1 /*-------------------------------------------------------------------------
2  *
3  * mcxt.c
4  *	  POSTGRES memory context management code.
5  *
6  * This module handles context management operations that are independent
7  * of the particular kind of context being operated on.  It calls
8  * context-type-specific operations via the function pointers in a
9  * context's MemoryContextMethods struct.
10  *
11  *
12  * Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
13  * Portions Copyright (c) 1994, Regents of the University of California
14  *
15  *
16  * IDENTIFICATION
17  *	  src/backend/utils/mmgr/mcxt.c
18  *
19  *-------------------------------------------------------------------------
20  */
21 
22 #include "postgres.h"
23 
24 #include "mb/pg_wchar.h"
25 #include "miscadmin.h"
26 #include "utils/memdebug.h"
27 #include "utils/memutils.h"
28 
29 
30 /*****************************************************************************
31  *	  GLOBAL MEMORY															 *
32  *****************************************************************************/
33 
34 /*
35  * CurrentMemoryContext
36  *		Default memory context for allocations.
37  */
38 MemoryContext CurrentMemoryContext = NULL;
39 
40 /*
41  * Standard top-level contexts. For a description of the purpose of each
42  * of these contexts, refer to src/backend/utils/mmgr/README
43  */
44 MemoryContext TopMemoryContext = NULL;
45 MemoryContext ErrorContext = NULL;
46 MemoryContext PostmasterContext = NULL;
47 MemoryContext CacheMemoryContext = NULL;
48 MemoryContext MessageContext = NULL;
49 MemoryContext TopTransactionContext = NULL;
50 MemoryContext CurTransactionContext = NULL;
51 
52 /* This is a transient link to the active portal's memory context: */
53 MemoryContext PortalContext = NULL;
54 
55 static void MemoryContextCallResetCallbacks(MemoryContext context);
56 static void MemoryContextStatsInternal(MemoryContext context, int level,
57 						   bool print, int max_children,
58 						   MemoryContextCounters *totals);
59 static void MemoryContextStatsPrint(MemoryContext context, void *passthru,
60 						const char *stats_string);
61 
62 /*
63  * You should not do memory allocations within a critical section, because
64  * an out-of-memory error will be escalated to a PANIC. To enforce that
65  * rule, the allocation functions Assert that.
66  */
67 #define AssertNotInCriticalSection(context) \
68 	Assert(CritSectionCount == 0 || (context)->allowInCritSection)
69 
70 /*****************************************************************************
71  *	  EXPORTED ROUTINES														 *
72  *****************************************************************************/
73 
74 
75 /*
76  * MemoryContextInit
77  *		Start up the memory-context subsystem.
78  *
79  * This must be called before creating contexts or allocating memory in
80  * contexts.  TopMemoryContext and ErrorContext are initialized here;
81  * other contexts must be created afterwards.
82  *
83  * In normal multi-backend operation, this is called once during
84  * postmaster startup, and not at all by individual backend startup
85  * (since the backends inherit an already-initialized context subsystem
86  * by virtue of being forked off the postmaster).  But in an EXEC_BACKEND
87  * build, each process must do this for itself.
88  *
89  * In a standalone backend this must be called during backend startup.
90  */
91 void
MemoryContextInit(void)92 MemoryContextInit(void)
93 {
94 	AssertState(TopMemoryContext == NULL);
95 
96 	/*
97 	 * First, initialize TopMemoryContext, which is the parent of all others.
98 	 */
99 	TopMemoryContext = AllocSetContextCreate((MemoryContext) NULL,
100 											 "TopMemoryContext",
101 											 ALLOCSET_DEFAULT_SIZES);
102 
103 	/*
104 	 * Not having any other place to point CurrentMemoryContext, make it point
105 	 * to TopMemoryContext.  Caller should change this soon!
106 	 */
107 	CurrentMemoryContext = TopMemoryContext;
108 
109 	/*
110 	 * Initialize ErrorContext as an AllocSetContext with slow growth rate ---
111 	 * we don't really expect much to be allocated in it. More to the point,
112 	 * require it to contain at least 8K at all times. This is the only case
113 	 * where retained memory in a context is *essential* --- we want to be
114 	 * sure ErrorContext still has some memory even if we've run out
115 	 * elsewhere! Also, allow allocations in ErrorContext within a critical
116 	 * section. Otherwise a PANIC will cause an assertion failure in the error
117 	 * reporting code, before printing out the real cause of the failure.
118 	 *
119 	 * This should be the last step in this function, as elog.c assumes memory
120 	 * management works once ErrorContext is non-null.
121 	 */
122 	ErrorContext = AllocSetContextCreate(TopMemoryContext,
123 										 "ErrorContext",
124 										 8 * 1024,
125 										 8 * 1024,
126 										 8 * 1024);
127 	MemoryContextAllowInCriticalSection(ErrorContext, true);
128 }
129 
130 /*
131  * MemoryContextReset
132  *		Release all space allocated within a context and delete all its
133  *		descendant contexts (but not the named context itself).
134  */
135 void
MemoryContextReset(MemoryContext context)136 MemoryContextReset(MemoryContext context)
137 {
138 	AssertArg(MemoryContextIsValid(context));
139 
140 	/* save a function call in common case where there are no children */
141 	if (context->firstchild != NULL)
142 		MemoryContextDeleteChildren(context);
143 
144 	/* save a function call if no pallocs since startup or last reset */
145 	if (!context->isReset)
146 		MemoryContextResetOnly(context);
147 }
148 
149 /*
150  * MemoryContextResetOnly
151  *		Release all space allocated within a context.
152  *		Nothing is done to the context's descendant contexts.
153  */
154 void
MemoryContextResetOnly(MemoryContext context)155 MemoryContextResetOnly(MemoryContext context)
156 {
157 	AssertArg(MemoryContextIsValid(context));
158 
159 	/* Nothing to do if no pallocs since startup or last reset */
160 	if (!context->isReset)
161 	{
162 		MemoryContextCallResetCallbacks(context);
163 
164 		/*
165 		 * If context->ident points into the context's memory, it will become
166 		 * a dangling pointer.  We could prevent that by setting it to NULL
167 		 * here, but that would break valid coding patterns that keep the
168 		 * ident elsewhere, e.g. in a parent context.  Another idea is to use
169 		 * MemoryContextContains(), but we don't require ident strings to be
170 		 * in separately-palloc'd chunks, so that risks false positives.  So
171 		 * for now we assume the programmer got it right.
172 		 */
173 
174 		context->methods->reset(context);
175 		context->isReset = true;
176 		VALGRIND_DESTROY_MEMPOOL(context);
177 		VALGRIND_CREATE_MEMPOOL(context, 0, false);
178 	}
179 }
180 
181 /*
182  * MemoryContextResetChildren
183  *		Release all space allocated within a context's descendants,
184  *		but don't delete the contexts themselves.  The named context
185  *		itself is not touched.
186  */
187 void
MemoryContextResetChildren(MemoryContext context)188 MemoryContextResetChildren(MemoryContext context)
189 {
190 	MemoryContext child;
191 
192 	AssertArg(MemoryContextIsValid(context));
193 
194 	for (child = context->firstchild; child != NULL; child = child->nextchild)
195 	{
196 		MemoryContextResetChildren(child);
197 		MemoryContextResetOnly(child);
198 	}
199 }
200 
201 /*
202  * MemoryContextDelete
203  *		Delete a context and its descendants, and release all space
204  *		allocated therein.
205  *
206  * The type-specific delete routine removes all storage for the context,
207  * but we have to recurse to handle the children.
208  * We must also delink the context from its parent, if it has one.
209  */
210 void
MemoryContextDelete(MemoryContext context)211 MemoryContextDelete(MemoryContext context)
212 {
213 	AssertArg(MemoryContextIsValid(context));
214 	/* We had better not be deleting TopMemoryContext ... */
215 	Assert(context != TopMemoryContext);
216 	/* And not CurrentMemoryContext, either */
217 	Assert(context != CurrentMemoryContext);
218 
219 	/* save a function call in common case where there are no children */
220 	if (context->firstchild != NULL)
221 		MemoryContextDeleteChildren(context);
222 
223 	/*
224 	 * It's not entirely clear whether 'tis better to do this before or after
225 	 * delinking the context; but an error in a callback will likely result in
226 	 * leaking the whole context (if it's not a root context) if we do it
227 	 * after, so let's do it before.
228 	 */
229 	MemoryContextCallResetCallbacks(context);
230 
231 	/*
232 	 * We delink the context from its parent before deleting it, so that if
233 	 * there's an error we won't have deleted/busted contexts still attached
234 	 * to the context tree.  Better a leak than a crash.
235 	 */
236 	MemoryContextSetParent(context, NULL);
237 
238 	/*
239 	 * Also reset the context's ident pointer, in case it points into the
240 	 * context.  This would only matter if someone tries to get stats on the
241 	 * (already unlinked) context, which is unlikely, but let's be safe.
242 	 */
243 	context->ident = NULL;
244 
245 	context->methods->delete_context(context);
246 
247 	VALGRIND_DESTROY_MEMPOOL(context);
248 }
249 
250 /*
251  * MemoryContextDeleteChildren
252  *		Delete all the descendants of the named context and release all
253  *		space allocated therein.  The named context itself is not touched.
254  */
255 void
MemoryContextDeleteChildren(MemoryContext context)256 MemoryContextDeleteChildren(MemoryContext context)
257 {
258 	AssertArg(MemoryContextIsValid(context));
259 
260 	/*
261 	 * MemoryContextDelete will delink the child from me, so just iterate as
262 	 * long as there is a child.
263 	 */
264 	while (context->firstchild != NULL)
265 		MemoryContextDelete(context->firstchild);
266 }
267 
268 /*
269  * MemoryContextRegisterResetCallback
270  *		Register a function to be called before next context reset/delete.
271  *		Such callbacks will be called in reverse order of registration.
272  *
273  * The caller is responsible for allocating a MemoryContextCallback struct
274  * to hold the info about this callback request, and for filling in the
275  * "func" and "arg" fields in the struct to show what function to call with
276  * what argument.  Typically the callback struct should be allocated within
277  * the specified context, since that means it will automatically be freed
278  * when no longer needed.
279  *
280  * There is no API for deregistering a callback once registered.  If you
281  * want it to not do anything anymore, adjust the state pointed to by its
282  * "arg" to indicate that.
283  */
284 void
MemoryContextRegisterResetCallback(MemoryContext context,MemoryContextCallback * cb)285 MemoryContextRegisterResetCallback(MemoryContext context,
286 								   MemoryContextCallback *cb)
287 {
288 	AssertArg(MemoryContextIsValid(context));
289 
290 	/* Push onto head so this will be called before older registrants. */
291 	cb->next = context->reset_cbs;
292 	context->reset_cbs = cb;
293 	/* Mark the context as non-reset (it probably is already). */
294 	context->isReset = false;
295 }
296 
297 /*
298  * MemoryContextCallResetCallbacks
299  *		Internal function to call all registered callbacks for context.
300  */
301 static void
MemoryContextCallResetCallbacks(MemoryContext context)302 MemoryContextCallResetCallbacks(MemoryContext context)
303 {
304 	MemoryContextCallback *cb;
305 
306 	/*
307 	 * We pop each callback from the list before calling.  That way, if an
308 	 * error occurs inside the callback, we won't try to call it a second time
309 	 * in the likely event that we reset or delete the context later.
310 	 */
311 	while ((cb = context->reset_cbs) != NULL)
312 	{
313 		context->reset_cbs = cb->next;
314 		cb->func(cb->arg);
315 	}
316 }
317 
318 /*
319  * MemoryContextSetIdentifier
320  *		Set the identifier string for a memory context.
321  *
322  * An identifier can be provided to help distinguish among different contexts
323  * of the same kind in memory context stats dumps.  The identifier string
324  * must live at least as long as the context it is for; typically it is
325  * allocated inside that context, so that it automatically goes away on
326  * context deletion.  Pass id = NULL to forget any old identifier.
327  */
328 void
MemoryContextSetIdentifier(MemoryContext context,const char * id)329 MemoryContextSetIdentifier(MemoryContext context, const char *id)
330 {
331 	AssertArg(MemoryContextIsValid(context));
332 	context->ident = id;
333 }
334 
335 /*
336  * MemoryContextSetParent
337  *		Change a context to belong to a new parent (or no parent).
338  *
339  * We provide this as an API function because it is sometimes useful to
340  * change a context's lifespan after creation.  For example, a context
341  * might be created underneath a transient context, filled with data,
342  * and then reparented underneath CacheMemoryContext to make it long-lived.
343  * In this way no special effort is needed to get rid of the context in case
344  * a failure occurs before its contents are completely set up.
345  *
346  * Callers often assume that this function cannot fail, so don't put any
347  * elog(ERROR) calls in it.
348  *
349  * A possible caller error is to reparent a context under itself, creating
350  * a loop in the context graph.  We assert here that context != new_parent,
351  * but checking for multi-level loops seems more trouble than it's worth.
352  */
353 void
MemoryContextSetParent(MemoryContext context,MemoryContext new_parent)354 MemoryContextSetParent(MemoryContext context, MemoryContext new_parent)
355 {
356 	AssertArg(MemoryContextIsValid(context));
357 	AssertArg(context != new_parent);
358 
359 	/* Fast path if it's got correct parent already */
360 	if (new_parent == context->parent)
361 		return;
362 
363 	/* Delink from existing parent, if any */
364 	if (context->parent)
365 	{
366 		MemoryContext parent = context->parent;
367 
368 		if (context->prevchild != NULL)
369 			context->prevchild->nextchild = context->nextchild;
370 		else
371 		{
372 			Assert(parent->firstchild == context);
373 			parent->firstchild = context->nextchild;
374 		}
375 
376 		if (context->nextchild != NULL)
377 			context->nextchild->prevchild = context->prevchild;
378 	}
379 
380 	/* And relink */
381 	if (new_parent)
382 	{
383 		AssertArg(MemoryContextIsValid(new_parent));
384 		context->parent = new_parent;
385 		context->prevchild = NULL;
386 		context->nextchild = new_parent->firstchild;
387 		if (new_parent->firstchild != NULL)
388 			new_parent->firstchild->prevchild = context;
389 		new_parent->firstchild = context;
390 	}
391 	else
392 	{
393 		context->parent = NULL;
394 		context->prevchild = NULL;
395 		context->nextchild = NULL;
396 	}
397 }
398 
399 /*
400  * MemoryContextAllowInCriticalSection
401  *		Allow/disallow allocations in this memory context within a critical
402  *		section.
403  *
404  * Normally, memory allocations are not allowed within a critical section,
405  * because a failure would lead to PANIC.  There are a few exceptions to
406  * that, like allocations related to debugging code that is not supposed to
407  * be enabled in production.  This function can be used to exempt specific
408  * memory contexts from the assertion in palloc().
409  */
410 void
MemoryContextAllowInCriticalSection(MemoryContext context,bool allow)411 MemoryContextAllowInCriticalSection(MemoryContext context, bool allow)
412 {
413 	AssertArg(MemoryContextIsValid(context));
414 
415 	context->allowInCritSection = allow;
416 }
417 
418 /*
419  * GetMemoryChunkSpace
420  *		Given a currently-allocated chunk, determine the total space
421  *		it occupies (including all memory-allocation overhead).
422  *
423  * This is useful for measuring the total space occupied by a set of
424  * allocated chunks.
425  */
426 Size
GetMemoryChunkSpace(void * pointer)427 GetMemoryChunkSpace(void *pointer)
428 {
429 	MemoryContext context = GetMemoryChunkContext(pointer);
430 
431 	return context->methods->get_chunk_space(context, pointer);
432 }
433 
434 /*
435  * MemoryContextGetParent
436  *		Get the parent context (if any) of the specified context
437  */
438 MemoryContext
MemoryContextGetParent(MemoryContext context)439 MemoryContextGetParent(MemoryContext context)
440 {
441 	AssertArg(MemoryContextIsValid(context));
442 
443 	return context->parent;
444 }
445 
446 /*
447  * MemoryContextIsEmpty
448  *		Is a memory context empty of any allocated space?
449  */
450 bool
MemoryContextIsEmpty(MemoryContext context)451 MemoryContextIsEmpty(MemoryContext context)
452 {
453 	AssertArg(MemoryContextIsValid(context));
454 
455 	/*
456 	 * For now, we consider a memory context nonempty if it has any children;
457 	 * perhaps this should be changed later.
458 	 */
459 	if (context->firstchild != NULL)
460 		return false;
461 	/* Otherwise use the type-specific inquiry */
462 	return context->methods->is_empty(context);
463 }
464 
465 /*
466  * MemoryContextStats
467  *		Print statistics about the named context and all its descendants.
468  *
469  * This is just a debugging utility, so it's not very fancy.  However, we do
470  * make some effort to summarize when the output would otherwise be very long.
471  * The statistics are sent to stderr.
472  */
473 void
MemoryContextStats(MemoryContext context)474 MemoryContextStats(MemoryContext context)
475 {
476 	/* A hard-wired limit on the number of children is usually good enough */
477 	MemoryContextStatsDetail(context, 100);
478 }
479 
480 /*
481  * MemoryContextStatsDetail
482  *
483  * Entry point for use if you want to vary the number of child contexts shown.
484  */
485 void
MemoryContextStatsDetail(MemoryContext context,int max_children)486 MemoryContextStatsDetail(MemoryContext context, int max_children)
487 {
488 	MemoryContextCounters grand_totals;
489 
490 	memset(&grand_totals, 0, sizeof(grand_totals));
491 
492 	MemoryContextStatsInternal(context, 0, true, max_children, &grand_totals);
493 
494 	fprintf(stderr,
495 			"Grand total: %zu bytes in %zd blocks; %zu free (%zd chunks); %zu used\n",
496 			grand_totals.totalspace, grand_totals.nblocks,
497 			grand_totals.freespace, grand_totals.freechunks,
498 			grand_totals.totalspace - grand_totals.freespace);
499 }
500 
501 /*
502  * MemoryContextStatsInternal
503  *		One recursion level for MemoryContextStats
504  *
505  * Print this context if print is true, but in any case accumulate counts into
506  * *totals (if given).
507  */
508 static void
MemoryContextStatsInternal(MemoryContext context,int level,bool print,int max_children,MemoryContextCounters * totals)509 MemoryContextStatsInternal(MemoryContext context, int level,
510 						   bool print, int max_children,
511 						   MemoryContextCounters *totals)
512 {
513 	MemoryContextCounters local_totals;
514 	MemoryContext child;
515 	int			ichild;
516 
517 	AssertArg(MemoryContextIsValid(context));
518 
519 	/* Examine the context itself */
520 	context->methods->stats(context,
521 							print ? MemoryContextStatsPrint : NULL,
522 							(void *) &level,
523 							totals);
524 
525 	/*
526 	 * Examine children.  If there are more than max_children of them, we do
527 	 * not print the rest explicitly, but just summarize them.
528 	 */
529 	memset(&local_totals, 0, sizeof(local_totals));
530 
531 	for (child = context->firstchild, ichild = 0;
532 		 child != NULL;
533 		 child = child->nextchild, ichild++)
534 	{
535 		if (ichild < max_children)
536 			MemoryContextStatsInternal(child, level + 1,
537 									   print, max_children,
538 									   totals);
539 		else
540 			MemoryContextStatsInternal(child, level + 1,
541 									   false, max_children,
542 									   &local_totals);
543 	}
544 
545 	/* Deal with excess children */
546 	if (ichild > max_children)
547 	{
548 		if (print)
549 		{
550 			int			i;
551 
552 			for (i = 0; i <= level; i++)
553 				fprintf(stderr, "  ");
554 			fprintf(stderr,
555 					"%d more child contexts containing %zu total in %zd blocks; %zu free (%zd chunks); %zu used\n",
556 					ichild - max_children,
557 					local_totals.totalspace,
558 					local_totals.nblocks,
559 					local_totals.freespace,
560 					local_totals.freechunks,
561 					local_totals.totalspace - local_totals.freespace);
562 		}
563 
564 		if (totals)
565 		{
566 			totals->nblocks += local_totals.nblocks;
567 			totals->freechunks += local_totals.freechunks;
568 			totals->totalspace += local_totals.totalspace;
569 			totals->freespace += local_totals.freespace;
570 		}
571 	}
572 }
573 
574 /*
575  * MemoryContextStatsPrint
576  *		Print callback used by MemoryContextStatsInternal
577  *
578  * For now, the passthru pointer just points to "int level"; later we might
579  * make that more complicated.
580  */
581 static void
MemoryContextStatsPrint(MemoryContext context,void * passthru,const char * stats_string)582 MemoryContextStatsPrint(MemoryContext context, void *passthru,
583 						const char *stats_string)
584 {
585 	int			level = *(int *) passthru;
586 	const char *name = context->name;
587 	const char *ident = context->ident;
588 	int			i;
589 
590 	/*
591 	 * It seems preferable to label dynahash contexts with just the hash table
592 	 * name.  Those are already unique enough, so the "dynahash" part isn't
593 	 * very helpful, and this way is more consistent with pre-v11 practice.
594 	 */
595 	if (ident && strcmp(name, "dynahash") == 0)
596 	{
597 		name = ident;
598 		ident = NULL;
599 	}
600 
601 	for (i = 0; i < level; i++)
602 		fprintf(stderr, "  ");
603 	fprintf(stderr, "%s: %s", name, stats_string);
604 	if (ident)
605 	{
606 		/*
607 		 * Some contexts may have very long identifiers (e.g., SQL queries).
608 		 * Arbitrarily truncate at 100 bytes, but be careful not to break
609 		 * multibyte characters.  Also, replace ASCII control characters, such
610 		 * as newlines, with spaces.
611 		 */
612 		int			idlen = strlen(ident);
613 		bool		truncated = false;
614 
615 		if (idlen > 100)
616 		{
617 			idlen = pg_mbcliplen(ident, idlen, 100);
618 			truncated = true;
619 		}
620 		fprintf(stderr, ": ");
621 		while (idlen-- > 0)
622 		{
623 			unsigned char c = *ident++;
624 
625 			if (c < ' ')
626 				c = ' ';
627 			fputc(c, stderr);
628 		}
629 		if (truncated)
630 			fprintf(stderr, "...");
631 	}
632 	fputc('\n', stderr);
633 }
634 
635 /*
636  * MemoryContextCheck
637  *		Check all chunks in the named context.
638  *
639  * This is just a debugging utility, so it's not fancy.
640  */
641 #ifdef MEMORY_CONTEXT_CHECKING
642 void
MemoryContextCheck(MemoryContext context)643 MemoryContextCheck(MemoryContext context)
644 {
645 	MemoryContext child;
646 
647 	AssertArg(MemoryContextIsValid(context));
648 
649 	context->methods->check(context);
650 	for (child = context->firstchild; child != NULL; child = child->nextchild)
651 		MemoryContextCheck(child);
652 }
653 #endif
654 
655 /*
656  * MemoryContextContains
657  *		Detect whether an allocated chunk of memory belongs to a given
658  *		context or not.
659  *
660  * Caution: this test is reliable as long as 'pointer' does point to
661  * a chunk of memory allocated from *some* context.  If 'pointer' points
662  * at memory obtained in some other way, there is a small chance of a
663  * false-positive result, since the bits right before it might look like
664  * a valid chunk header by chance.
665  */
666 bool
MemoryContextContains(MemoryContext context,void * pointer)667 MemoryContextContains(MemoryContext context, void *pointer)
668 {
669 	MemoryContext ptr_context;
670 
671 	/*
672 	 * NB: Can't use GetMemoryChunkContext() here - that performs assertions
673 	 * that aren't acceptable here since we might be passed memory not
674 	 * allocated by any memory context.
675 	 *
676 	 * Try to detect bogus pointers handed to us, poorly though we can.
677 	 * Presumably, a pointer that isn't MAXALIGNED isn't pointing at an
678 	 * allocated chunk.
679 	 */
680 	if (pointer == NULL || pointer != (void *) MAXALIGN(pointer))
681 		return false;
682 
683 	/*
684 	 * OK, it's probably safe to look at the context.
685 	 */
686 	ptr_context = *(MemoryContext *) (((char *) pointer) - sizeof(void *));
687 
688 	return ptr_context == context;
689 }
690 
691 /*
692  * MemoryContextCreate
693  *		Context-type-independent part of context creation.
694  *
695  * This is only intended to be called by context-type-specific
696  * context creation routines, not by the unwashed masses.
697  *
698  * The memory context creation procedure goes like this:
699  *	1.  Context-type-specific routine makes some initial space allocation,
700  *		including enough space for the context header.  If it fails,
701  *		it can ereport() with no damage done.
702  *	2.	Context-type-specific routine sets up all type-specific fields of
703  *		the header (those beyond MemoryContextData proper), as well as any
704  *		other management fields it needs to have a fully valid context.
705  *		Usually, failure in this step is impossible, but if it's possible
706  *		the initial space allocation should be freed before ereport'ing.
707  *	3.	Context-type-specific routine calls MemoryContextCreate() to fill in
708  *		the generic header fields and link the context into the context tree.
709  *	4.  We return to the context-type-specific routine, which finishes
710  *		up type-specific initialization.  This routine can now do things
711  *		that might fail (like allocate more memory), so long as it's
712  *		sure the node is left in a state that delete will handle.
713  *
714  * node: the as-yet-uninitialized common part of the context header node.
715  * tag: NodeTag code identifying the memory context type.
716  * methods: context-type-specific methods (usually statically allocated).
717  * parent: parent context, or NULL if this will be a top-level context.
718  * name: name of context (must be statically allocated).
719  *
720  * Context routines generally assume that MemoryContextCreate can't fail,
721  * so this can contain Assert but not elog/ereport.
722  */
723 void
MemoryContextCreate(MemoryContext node,NodeTag tag,const MemoryContextMethods * methods,MemoryContext parent,const char * name)724 MemoryContextCreate(MemoryContext node,
725 					NodeTag tag,
726 					const MemoryContextMethods *methods,
727 					MemoryContext parent,
728 					const char *name)
729 {
730 	/* Creating new memory contexts is not allowed in a critical section */
731 	Assert(CritSectionCount == 0);
732 
733 	/* Initialize all standard fields of memory context header */
734 	node->type = tag;
735 	node->isReset = true;
736 	node->methods = methods;
737 	node->parent = parent;
738 	node->firstchild = NULL;
739 	node->prevchild = NULL;
740 	node->name = name;
741 	node->ident = NULL;
742 	node->reset_cbs = NULL;
743 
744 	/* OK to link node into context tree */
745 	if (parent)
746 	{
747 		node->nextchild = parent->firstchild;
748 		if (parent->firstchild != NULL)
749 			parent->firstchild->prevchild = node;
750 		parent->firstchild = node;
751 		/* inherit allowInCritSection flag from parent */
752 		node->allowInCritSection = parent->allowInCritSection;
753 	}
754 	else
755 	{
756 		node->nextchild = NULL;
757 		node->allowInCritSection = false;
758 	}
759 
760 	VALGRIND_CREATE_MEMPOOL(node, 0, false);
761 }
762 
763 /*
764  * MemoryContextAlloc
765  *		Allocate space within the specified context.
766  *
767  * This could be turned into a macro, but we'd have to import
768  * nodes/memnodes.h into postgres.h which seems a bad idea.
769  */
770 void *
MemoryContextAlloc(MemoryContext context,Size size)771 MemoryContextAlloc(MemoryContext context, Size size)
772 {
773 	void	   *ret;
774 
775 	AssertArg(MemoryContextIsValid(context));
776 	AssertNotInCriticalSection(context);
777 
778 	if (!AllocSizeIsValid(size))
779 		elog(ERROR, "invalid memory alloc request size %zu", size);
780 
781 	context->isReset = false;
782 
783 	ret = context->methods->alloc(context, size);
784 	if (unlikely(ret == NULL))
785 	{
786 		MemoryContextStats(TopMemoryContext);
787 
788 		/*
789 		 * Here, and elsewhere in this module, we show the target context's
790 		 * "name" but not its "ident" (if any) in user-visible error messages.
791 		 * The "ident" string might contain security-sensitive data, such as
792 		 * values in SQL commands.
793 		 */
794 		ereport(ERROR,
795 				(errcode(ERRCODE_OUT_OF_MEMORY),
796 				 errmsg("out of memory"),
797 				 errdetail("Failed on request of size %zu in memory context \"%s\".",
798 						   size, context->name)));
799 	}
800 
801 	VALGRIND_MEMPOOL_ALLOC(context, ret, size);
802 
803 	return ret;
804 }
805 
806 /*
807  * MemoryContextAllocZero
808  *		Like MemoryContextAlloc, but clears allocated memory
809  *
810  *	We could just call MemoryContextAlloc then clear the memory, but this
811  *	is a very common combination, so we provide the combined operation.
812  */
813 void *
MemoryContextAllocZero(MemoryContext context,Size size)814 MemoryContextAllocZero(MemoryContext context, Size size)
815 {
816 	void	   *ret;
817 
818 	AssertArg(MemoryContextIsValid(context));
819 	AssertNotInCriticalSection(context);
820 
821 	if (!AllocSizeIsValid(size))
822 		elog(ERROR, "invalid memory alloc request size %zu", size);
823 
824 	context->isReset = false;
825 
826 	ret = context->methods->alloc(context, size);
827 	if (unlikely(ret == NULL))
828 	{
829 		MemoryContextStats(TopMemoryContext);
830 		ereport(ERROR,
831 				(errcode(ERRCODE_OUT_OF_MEMORY),
832 				 errmsg("out of memory"),
833 				 errdetail("Failed on request of size %zu in memory context \"%s\".",
834 						   size, context->name)));
835 	}
836 
837 	VALGRIND_MEMPOOL_ALLOC(context, ret, size);
838 
839 	MemSetAligned(ret, 0, size);
840 
841 	return ret;
842 }
843 
844 /*
845  * MemoryContextAllocZeroAligned
846  *		MemoryContextAllocZero where length is suitable for MemSetLoop
847  *
848  *	This might seem overly specialized, but it's not because newNode()
849  *	is so often called with compile-time-constant sizes.
850  */
851 void *
MemoryContextAllocZeroAligned(MemoryContext context,Size size)852 MemoryContextAllocZeroAligned(MemoryContext context, Size size)
853 {
854 	void	   *ret;
855 
856 	AssertArg(MemoryContextIsValid(context));
857 	AssertNotInCriticalSection(context);
858 
859 	if (!AllocSizeIsValid(size))
860 		elog(ERROR, "invalid memory alloc request size %zu", size);
861 
862 	context->isReset = false;
863 
864 	ret = context->methods->alloc(context, size);
865 	if (unlikely(ret == NULL))
866 	{
867 		MemoryContextStats(TopMemoryContext);
868 		ereport(ERROR,
869 				(errcode(ERRCODE_OUT_OF_MEMORY),
870 				 errmsg("out of memory"),
871 				 errdetail("Failed on request of size %zu in memory context \"%s\".",
872 						   size, context->name)));
873 	}
874 
875 	VALGRIND_MEMPOOL_ALLOC(context, ret, size);
876 
877 	MemSetLoop(ret, 0, size);
878 
879 	return ret;
880 }
881 
882 /*
883  * MemoryContextAllocExtended
884  *		Allocate space within the specified context using the given flags.
885  */
886 void *
MemoryContextAllocExtended(MemoryContext context,Size size,int flags)887 MemoryContextAllocExtended(MemoryContext context, Size size, int flags)
888 {
889 	void	   *ret;
890 
891 	AssertArg(MemoryContextIsValid(context));
892 	AssertNotInCriticalSection(context);
893 
894 	if (((flags & MCXT_ALLOC_HUGE) != 0 && !AllocHugeSizeIsValid(size)) ||
895 		((flags & MCXT_ALLOC_HUGE) == 0 && !AllocSizeIsValid(size)))
896 		elog(ERROR, "invalid memory alloc request size %zu", size);
897 
898 	context->isReset = false;
899 
900 	ret = context->methods->alloc(context, size);
901 	if (unlikely(ret == NULL))
902 	{
903 		if ((flags & MCXT_ALLOC_NO_OOM) == 0)
904 		{
905 			MemoryContextStats(TopMemoryContext);
906 			ereport(ERROR,
907 					(errcode(ERRCODE_OUT_OF_MEMORY),
908 					 errmsg("out of memory"),
909 					 errdetail("Failed on request of size %zu in memory context \"%s\".",
910 							   size, context->name)));
911 		}
912 		return NULL;
913 	}
914 
915 	VALGRIND_MEMPOOL_ALLOC(context, ret, size);
916 
917 	if ((flags & MCXT_ALLOC_ZERO) != 0)
918 		MemSetAligned(ret, 0, size);
919 
920 	return ret;
921 }
922 
923 void *
palloc(Size size)924 palloc(Size size)
925 {
926 	/* duplicates MemoryContextAlloc to avoid increased overhead */
927 	void	   *ret;
928 	MemoryContext context = CurrentMemoryContext;
929 
930 	AssertArg(MemoryContextIsValid(context));
931 	AssertNotInCriticalSection(context);
932 
933 	if (!AllocSizeIsValid(size))
934 		elog(ERROR, "invalid memory alloc request size %zu", size);
935 
936 	context->isReset = false;
937 
938 	ret = context->methods->alloc(context, size);
939 	if (unlikely(ret == NULL))
940 	{
941 		MemoryContextStats(TopMemoryContext);
942 		ereport(ERROR,
943 				(errcode(ERRCODE_OUT_OF_MEMORY),
944 				 errmsg("out of memory"),
945 				 errdetail("Failed on request of size %zu in memory context \"%s\".",
946 						   size, context->name)));
947 	}
948 
949 	VALGRIND_MEMPOOL_ALLOC(context, ret, size);
950 
951 	return ret;
952 }
953 
954 void *
palloc0(Size size)955 palloc0(Size size)
956 {
957 	/* duplicates MemoryContextAllocZero to avoid increased overhead */
958 	void	   *ret;
959 	MemoryContext context = CurrentMemoryContext;
960 
961 	AssertArg(MemoryContextIsValid(context));
962 	AssertNotInCriticalSection(context);
963 
964 	if (!AllocSizeIsValid(size))
965 		elog(ERROR, "invalid memory alloc request size %zu", size);
966 
967 	context->isReset = false;
968 
969 	ret = context->methods->alloc(context, size);
970 	if (unlikely(ret == NULL))
971 	{
972 		MemoryContextStats(TopMemoryContext);
973 		ereport(ERROR,
974 				(errcode(ERRCODE_OUT_OF_MEMORY),
975 				 errmsg("out of memory"),
976 				 errdetail("Failed on request of size %zu in memory context \"%s\".",
977 						   size, context->name)));
978 	}
979 
980 	VALGRIND_MEMPOOL_ALLOC(context, ret, size);
981 
982 	MemSetAligned(ret, 0, size);
983 
984 	return ret;
985 }
986 
987 void *
palloc_extended(Size size,int flags)988 palloc_extended(Size size, int flags)
989 {
990 	/* duplicates MemoryContextAllocExtended to avoid increased overhead */
991 	void	   *ret;
992 	MemoryContext context = CurrentMemoryContext;
993 
994 	AssertArg(MemoryContextIsValid(context));
995 	AssertNotInCriticalSection(context);
996 
997 	if (((flags & MCXT_ALLOC_HUGE) != 0 && !AllocHugeSizeIsValid(size)) ||
998 		((flags & MCXT_ALLOC_HUGE) == 0 && !AllocSizeIsValid(size)))
999 		elog(ERROR, "invalid memory alloc request size %zu", size);
1000 
1001 	context->isReset = false;
1002 
1003 	ret = context->methods->alloc(context, size);
1004 	if (unlikely(ret == NULL))
1005 	{
1006 		if ((flags & MCXT_ALLOC_NO_OOM) == 0)
1007 		{
1008 			MemoryContextStats(TopMemoryContext);
1009 			ereport(ERROR,
1010 					(errcode(ERRCODE_OUT_OF_MEMORY),
1011 					 errmsg("out of memory"),
1012 					 errdetail("Failed on request of size %zu in memory context \"%s\".",
1013 							   size, context->name)));
1014 		}
1015 		return NULL;
1016 	}
1017 
1018 	VALGRIND_MEMPOOL_ALLOC(context, ret, size);
1019 
1020 	if ((flags & MCXT_ALLOC_ZERO) != 0)
1021 		MemSetAligned(ret, 0, size);
1022 
1023 	return ret;
1024 }
1025 
1026 /*
1027  * pfree
1028  *		Release an allocated chunk.
1029  */
1030 void
pfree(void * pointer)1031 pfree(void *pointer)
1032 {
1033 	MemoryContext context = GetMemoryChunkContext(pointer);
1034 
1035 	context->methods->free_p(context, pointer);
1036 	VALGRIND_MEMPOOL_FREE(context, pointer);
1037 }
1038 
1039 /*
1040  * repalloc
1041  *		Adjust the size of a previously allocated chunk.
1042  */
1043 void *
repalloc(void * pointer,Size size)1044 repalloc(void *pointer, Size size)
1045 {
1046 	MemoryContext context = GetMemoryChunkContext(pointer);
1047 	void	   *ret;
1048 
1049 	if (!AllocSizeIsValid(size))
1050 		elog(ERROR, "invalid memory alloc request size %zu", size);
1051 
1052 	AssertNotInCriticalSection(context);
1053 
1054 	/* isReset must be false already */
1055 	Assert(!context->isReset);
1056 
1057 	ret = context->methods->realloc(context, pointer, size);
1058 	if (unlikely(ret == NULL))
1059 	{
1060 		MemoryContextStats(TopMemoryContext);
1061 		ereport(ERROR,
1062 				(errcode(ERRCODE_OUT_OF_MEMORY),
1063 				 errmsg("out of memory"),
1064 				 errdetail("Failed on request of size %zu in memory context \"%s\".",
1065 						   size, context->name)));
1066 	}
1067 
1068 	VALGRIND_MEMPOOL_CHANGE(context, pointer, ret, size);
1069 
1070 	return ret;
1071 }
1072 
1073 /*
1074  * MemoryContextAllocHuge
1075  *		Allocate (possibly-expansive) space within the specified context.
1076  *
1077  * See considerations in comment at MaxAllocHugeSize.
1078  */
1079 void *
MemoryContextAllocHuge(MemoryContext context,Size size)1080 MemoryContextAllocHuge(MemoryContext context, Size size)
1081 {
1082 	void	   *ret;
1083 
1084 	AssertArg(MemoryContextIsValid(context));
1085 	AssertNotInCriticalSection(context);
1086 
1087 	if (!AllocHugeSizeIsValid(size))
1088 		elog(ERROR, "invalid memory alloc request size %zu", size);
1089 
1090 	context->isReset = false;
1091 
1092 	ret = context->methods->alloc(context, size);
1093 	if (unlikely(ret == NULL))
1094 	{
1095 		MemoryContextStats(TopMemoryContext);
1096 		ereport(ERROR,
1097 				(errcode(ERRCODE_OUT_OF_MEMORY),
1098 				 errmsg("out of memory"),
1099 				 errdetail("Failed on request of size %zu in memory context \"%s\".",
1100 						   size, context->name)));
1101 	}
1102 
1103 	VALGRIND_MEMPOOL_ALLOC(context, ret, size);
1104 
1105 	return ret;
1106 }
1107 
1108 /*
1109  * repalloc_huge
1110  *		Adjust the size of a previously allocated chunk, permitting a large
1111  *		value.  The previous allocation need not have been "huge".
1112  */
1113 void *
repalloc_huge(void * pointer,Size size)1114 repalloc_huge(void *pointer, Size size)
1115 {
1116 	MemoryContext context = GetMemoryChunkContext(pointer);
1117 	void	   *ret;
1118 
1119 	if (!AllocHugeSizeIsValid(size))
1120 		elog(ERROR, "invalid memory alloc request size %zu", size);
1121 
1122 	AssertNotInCriticalSection(context);
1123 
1124 	/* isReset must be false already */
1125 	Assert(!context->isReset);
1126 
1127 	ret = context->methods->realloc(context, pointer, size);
1128 	if (unlikely(ret == NULL))
1129 	{
1130 		MemoryContextStats(TopMemoryContext);
1131 		ereport(ERROR,
1132 				(errcode(ERRCODE_OUT_OF_MEMORY),
1133 				 errmsg("out of memory"),
1134 				 errdetail("Failed on request of size %zu in memory context \"%s\".",
1135 						   size, context->name)));
1136 	}
1137 
1138 	VALGRIND_MEMPOOL_CHANGE(context, pointer, ret, size);
1139 
1140 	return ret;
1141 }
1142 
1143 /*
1144  * MemoryContextStrdup
1145  *		Like strdup(), but allocate from the specified context
1146  */
1147 char *
MemoryContextStrdup(MemoryContext context,const char * string)1148 MemoryContextStrdup(MemoryContext context, const char *string)
1149 {
1150 	char	   *nstr;
1151 	Size		len = strlen(string) + 1;
1152 
1153 	nstr = (char *) MemoryContextAlloc(context, len);
1154 
1155 	memcpy(nstr, string, len);
1156 
1157 	return nstr;
1158 }
1159 
1160 char *
pstrdup(const char * in)1161 pstrdup(const char *in)
1162 {
1163 	return MemoryContextStrdup(CurrentMemoryContext, in);
1164 }
1165 
1166 /*
1167  * pnstrdup
1168  *		Like pstrdup(), but append null byte to a
1169  *		not-necessarily-null-terminated input string.
1170  */
1171 char *
pnstrdup(const char * in,Size len)1172 pnstrdup(const char *in, Size len)
1173 {
1174 	char	   *out;
1175 
1176 	len = strnlen(in, len);
1177 
1178 	out = palloc(len + 1);
1179 	memcpy(out, in, len);
1180 	out[len] = '\0';
1181 
1182 	return out;
1183 }
1184 
1185 /*
1186  * Make copy of string with all trailing newline characters removed.
1187  */
1188 char *
pchomp(const char * in)1189 pchomp(const char *in)
1190 {
1191 	size_t		n;
1192 
1193 	n = strlen(in);
1194 	while (n > 0 && in[n - 1] == '\n')
1195 		n--;
1196 	return pnstrdup(in, n);
1197 }
1198