1509 	OnConflictAction action;	/* DO NOTHING or UPDATE? */
1510 
1511 	/* Arbiter */
1512 	List	   *arbiterElems;	/* unique index arbiter list (of
1513 								 * InferenceElem's) */
1514 	Node	   *arbiterWhere;	/* unique index arbiter WHERE clause */
1515 	Oid			constraint;		/* pg_constraint OID for arbiter */
1516 
1517 	/* ON CONFLICT UPDATE */
1518 	List	   *onConflictSet;	/* List of ON CONFLICT SET TargetEntrys */
1519 	Node	   *onConflictWhere;	/* qualifiers to restrict UPDATE to */
1520 	int			exclRelIndex;	/* RT index of 'excluded' relation */
1521 	List	   *exclRelTlist;	/* tlist of the EXCLUDED pseudo relation */
1522 } OnConflictExpr;
1523 
1524 #endif							/* PRIMNODES_H */
1525