1 /*-------------------------------------------------------------------------
2  *
3  * int128.h
4  *	  Roll-our-own 128-bit integer arithmetic.
5  *
6  * We make use of the native int128 type if there is one, otherwise
7  * implement things the hard way based on two int64 halves.
8  *
9  * See src/tools/testint128.c for a simple test harness for this file.
10  *
11  * Copyright (c) 2017-2018, PostgreSQL Global Development Group
12  *
13  * src/include/common/int128.h
14  *
15  *-------------------------------------------------------------------------
16  */
17 #ifndef INT128_H
18 #define INT128_H
19 
20 /*
21  * For testing purposes, use of native int128 can be switched on/off by
22  * predefining USE_NATIVE_INT128.
23  */
24 #ifndef USE_NATIVE_INT128
25 #ifdef HAVE_INT128
26 #define USE_NATIVE_INT128 1
27 #else
28 #define USE_NATIVE_INT128 0
29 #endif
30 #endif
31 
32 
33 #if USE_NATIVE_INT128
34 
35 typedef int128 INT128;
36 
37 /*
38  * Add an unsigned int64 value into an INT128 variable.
39  */
40 static inline void
int128_add_uint64(INT128 * i128,uint64 v)41 int128_add_uint64(INT128 *i128, uint64 v)
42 {
43 	*i128 += v;
44 }
45 
46 /*
47  * Add a signed int64 value into an INT128 variable.
48  */
49 static inline void
int128_add_int64(INT128 * i128,int64 v)50 int128_add_int64(INT128 *i128, int64 v)
51 {
52 	*i128 += v;
53 }
54 
55 /*
56  * Add the 128-bit product of two int64 values into an INT128 variable.
57  *
58  * XXX with a stupid compiler, this could actually be less efficient than
59  * the other implementation; maybe we should do it by hand always?
60  */
61 static inline void
int128_add_int64_mul_int64(INT128 * i128,int64 x,int64 y)62 int128_add_int64_mul_int64(INT128 *i128, int64 x, int64 y)
63 {
64 	*i128 += (int128) x * (int128) y;
65 }
66 
67 /*
68  * Compare two INT128 values, return -1, 0, or +1.
69  */
70 static inline int
int128_compare(INT128 x,INT128 y)71 int128_compare(INT128 x, INT128 y)
72 {
73 	if (x < y)
74 		return -1;
75 	if (x > y)
76 		return 1;
77 	return 0;
78 }
79 
80 /*
81  * Widen int64 to INT128.
82  */
83 static inline INT128
int64_to_int128(int64 v)84 int64_to_int128(int64 v)
85 {
86 	return (INT128) v;
87 }
88 
89 /*
90  * Convert INT128 to int64 (losing any high-order bits).
91  * This also works fine for casting down to uint64.
92  */
93 static inline int64
int128_to_int64(INT128 val)94 int128_to_int64(INT128 val)
95 {
96 	return (int64) val;
97 }
98 
99 #else							/* !USE_NATIVE_INT128 */
100 
101 /*
102  * We lay out the INT128 structure with the same content and byte ordering
103  * that a native int128 type would (probably) have.  This makes no difference
104  * for ordinary use of INT128, but allows union'ing INT128 with int128 for
105  * testing purposes.
106  */
107 typedef struct
108 {
109 #ifdef WORDS_BIGENDIAN
110 	int64		hi;				/* most significant 64 bits, including sign */
111 	uint64		lo;				/* least significant 64 bits, without sign */
112 #else
113 	uint64		lo;				/* least significant 64 bits, without sign */
114 	int64		hi;				/* most significant 64 bits, including sign */
115 #endif
116 } INT128;
117 
118 /*
119  * Add an unsigned int64 value into an INT128 variable.
120  */
121 static inline void
int128_add_uint64(INT128 * i128,uint64 v)122 int128_add_uint64(INT128 *i128, uint64 v)
123 {
124 	/*
125 	 * First add the value to the .lo part, then check to see if a carry needs
126 	 * to be propagated into the .hi part.  A carry is needed if both inputs
127 	 * have high bits set, or if just one input has high bit set while the new
128 	 * .lo part doesn't.  Remember that .lo part is unsigned; we cast to
129 	 * signed here just as a cheap way to check the high bit.
130 	 */
131 	uint64		oldlo = i128->lo;
132 
133 	i128->lo += v;
134 	if (((int64) v < 0 && (int64) oldlo < 0) ||
135 		(((int64) v < 0 || (int64) oldlo < 0) && (int64) i128->lo >= 0))
136 		i128->hi++;
137 }
138 
139 /*
140  * Add a signed int64 value into an INT128 variable.
141  */
142 static inline void
int128_add_int64(INT128 * i128,int64 v)143 int128_add_int64(INT128 *i128, int64 v)
144 {
145 	/*
146 	 * This is much like the above except that the carry logic differs for
147 	 * negative v.  Ordinarily we'd need to subtract 1 from the .hi part
148 	 * (corresponding to adding the sign-extended bits of v to it); but if
149 	 * there is a carry out of the .lo part, that cancels and we do nothing.
150 	 */
151 	uint64		oldlo = i128->lo;
152 
153 	i128->lo += v;
154 	if (v >= 0)
155 	{
156 		if ((int64) oldlo < 0 && (int64) i128->lo >= 0)
157 			i128->hi++;
158 	}
159 	else
160 	{
161 		if (!((int64) oldlo < 0 || (int64) i128->lo >= 0))
162 			i128->hi--;
163 	}
164 }
165 
166 /*
167  * INT64_AU32 extracts the most significant 32 bits of int64 as int64, while
168  * INT64_AL32 extracts the least significant 32 bits as uint64.
169  */
170 #define INT64_AU32(i64) ((i64) >> 32)
171 #define INT64_AL32(i64) ((i64) & UINT64CONST(0xFFFFFFFF))
172 
173 /*
174  * Add the 128-bit product of two int64 values into an INT128 variable.
175  */
176 static inline void
int128_add_int64_mul_int64(INT128 * i128,int64 x,int64 y)177 int128_add_int64_mul_int64(INT128 *i128, int64 x, int64 y)
178 {
179 	/* INT64_AU32 must use arithmetic right shift */
180 	StaticAssertStmt(((int64) -1 >> 1) == (int64) -1,
181 					 "arithmetic right shift is needed");
182 
183 	/*----------
184 	 * Form the 128-bit product x * y using 64-bit arithmetic.
185 	 * Considering each 64-bit input as having 32-bit high and low parts,
186 	 * we can compute
187 	 *
188 	 *	 x * y = ((x.hi << 32) + x.lo) * (((y.hi << 32) + y.lo)
189 	 *		   = (x.hi * y.hi) << 64 +
190 	 *			 (x.hi * y.lo) << 32 +
191 	 *			 (x.lo * y.hi) << 32 +
192 	 *			 x.lo * y.lo
193 	 *
194 	 * Each individual product is of 32-bit terms so it won't overflow when
195 	 * computed in 64-bit arithmetic.  Then we just have to shift it to the
196 	 * correct position while adding into the 128-bit result.  We must also
197 	 * keep in mind that the "lo" parts must be treated as unsigned.
198 	 *----------
199 	 */
200 
201 	/* No need to work hard if product must be zero */
202 	if (x != 0 && y != 0)
203 	{
204 		int64		x_u32 = INT64_AU32(x);
205 		uint64		x_l32 = INT64_AL32(x);
206 		int64		y_u32 = INT64_AU32(y);
207 		uint64		y_l32 = INT64_AL32(y);
208 		int64		tmp;
209 
210 		/* the first term */
211 		i128->hi += x_u32 * y_u32;
212 
213 		/* the second term: sign-extend it only if x is negative */
214 		tmp = x_u32 * y_l32;
215 		if (x < 0)
216 			i128->hi += INT64_AU32(tmp);
217 		else
218 			i128->hi += ((uint64) tmp) >> 32;
219 		int128_add_uint64(i128, ((uint64) INT64_AL32(tmp)) << 32);
220 
221 		/* the third term: sign-extend it only if y is negative */
222 		tmp = x_l32 * y_u32;
223 		if (y < 0)
224 			i128->hi += INT64_AU32(tmp);
225 		else
226 			i128->hi += ((uint64) tmp) >> 32;
227 		int128_add_uint64(i128, ((uint64) INT64_AL32(tmp)) << 32);
228 
229 		/* the fourth term: always unsigned */
230 		int128_add_uint64(i128, x_l32 * y_l32);
231 	}
232 }
233 
234 /*
235  * Compare two INT128 values, return -1, 0, or +1.
236  */
237 static inline int
int128_compare(INT128 x,INT128 y)238 int128_compare(INT128 x, INT128 y)
239 {
240 	if (x.hi < y.hi)
241 		return -1;
242 	if (x.hi > y.hi)
243 		return 1;
244 	if (x.lo < y.lo)
245 		return -1;
246 	if (x.lo > y.lo)
247 		return 1;
248 	return 0;
249 }
250 
251 /*
252  * Widen int64 to INT128.
253  */
254 static inline INT128
int64_to_int128(int64 v)255 int64_to_int128(int64 v)
256 {
257 	INT128		val;
258 
259 	val.lo = (uint64) v;
260 	val.hi = (v < 0) ? -INT64CONST(1) : INT64CONST(0);
261 	return val;
262 }
263 
264 /*
265  * Convert INT128 to int64 (losing any high-order bits).
266  * This also works fine for casting down to uint64.
267  */
268 static inline int64
int128_to_int64(INT128 val)269 int128_to_int64(INT128 val)
270 {
271 	return (int64) val.lo;
272 }
273 
274 #endif							/* USE_NATIVE_INT128 */
275 
276 #endif							/* INT128_H */
277