1 /*-------------------------------------------------------------------------
2  *
3  * pg_stat_statements.c
4  *		Track statement execution times across a whole database cluster.
5  *
6  * Execution costs are totalled for each distinct source query, and kept in
7  * a shared hashtable.  (We track only as many distinct queries as will fit
8  * in the designated amount of shared memory.)
9  *
10  * As of Postgres 9.2, this module normalizes query entries.  Normalization
11  * is a process whereby similar queries, typically differing only in their
12  * constants (though the exact rules are somewhat more subtle than that) are
13  * recognized as equivalent, and are tracked as a single entry.  This is
14  * particularly useful for non-prepared queries.
15  *
16  * Normalization is implemented by fingerprinting queries, selectively
17  * serializing those fields of each query tree's nodes that are judged to be
18  * essential to the query.  This is referred to as a query jumble.  This is
19  * distinct from a regular serialization in that various extraneous
20  * information is ignored as irrelevant or not essential to the query, such
21  * as the collations of Vars and, most notably, the values of constants.
22  *
23  * This jumble is acquired at the end of parse analysis of each query, and
24  * a 64-bit hash of it is stored into the query's Query.queryId field.
25  * The server then copies this value around, making it available in plan
26  * tree(s) generated from the query.  The executor can then use this value
27  * to blame query costs on the proper queryId.
28  *
29  * To facilitate presenting entries to users, we create "representative" query
30  * strings in which constants are replaced with parameter symbols ($n), to
31  * make it clearer what a normalized entry can represent.  To save on shared
32  * memory, and to avoid having to truncate oversized query strings, we store
33  * these strings in a temporary external query-texts file.  Offsets into this
34  * file are kept in shared memory.
35  *
36  * Note about locking issues: to create or delete an entry in the shared
37  * hashtable, one must hold pgss->lock exclusively.  Modifying any field
38  * in an entry except the counters requires the same.  To look up an entry,
39  * one must hold the lock shared.  To read or update the counters within
40  * an entry, one must hold the lock shared or exclusive (so the entry doesn't
41  * disappear!) and also take the entry's mutex spinlock.
42  * The shared state variable pgss->extent (the next free spot in the external
43  * query-text file) should be accessed only while holding either the
44  * pgss->mutex spinlock, or exclusive lock on pgss->lock.  We use the mutex to
45  * allow reserving file space while holding only shared lock on pgss->lock.
46  * Rewriting the entire external query-text file, eg for garbage collection,
47  * requires holding pgss->lock exclusively; this allows individual entries
48  * in the file to be read or written while holding only shared lock.
49  *
50  *
51  * Copyright (c) 2008-2018, PostgreSQL Global Development Group
52  *
53  * IDENTIFICATION
54  *	  contrib/pg_stat_statements/pg_stat_statements.c
55  *
56  *-------------------------------------------------------------------------
57  */
58 #include "postgres.h"
59 
60 #include <math.h>
61 #include <sys/stat.h>
62 #include <unistd.h>
63 
64 #include "access/hash.h"
65 #include "catalog/pg_authid.h"
66 #include "executor/instrument.h"
67 #include "funcapi.h"
68 #include "mb/pg_wchar.h"
69 #include "miscadmin.h"
70 #include "parser/analyze.h"
71 #include "parser/parsetree.h"
72 #include "parser/scanner.h"
73 #include "parser/scansup.h"
74 #include "pgstat.h"
75 #include "storage/fd.h"
76 #include "storage/ipc.h"
77 #include "storage/spin.h"
78 #include "tcop/utility.h"
79 #include "utils/acl.h"
80 #include "utils/builtins.h"
81 #include "utils/memutils.h"
82 
83 PG_MODULE_MAGIC;
84 
85 /* Location of permanent stats file (valid when database is shut down) */
86 #define PGSS_DUMP_FILE	PGSTAT_STAT_PERMANENT_DIRECTORY "/pg_stat_statements.stat"
87 
88 /*
89  * Location of external query text file.  We don't keep it in the core
90  * system's stats_temp_directory.  The core system can safely use that GUC
91  * setting, because the statistics collector temp file paths are set only once
92  * as part of changing the GUC, but pg_stat_statements has no way of avoiding
93  * race conditions.  Besides, we only expect modest, infrequent I/O for query
94  * strings, so placing the file on a faster filesystem is not compelling.
95  */
96 #define PGSS_TEXT_FILE	PG_STAT_TMP_DIR "/pgss_query_texts.stat"
97 
98 /* Magic number identifying the stats file format */
99 static const uint32 PGSS_FILE_HEADER = 0x20171004;
100 
101 /* PostgreSQL major version number, changes in which invalidate all entries */
102 static const uint32 PGSS_PG_MAJOR_VERSION = PG_VERSION_NUM / 100;
103 
104 /* XXX: Should USAGE_EXEC reflect execution time and/or buffer usage? */
105 #define USAGE_EXEC(duration)	(1.0)
106 #define USAGE_INIT				(1.0)	/* including initial planning */
107 #define ASSUMED_MEDIAN_INIT		(10.0)	/* initial assumed median usage */
108 #define ASSUMED_LENGTH_INIT		1024	/* initial assumed mean query length */
109 #define USAGE_DECREASE_FACTOR	(0.99)	/* decreased every entry_dealloc */
110 #define STICKY_DECREASE_FACTOR	(0.50)	/* factor for sticky entries */
111 #define USAGE_DEALLOC_PERCENT	5	/* free this % of entries at once */
112 
113 #define JUMBLE_SIZE				1024	/* query serialization buffer size */
114 
115 /*
116  * Extension version number, for supporting older extension versions' objects
117  */
118 typedef enum pgssVersion
119 {
120 	PGSS_V1_0 = 0,
121 	PGSS_V1_1,
122 	PGSS_V1_2,
123 	PGSS_V1_3
124 } pgssVersion;
125 
126 /*
127  * Hashtable key that defines the identity of a hashtable entry.  We separate
128  * queries by user and by database even if they are otherwise identical.
129  *
130  * Right now, this structure contains no padding.  If you add any, make sure
131  * to teach pgss_store() to zero the padding bytes.  Otherwise, things will
132  * break, because pgss_hash is created using HASH_BLOBS, and thus tag_hash
133  * is used to hash this.
134  */
135 typedef struct pgssHashKey
136 {
137 	Oid			userid;			/* user OID */
138 	Oid			dbid;			/* database OID */
139 	uint64		queryid;		/* query identifier */
140 } pgssHashKey;
141 
142 /*
143  * The actual stats counters kept within pgssEntry.
144  */
145 typedef struct Counters
146 {
147 	int64		calls;			/* # of times executed */
148 	double		total_time;		/* total execution time, in msec */
149 	double		min_time;		/* minimum execution time in msec */
150 	double		max_time;		/* maximum execution time in msec */
151 	double		mean_time;		/* mean execution time in msec */
152 	double		sum_var_time;	/* sum of variances in execution time in msec */
153 	int64		rows;			/* total # of retrieved or affected rows */
154 	int64		shared_blks_hit;	/* # of shared buffer hits */
155 	int64		shared_blks_read;	/* # of shared disk blocks read */
156 	int64		shared_blks_dirtied;	/* # of shared disk blocks dirtied */
157 	int64		shared_blks_written;	/* # of shared disk blocks written */
158 	int64		local_blks_hit; /* # of local buffer hits */
159 	int64		local_blks_read;	/* # of local disk blocks read */
160 	int64		local_blks_dirtied; /* # of local disk blocks dirtied */
161 	int64		local_blks_written; /* # of local disk blocks written */
162 	int64		temp_blks_read; /* # of temp blocks read */
163 	int64		temp_blks_written;	/* # of temp blocks written */
164 	double		blk_read_time;	/* time spent reading, in msec */
165 	double		blk_write_time; /* time spent writing, in msec */
166 	double		usage;			/* usage factor */
167 } Counters;
168 
169 /*
170  * Statistics per statement
171  *
172  * Note: in event of a failure in garbage collection of the query text file,
173  * we reset query_offset to zero and query_len to -1.  This will be seen as
174  * an invalid state by qtext_fetch().
175  */
176 typedef struct pgssEntry
177 {
178 	pgssHashKey key;			/* hash key of entry - MUST BE FIRST */
179 	Counters	counters;		/* the statistics for this query */
180 	Size		query_offset;	/* query text offset in external file */
181 	int			query_len;		/* # of valid bytes in query string, or -1 */
182 	int			encoding;		/* query text encoding */
183 	slock_t		mutex;			/* protects the counters only */
184 } pgssEntry;
185 
186 /*
187  * Global shared state
188  */
189 typedef struct pgssSharedState
190 {
191 	LWLock	   *lock;			/* protects hashtable search/modification */
192 	double		cur_median_usage;	/* current median usage in hashtable */
193 	Size		mean_query_len; /* current mean entry text length */
194 	slock_t		mutex;			/* protects following fields only: */
195 	Size		extent;			/* current extent of query file */
196 	int			n_writers;		/* number of active writers to query file */
197 	int			gc_count;		/* query file garbage collection cycle count */
198 } pgssSharedState;
199 
200 /*
201  * Struct for tracking locations/lengths of constants during normalization
202  */
203 typedef struct pgssLocationLen
204 {
205 	int			location;		/* start offset in query text */
206 	int			length;			/* length in bytes, or -1 to ignore */
207 } pgssLocationLen;
208 
209 /*
210  * Working state for computing a query jumble and producing a normalized
211  * query string
212  */
213 typedef struct pgssJumbleState
214 {
215 	/* Jumble of current query tree */
216 	unsigned char *jumble;
217 
218 	/* Number of bytes used in jumble[] */
219 	Size		jumble_len;
220 
221 	/* Array of locations of constants that should be removed */
222 	pgssLocationLen *clocations;
223 
224 	/* Allocated length of clocations array */
225 	int			clocations_buf_size;
226 
227 	/* Current number of valid entries in clocations array */
228 	int			clocations_count;
229 
230 	/* highest Param id we've seen, in order to start normalization correctly */
231 	int			highest_extern_param_id;
232 } pgssJumbleState;
233 
234 /*---- Local variables ----*/
235 
236 /* Current nesting depth of ExecutorRun+ProcessUtility calls */
237 static int	nested_level = 0;
238 
239 /* Saved hook values in case of unload */
240 static shmem_startup_hook_type prev_shmem_startup_hook = NULL;
241 static post_parse_analyze_hook_type prev_post_parse_analyze_hook = NULL;
242 static ExecutorStart_hook_type prev_ExecutorStart = NULL;
243 static ExecutorRun_hook_type prev_ExecutorRun = NULL;
244 static ExecutorFinish_hook_type prev_ExecutorFinish = NULL;
245 static ExecutorEnd_hook_type prev_ExecutorEnd = NULL;
246 static ProcessUtility_hook_type prev_ProcessUtility = NULL;
247 
248 /* Links to shared memory state */
249 static pgssSharedState *pgss = NULL;
250 static HTAB *pgss_hash = NULL;
251 
252 /*---- GUC variables ----*/
253 
254 typedef enum
255 {
256 	PGSS_TRACK_NONE,			/* track no statements */
257 	PGSS_TRACK_TOP,				/* only top level statements */
258 	PGSS_TRACK_ALL				/* all statements, including nested ones */
259 }			PGSSTrackLevel;
260 
261 static const struct config_enum_entry track_options[] =
262 {
263 	{"none", PGSS_TRACK_NONE, false},
264 	{"top", PGSS_TRACK_TOP, false},
265 	{"all", PGSS_TRACK_ALL, false},
266 	{NULL, 0, false}
267 };
268 
269 static int	pgss_max;			/* max # statements to track */
270 static int	pgss_track;			/* tracking level */
271 static bool pgss_track_utility; /* whether to track utility commands */
272 static bool pgss_save;			/* whether to save stats across shutdown */
273 
274 
275 #define pgss_enabled() \
276 	(pgss_track == PGSS_TRACK_ALL || \
277 	(pgss_track == PGSS_TRACK_TOP && nested_level == 0))
278 
279 #define record_gc_qtexts() \
280 	do { \
281 		volatile pgssSharedState *s = (volatile pgssSharedState *) pgss; \
282 		SpinLockAcquire(&s->mutex); \
283 		s->gc_count++; \
284 		SpinLockRelease(&s->mutex); \
285 	} while(0)
286 
287 /*---- Function declarations ----*/
288 
289 void		_PG_init(void);
290 void		_PG_fini(void);
291 
292 PG_FUNCTION_INFO_V1(pg_stat_statements_reset);
293 PG_FUNCTION_INFO_V1(pg_stat_statements_1_2);
294 PG_FUNCTION_INFO_V1(pg_stat_statements_1_3);
295 PG_FUNCTION_INFO_V1(pg_stat_statements);
296 
297 static void pgss_shmem_startup(void);
298 static void pgss_shmem_shutdown(int code, Datum arg);
299 static void pgss_post_parse_analyze(ParseState *pstate, Query *query);
300 static void pgss_ExecutorStart(QueryDesc *queryDesc, int eflags);
301 static void pgss_ExecutorRun(QueryDesc *queryDesc,
302 				 ScanDirection direction,
303 				 uint64 count, bool execute_once);
304 static void pgss_ExecutorFinish(QueryDesc *queryDesc);
305 static void pgss_ExecutorEnd(QueryDesc *queryDesc);
306 static void pgss_ProcessUtility(PlannedStmt *pstmt, const char *queryString,
307 					ProcessUtilityContext context, ParamListInfo params,
308 					QueryEnvironment *queryEnv,
309 					DestReceiver *dest, char *completionTag);
310 static uint64 pgss_hash_string(const char *str, int len);
311 static void pgss_store(const char *query, uint64 queryId,
312 		   int query_location, int query_len,
313 		   double total_time, uint64 rows,
314 		   const BufferUsage *bufusage,
315 		   pgssJumbleState *jstate);
316 static void pg_stat_statements_internal(FunctionCallInfo fcinfo,
317 							pgssVersion api_version,
318 							bool showtext);
319 static Size pgss_memsize(void);
320 static pgssEntry *entry_alloc(pgssHashKey *key, Size query_offset, int query_len,
321 			int encoding, bool sticky);
322 static void entry_dealloc(void);
323 static bool qtext_store(const char *query, int query_len,
324 			Size *query_offset, int *gc_count);
325 static char *qtext_load_file(Size *buffer_size);
326 static char *qtext_fetch(Size query_offset, int query_len,
327 			char *buffer, Size buffer_size);
328 static bool need_gc_qtexts(void);
329 static void gc_qtexts(void);
330 static void entry_reset(void);
331 static void AppendJumble(pgssJumbleState *jstate,
332 			 const unsigned char *item, Size size);
333 static void JumbleQuery(pgssJumbleState *jstate, Query *query);
334 static void JumbleRangeTable(pgssJumbleState *jstate, List *rtable);
335 static void JumbleExpr(pgssJumbleState *jstate, Node *node);
336 static void RecordConstLocation(pgssJumbleState *jstate, int location);
337 static char *generate_normalized_query(pgssJumbleState *jstate, const char *query,
338 						  int query_loc, int *query_len_p, int encoding);
339 static void fill_in_constant_lengths(pgssJumbleState *jstate, const char *query,
340 						 int query_loc);
341 static int	comp_location(const void *a, const void *b);
342 
343 
344 /*
345  * Module load callback
346  */
347 void
348 _PG_init(void)
349 {
350 	/*
351 	 * In order to create our shared memory area, we have to be loaded via
352 	 * shared_preload_libraries.  If not, fall out without hooking into any of
353 	 * the main system.  (We don't throw error here because it seems useful to
354 	 * allow the pg_stat_statements functions to be created even when the
355 	 * module isn't active.  The functions must protect themselves against
356 	 * being called then, however.)
357 	 */
358 	if (!process_shared_preload_libraries_in_progress)
359 		return;
360 
361 	/*
362 	 * Define (or redefine) custom GUC variables.
363 	 */
364 	DefineCustomIntVariable("pg_stat_statements.max",
365 							"Sets the maximum number of statements tracked by pg_stat_statements.",
366 							NULL,
367 							&pgss_max,
368 							5000,
369 							100,
370 							INT_MAX,
371 							PGC_POSTMASTER,
372 							0,
373 							NULL,
374 							NULL,
375 							NULL);
376 
377 	DefineCustomEnumVariable("pg_stat_statements.track",
378 							 "Selects which statements are tracked by pg_stat_statements.",
379 							 NULL,
380 							 &pgss_track,
381 							 PGSS_TRACK_TOP,
382 							 track_options,
383 							 PGC_SUSET,
384 							 0,
385 							 NULL,
386 							 NULL,
387 							 NULL);
388 
389 	DefineCustomBoolVariable("pg_stat_statements.track_utility",
390 							 "Selects whether utility commands are tracked by pg_stat_statements.",
391 							 NULL,
392 							 &pgss_track_utility,
393 							 true,
394 							 PGC_SUSET,
395 							 0,
396 							 NULL,
397 							 NULL,
398 							 NULL);
399 
400 	DefineCustomBoolVariable("pg_stat_statements.save",
401 							 "Save pg_stat_statements statistics across server shutdowns.",
402 							 NULL,
403 							 &pgss_save,
404 							 true,
405 							 PGC_SIGHUP,
406 							 0,
407 							 NULL,
408 							 NULL,
409 							 NULL);
410 
411 	EmitWarningsOnPlaceholders("pg_stat_statements");
412 
413 	/*
414 	 * Request additional shared resources.  (These are no-ops if we're not in
415 	 * the postmaster process.)  We'll allocate or attach to the shared
416 	 * resources in pgss_shmem_startup().
417 	 */
418 	RequestAddinShmemSpace(pgss_memsize());
419 	RequestNamedLWLockTranche("pg_stat_statements", 1);
420 
421 	/*
422 	 * Install hooks.
423 	 */
424 	prev_shmem_startup_hook = shmem_startup_hook;
425 	shmem_startup_hook = pgss_shmem_startup;
426 	prev_post_parse_analyze_hook = post_parse_analyze_hook;
427 	post_parse_analyze_hook = pgss_post_parse_analyze;
428 	prev_ExecutorStart = ExecutorStart_hook;
429 	ExecutorStart_hook = pgss_ExecutorStart;
430 	prev_ExecutorRun = ExecutorRun_hook;
431 	ExecutorRun_hook = pgss_ExecutorRun;
432 	prev_ExecutorFinish = ExecutorFinish_hook;
433 	ExecutorFinish_hook = pgss_ExecutorFinish;
434 	prev_ExecutorEnd = ExecutorEnd_hook;
435 	ExecutorEnd_hook = pgss_ExecutorEnd;
436 	prev_ProcessUtility = ProcessUtility_hook;
437 	ProcessUtility_hook = pgss_ProcessUtility;
438 }
439 
440 /*
441  * Module unload callback
442  */
443 void
444 _PG_fini(void)
445 {
446 	/* Uninstall hooks. */
447 	shmem_startup_hook = prev_shmem_startup_hook;
448 	post_parse_analyze_hook = prev_post_parse_analyze_hook;
449 	ExecutorStart_hook = prev_ExecutorStart;
450 	ExecutorRun_hook = prev_ExecutorRun;
451 	ExecutorFinish_hook = prev_ExecutorFinish;
452 	ExecutorEnd_hook = prev_ExecutorEnd;
453 	ProcessUtility_hook = prev_ProcessUtility;
454 }
455 
456 /*
457  * shmem_startup hook: allocate or attach to shared memory,
458  * then load any pre-existing statistics from file.
459  * Also create and load the query-texts file, which is expected to exist
460  * (even if empty) while the module is enabled.
461  */
462 static void
463 pgss_shmem_startup(void)
464 {
465 	bool		found;
466 	HASHCTL		info;
467 	FILE	   *file = NULL;
468 	FILE	   *qfile = NULL;
469 	uint32		header;
470 	int32		num;
471 	int32		pgver;
472 	int32		i;
473 	int			buffer_size;
474 	char	   *buffer = NULL;
475 
476 	if (prev_shmem_startup_hook)
477 		prev_shmem_startup_hook();
478 
479 	/* reset in case this is a restart within the postmaster */
480 	pgss = NULL;
481 	pgss_hash = NULL;
482 
483 	/*
484 	 * Create or attach to the shared memory state, including hash table
485 	 */
486 	LWLockAcquire(AddinShmemInitLock, LW_EXCLUSIVE);
487 
488 	pgss = ShmemInitStruct("pg_stat_statements",
489 						   sizeof(pgssSharedState),
490 						   &found);
491 
492 	if (!found)
493 	{
494 		/* First time through ... */
495 		pgss->lock = &(GetNamedLWLockTranche("pg_stat_statements"))->lock;
496 		pgss->cur_median_usage = ASSUMED_MEDIAN_INIT;
497 		pgss->mean_query_len = ASSUMED_LENGTH_INIT;
498 		SpinLockInit(&pgss->mutex);
499 		pgss->extent = 0;
500 		pgss->n_writers = 0;
501 		pgss->gc_count = 0;
502 	}
503 
504 	memset(&info, 0, sizeof(info));
505 	info.keysize = sizeof(pgssHashKey);
506 	info.entrysize = sizeof(pgssEntry);
507 	pgss_hash = ShmemInitHash("pg_stat_statements hash",
508 							  pgss_max, pgss_max,
509 							  &info,
510 							  HASH_ELEM | HASH_BLOBS);
511 
512 	LWLockRelease(AddinShmemInitLock);
513 
514 	/*
515 	 * If we're in the postmaster (or a standalone backend...), set up a shmem
516 	 * exit hook to dump the statistics to disk.
517 	 */
518 	if (!IsUnderPostmaster)
519 		on_shmem_exit(pgss_shmem_shutdown, (Datum) 0);
520 
521 	/*
522 	 * Done if some other process already completed our initialization.
523 	 */
524 	if (found)
525 		return;
526 
527 	/*
528 	 * Note: we don't bother with locks here, because there should be no other
529 	 * processes running when this code is reached.
530 	 */
531 
532 	/* Unlink query text file possibly left over from crash */
533 	unlink(PGSS_TEXT_FILE);
534 
535 	/* Allocate new query text temp file */
536 	qfile = AllocateFile(PGSS_TEXT_FILE, PG_BINARY_W);
537 	if (qfile == NULL)
538 		goto write_error;
539 
540 	/*
541 	 * If we were told not to load old statistics, we're done.  (Note we do
542 	 * not try to unlink any old dump file in this case.  This seems a bit
543 	 * questionable but it's the historical behavior.)
544 	 */
545 	if (!pgss_save)
546 	{
547 		FreeFile(qfile);
548 		return;
549 	}
550 
551 	/*
552 	 * Attempt to load old statistics from the dump file.
553 	 */
554 	file = AllocateFile(PGSS_DUMP_FILE, PG_BINARY_R);
555 	if (file == NULL)
556 	{
557 		if (errno != ENOENT)
558 			goto read_error;
559 		/* No existing persisted stats file, so we're done */
560 		FreeFile(qfile);
561 		return;
562 	}
563 
564 	buffer_size = 2048;
565 	buffer = (char *) palloc(buffer_size);
566 
567 	if (fread(&header, sizeof(uint32), 1, file) != 1 ||
568 		fread(&pgver, sizeof(uint32), 1, file) != 1 ||
569 		fread(&num, sizeof(int32), 1, file) != 1)
570 		goto read_error;
571 
572 	if (header != PGSS_FILE_HEADER ||
573 		pgver != PGSS_PG_MAJOR_VERSION)
574 		goto data_error;
575 
576 	for (i = 0; i < num; i++)
577 	{
578 		pgssEntry	temp;
579 		pgssEntry  *entry;
580 		Size		query_offset;
581 
582 		if (fread(&temp, sizeof(pgssEntry), 1, file) != 1)
583 			goto read_error;
584 
585 		/* Encoding is the only field we can easily sanity-check */
586 		if (!PG_VALID_BE_ENCODING(temp.encoding))
587 			goto data_error;
588 
589 		/* Resize buffer as needed */
590 		if (temp.query_len >= buffer_size)
591 		{
592 			buffer_size = Max(buffer_size * 2, temp.query_len + 1);
593 			buffer = repalloc(buffer, buffer_size);
594 		}
595 
596 		if (fread(buffer, 1, temp.query_len + 1, file) != temp.query_len + 1)
597 			goto read_error;
598 
599 		/* Should have a trailing null, but let's make sure */
600 		buffer[temp.query_len] = '\0';
601 
602 		/* Skip loading "sticky" entries */
603 		if (temp.counters.calls == 0)
604 			continue;
605 
606 		/* Store the query text */
607 		query_offset = pgss->extent;
608 		if (fwrite(buffer, 1, temp.query_len + 1, qfile) != temp.query_len + 1)
609 			goto write_error;
610 		pgss->extent += temp.query_len + 1;
611 
612 		/* make the hashtable entry (discards old entries if too many) */
613 		entry = entry_alloc(&temp.key, query_offset, temp.query_len,
614 							temp.encoding,
615 							false);
616 
617 		/* copy in the actual stats */
618 		entry->counters = temp.counters;
619 	}
620 
621 	pfree(buffer);
622 	FreeFile(file);
623 	FreeFile(qfile);
624 
625 	/*
626 	 * Remove the persisted stats file so it's not included in
627 	 * backups/replication slaves, etc.  A new file will be written on next
628 	 * shutdown.
629 	 *
630 	 * Note: it's okay if the PGSS_TEXT_FILE is included in a basebackup,
631 	 * because we remove that file on startup; it acts inversely to
632 	 * PGSS_DUMP_FILE, in that it is only supposed to be around when the
633 	 * server is running, whereas PGSS_DUMP_FILE is only supposed to be around
634 	 * when the server is not running.  Leaving the file creates no danger of
635 	 * a newly restored database having a spurious record of execution costs,
636 	 * which is what we're really concerned about here.
637 	 */
638 	unlink(PGSS_DUMP_FILE);
639 
640 	return;
641 
642 read_error:
643 	ereport(LOG,
644 			(errcode_for_file_access(),
645 			 errmsg("could not read pg_stat_statement file \"%s\": %m",
646 					PGSS_DUMP_FILE)));
647 	goto fail;
648 data_error:
649 	ereport(LOG,
650 			(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
651 			 errmsg("ignoring invalid data in pg_stat_statement file \"%s\"",
652 					PGSS_DUMP_FILE)));
653 	goto fail;
654 write_error:
655 	ereport(LOG,
656 			(errcode_for_file_access(),
657 			 errmsg("could not write pg_stat_statement file \"%s\": %m",
658 					PGSS_TEXT_FILE)));
659 fail:
660 	if (buffer)
661 		pfree(buffer);
662 	if (file)
663 		FreeFile(file);
664 	if (qfile)
665 		FreeFile(qfile);
666 	/* If possible, throw away the bogus file; ignore any error */
667 	unlink(PGSS_DUMP_FILE);
668 
669 	/*
670 	 * Don't unlink PGSS_TEXT_FILE here; it should always be around while the
671 	 * server is running with pg_stat_statements enabled
672 	 */
673 }
674 
675 /*
676  * shmem_shutdown hook: Dump statistics into file.
677  *
678  * Note: we don't bother with acquiring lock, because there should be no
679  * other processes running when this is called.
680  */
681 static void
682 pgss_shmem_shutdown(int code, Datum arg)
683 {
684 	FILE	   *file;
685 	char	   *qbuffer = NULL;
686 	Size		qbuffer_size = 0;
687 	HASH_SEQ_STATUS hash_seq;
688 	int32		num_entries;
689 	pgssEntry  *entry;
690 
691 	/* Don't try to dump during a crash. */
692 	if (code)
693 		return;
694 
695 	/* Safety check ... shouldn't get here unless shmem is set up. */
696 	if (!pgss || !pgss_hash)
697 		return;
698 
699 	/* Don't dump if told not to. */
700 	if (!pgss_save)
701 		return;
702 
703 	file = AllocateFile(PGSS_DUMP_FILE ".tmp", PG_BINARY_W);
704 	if (file == NULL)
705 		goto error;
706 
707 	if (fwrite(&PGSS_FILE_HEADER, sizeof(uint32), 1, file) != 1)
708 		goto error;
709 	if (fwrite(&PGSS_PG_MAJOR_VERSION, sizeof(uint32), 1, file) != 1)
710 		goto error;
711 	num_entries = hash_get_num_entries(pgss_hash);
712 	if (fwrite(&num_entries, sizeof(int32), 1, file) != 1)
713 		goto error;
714 
715 	qbuffer = qtext_load_file(&qbuffer_size);
716 	if (qbuffer == NULL)
717 		goto error;
718 
719 	/*
720 	 * When serializing to disk, we store query texts immediately after their
721 	 * entry data.  Any orphaned query texts are thereby excluded.
722 	 */
723 	hash_seq_init(&hash_seq, pgss_hash);
724 	while ((entry = hash_seq_search(&hash_seq)) != NULL)
725 	{
726 		int			len = entry->query_len;
727 		char	   *qstr = qtext_fetch(entry->query_offset, len,
728 									   qbuffer, qbuffer_size);
729 
730 		if (qstr == NULL)
731 			continue;			/* Ignore any entries with bogus texts */
732 
733 		if (fwrite(entry, sizeof(pgssEntry), 1, file) != 1 ||
734 			fwrite(qstr, 1, len + 1, file) != len + 1)
735 		{
736 			/* note: we assume hash_seq_term won't change errno */
737 			hash_seq_term(&hash_seq);
738 			goto error;
739 		}
740 	}
741 
742 	free(qbuffer);
743 	qbuffer = NULL;
744 
745 	if (FreeFile(file))
746 	{
747 		file = NULL;
748 		goto error;
749 	}
750 
751 	/*
752 	 * Rename file into place, so we atomically replace any old one.
753 	 */
754 	(void) durable_rename(PGSS_DUMP_FILE ".tmp", PGSS_DUMP_FILE, LOG);
755 
756 	/* Unlink query-texts file; it's not needed while shutdown */
757 	unlink(PGSS_TEXT_FILE);
758 
759 	return;
760 
761 error:
762 	ereport(LOG,
763 			(errcode_for_file_access(),
764 			 errmsg("could not write pg_stat_statement file \"%s\": %m",
765 					PGSS_DUMP_FILE ".tmp")));
766 	if (qbuffer)
767 		free(qbuffer);
768 	if (file)
769 		FreeFile(file);
770 	unlink(PGSS_DUMP_FILE ".tmp");
771 	unlink(PGSS_TEXT_FILE);
772 }
773 
774 /*
775  * Post-parse-analysis hook: mark query with a queryId
776  */
777 static void
778 pgss_post_parse_analyze(ParseState *pstate, Query *query)
779 {
780 	pgssJumbleState jstate;
781 
782 	if (prev_post_parse_analyze_hook)
783 		prev_post_parse_analyze_hook(pstate, query);
784 
785 	/* Assert we didn't do this already */
786 	Assert(query->queryId == UINT64CONST(0));
787 
788 	/* Safety check... */
789 	if (!pgss || !pgss_hash)
790 		return;
791 
792 	/*
793 	 * Utility statements get queryId zero.  We do this even in cases where
794 	 * the statement contains an optimizable statement for which a queryId
795 	 * could be derived (such as EXPLAIN or DECLARE CURSOR).  For such cases,
796 	 * runtime control will first go through ProcessUtility and then the
797 	 * executor, and we don't want the executor hooks to do anything, since we
798 	 * are already measuring the statement's costs at the utility level.
799 	 */
800 	if (query->utilityStmt)
801 	{
802 		query->queryId = UINT64CONST(0);
803 		return;
804 	}
805 
806 	/* Set up workspace for query jumbling */
807 	jstate.jumble = (unsigned char *) palloc(JUMBLE_SIZE);
808 	jstate.jumble_len = 0;
809 	jstate.clocations_buf_size = 32;
810 	jstate.clocations = (pgssLocationLen *)
811 		palloc(jstate.clocations_buf_size * sizeof(pgssLocationLen));
812 	jstate.clocations_count = 0;
813 	jstate.highest_extern_param_id = 0;
814 
815 	/* Compute query ID and mark the Query node with it */
816 	JumbleQuery(&jstate, query);
817 	query->queryId =
818 		DatumGetUInt64(hash_any_extended(jstate.jumble, jstate.jumble_len, 0));
819 
820 	/*
821 	 * If we are unlucky enough to get a hash of zero, use 1 instead, to
822 	 * prevent confusion with the utility-statement case.
823 	 */
824 	if (query->queryId == UINT64CONST(0))
825 		query->queryId = UINT64CONST(1);
826 
827 	/*
828 	 * If we were able to identify any ignorable constants, we immediately
829 	 * create a hash table entry for the query, so that we can record the
830 	 * normalized form of the query string.  If there were no such constants,
831 	 * the normalized string would be the same as the query text anyway, so
832 	 * there's no need for an early entry.
833 	 */
834 	if (jstate.clocations_count > 0)
835 		pgss_store(pstate->p_sourcetext,
836 				   query->queryId,
837 				   query->stmt_location,
838 				   query->stmt_len,
839 				   0,
840 				   0,
841 				   NULL,
842 				   &jstate);
843 }
844 
845 /*
846  * ExecutorStart hook: start up tracking if needed
847  */
848 static void
849 pgss_ExecutorStart(QueryDesc *queryDesc, int eflags)
850 {
851 	if (prev_ExecutorStart)
852 		prev_ExecutorStart(queryDesc, eflags);
853 	else
854 		standard_ExecutorStart(queryDesc, eflags);
855 
856 	/*
857 	 * If query has queryId zero, don't track it.  This prevents double
858 	 * counting of optimizable statements that are directly contained in
859 	 * utility statements.
860 	 */
861 	if (pgss_enabled() && queryDesc->plannedstmt->queryId != UINT64CONST(0))
862 	{
863 		/*
864 		 * Set up to track total elapsed time in ExecutorRun.  Make sure the
865 		 * space is allocated in the per-query context so it will go away at
866 		 * ExecutorEnd.
867 		 */
868 		if (queryDesc->totaltime == NULL)
869 		{
870 			MemoryContext oldcxt;
871 
872 			oldcxt = MemoryContextSwitchTo(queryDesc->estate->es_query_cxt);
873 			queryDesc->totaltime = InstrAlloc(1, INSTRUMENT_ALL);
874 			MemoryContextSwitchTo(oldcxt);
875 		}
876 	}
877 }
878 
879 /*
880  * ExecutorRun hook: all we need do is track nesting depth
881  */
882 static void
883 pgss_ExecutorRun(QueryDesc *queryDesc, ScanDirection direction, uint64 count,
884 				 bool execute_once)
885 {
886 	nested_level++;
887 	PG_TRY();
888 	{
889 		if (prev_ExecutorRun)
890 			prev_ExecutorRun(queryDesc, direction, count, execute_once);
891 		else
892 			standard_ExecutorRun(queryDesc, direction, count, execute_once);
893 		nested_level--;
894 	}
895 	PG_CATCH();
896 	{
897 		nested_level--;
898 		PG_RE_THROW();
899 	}
900 	PG_END_TRY();
901 }
902 
903 /*
904  * ExecutorFinish hook: all we need do is track nesting depth
905  */
906 static void
907 pgss_ExecutorFinish(QueryDesc *queryDesc)
908 {
909 	nested_level++;
910 	PG_TRY();
911 	{
912 		if (prev_ExecutorFinish)
913 			prev_ExecutorFinish(queryDesc);
914 		else
915 			standard_ExecutorFinish(queryDesc);
916 		nested_level--;
917 	}
918 	PG_CATCH();
919 	{
920 		nested_level--;
921 		PG_RE_THROW();
922 	}
923 	PG_END_TRY();
924 }
925 
926 /*
927  * ExecutorEnd hook: store results if needed
928  */
929 static void
930 pgss_ExecutorEnd(QueryDesc *queryDesc)
931 {
932 	uint64		queryId = queryDesc->plannedstmt->queryId;
933 
934 	if (queryId != UINT64CONST(0) && queryDesc->totaltime && pgss_enabled())
935 	{
936 		/*
937 		 * Make sure stats accumulation is done.  (Note: it's okay if several
938 		 * levels of hook all do this.)
939 		 */
940 		InstrEndLoop(queryDesc->totaltime);
941 
942 		pgss_store(queryDesc->sourceText,
943 				   queryId,
944 				   queryDesc->plannedstmt->stmt_location,
945 				   queryDesc->plannedstmt->stmt_len,
946 				   queryDesc->totaltime->total * 1000.0,	/* convert to msec */
947 				   queryDesc->estate->es_processed,
948 				   &queryDesc->totaltime->bufusage,
949 				   NULL);
950 	}
951 
952 	if (prev_ExecutorEnd)
953 		prev_ExecutorEnd(queryDesc);
954 	else
955 		standard_ExecutorEnd(queryDesc);
956 }
957 
958 /*
959  * ProcessUtility hook
960  */
961 static void
962 pgss_ProcessUtility(PlannedStmt *pstmt, const char *queryString,
963 					ProcessUtilityContext context,
964 					ParamListInfo params, QueryEnvironment *queryEnv,
965 					DestReceiver *dest, char *completionTag)
966 {
967 	Node	   *parsetree = pstmt->utilityStmt;
968 
969 	/*
970 	 * If it's an EXECUTE statement, we don't track it and don't increment the
971 	 * nesting level.  This allows the cycles to be charged to the underlying
972 	 * PREPARE instead (by the Executor hooks), which is much more useful.
973 	 *
974 	 * We also don't track execution of PREPARE.  If we did, we would get one
975 	 * hash table entry for the PREPARE (with hash calculated from the query
976 	 * string), and then a different one with the same query string (but hash
977 	 * calculated from the query tree) would be used to accumulate costs of
978 	 * ensuing EXECUTEs.  This would be confusing, and inconsistent with other
979 	 * cases where planning time is not included at all.
980 	 *
981 	 * Likewise, we don't track execution of DEALLOCATE.
982 	 */
983 	if (pgss_track_utility && pgss_enabled() &&
984 		!IsA(parsetree, ExecuteStmt) &&
985 		!IsA(parsetree, PrepareStmt) &&
986 		!IsA(parsetree, DeallocateStmt))
987 	{
988 		instr_time	start;
989 		instr_time	duration;
990 		uint64		rows;
991 		BufferUsage bufusage_start,
992 					bufusage;
993 
994 		bufusage_start = pgBufferUsage;
995 		INSTR_TIME_SET_CURRENT(start);
996 
997 		nested_level++;
998 		PG_TRY();
999 		{
1000 			if (prev_ProcessUtility)
1001 				prev_ProcessUtility(pstmt, queryString,
1002 									context, params, queryEnv,
1003 									dest, completionTag);
1004 			else
1005 				standard_ProcessUtility(pstmt, queryString,
1006 										context, params, queryEnv,
1007 										dest, completionTag);
1008 			nested_level--;
1009 		}
1010 		PG_CATCH();
1011 		{
1012 			nested_level--;
1013 			PG_RE_THROW();
1014 		}
1015 		PG_END_TRY();
1016 
1017 		INSTR_TIME_SET_CURRENT(duration);
1018 		INSTR_TIME_SUBTRACT(duration, start);
1019 
1020 		/* parse command tag to retrieve the number of affected rows. */
1021 		if (completionTag &&
1022 			strncmp(completionTag, "COPY ", 5) == 0)
1023 			rows = pg_strtouint64(completionTag + 5, NULL, 10);
1024 		else
1025 			rows = 0;
1026 
1027 		/* calc differences of buffer counters. */
1028 		bufusage.shared_blks_hit =
1029 			pgBufferUsage.shared_blks_hit - bufusage_start.shared_blks_hit;
1030 		bufusage.shared_blks_read =
1031 			pgBufferUsage.shared_blks_read - bufusage_start.shared_blks_read;
1032 		bufusage.shared_blks_dirtied =
1033 			pgBufferUsage.shared_blks_dirtied - bufusage_start.shared_blks_dirtied;
1034 		bufusage.shared_blks_written =
1035 			pgBufferUsage.shared_blks_written - bufusage_start.shared_blks_written;
1036 		bufusage.local_blks_hit =
1037 			pgBufferUsage.local_blks_hit - bufusage_start.local_blks_hit;
1038 		bufusage.local_blks_read =
1039 			pgBufferUsage.local_blks_read - bufusage_start.local_blks_read;
1040 		bufusage.local_blks_dirtied =
1041 			pgBufferUsage.local_blks_dirtied - bufusage_start.local_blks_dirtied;
1042 		bufusage.local_blks_written =
1043 			pgBufferUsage.local_blks_written - bufusage_start.local_blks_written;
1044 		bufusage.temp_blks_read =
1045 			pgBufferUsage.temp_blks_read - bufusage_start.temp_blks_read;
1046 		bufusage.temp_blks_written =
1047 			pgBufferUsage.temp_blks_written - bufusage_start.temp_blks_written;
1048 		bufusage.blk_read_time = pgBufferUsage.blk_read_time;
1049 		INSTR_TIME_SUBTRACT(bufusage.blk_read_time, bufusage_start.blk_read_time);
1050 		bufusage.blk_write_time = pgBufferUsage.blk_write_time;
1051 		INSTR_TIME_SUBTRACT(bufusage.blk_write_time, bufusage_start.blk_write_time);
1052 
1053 		pgss_store(queryString,
1054 				   0,			/* signal that it's a utility stmt */
1055 				   pstmt->stmt_location,
1056 				   pstmt->stmt_len,
1057 				   INSTR_TIME_GET_MILLISEC(duration),
1058 				   rows,
1059 				   &bufusage,
1060 				   NULL);
1061 	}
1062 	else
1063 	{
1064 		if (prev_ProcessUtility)
1065 			prev_ProcessUtility(pstmt, queryString,
1066 								context, params, queryEnv,
1067 								dest, completionTag);
1068 		else
1069 			standard_ProcessUtility(pstmt, queryString,
1070 									context, params, queryEnv,
1071 									dest, completionTag);
1072 	}
1073 }
1074 
1075 /*
1076  * Given an arbitrarily long query string, produce a hash for the purposes of
1077  * identifying the query, without normalizing constants.  Used when hashing
1078  * utility statements.
1079  */
1080 static uint64
1081 pgss_hash_string(const char *str, int len)
1082 {
1083 	return DatumGetUInt64(hash_any_extended((const unsigned char *) str,
1084 											len, 0));
1085 }
1086 
1087 /*
1088  * Store some statistics for a statement.
1089  *
1090  * If queryId is 0 then this is a utility statement and we should compute
1091  * a suitable queryId internally.
1092  *
1093  * If jstate is not NULL then we're trying to create an entry for which
1094  * we have no statistics as yet; we just want to record the normalized
1095  * query string.  total_time, rows, bufusage are ignored in this case.
1096  */
1097 static void
1098 pgss_store(const char *query, uint64 queryId,
1099 		   int query_location, int query_len,
1100 		   double total_time, uint64 rows,
1101 		   const BufferUsage *bufusage,
1102 		   pgssJumbleState *jstate)
1103 {
1104 	pgssHashKey key;
1105 	pgssEntry  *entry;
1106 	char	   *norm_query = NULL;
1107 	int			encoding = GetDatabaseEncoding();
1108 
1109 	Assert(query != NULL);
1110 
1111 	/* Safety check... */
1112 	if (!pgss || !pgss_hash)
1113 		return;
1114 
1115 	/*
1116 	 * Confine our attention to the relevant part of the string, if the query
1117 	 * is a portion of a multi-statement source string.
1118 	 *
1119 	 * First apply starting offset, unless it's -1 (unknown).
1120 	 */
1121 	if (query_location >= 0)
1122 	{
1123 		Assert(query_location <= strlen(query));
1124 		query += query_location;
1125 		/* Length of 0 (or -1) means "rest of string" */
1126 		if (query_len <= 0)
1127 			query_len = strlen(query);
1128 		else
1129 			Assert(query_len <= strlen(query));
1130 	}
1131 	else
1132 	{
1133 		/* If query location is unknown, distrust query_len as well */
1134 		query_location = 0;
1135 		query_len = strlen(query);
1136 	}
1137 
1138 	/*
1139 	 * Discard leading and trailing whitespace, too.  Use scanner_isspace()
1140 	 * not libc's isspace(), because we want to match the lexer's behavior.
1141 	 */
1142 	while (query_len > 0 && scanner_isspace(query[0]))
1143 		query++, query_location++, query_len--;
1144 	while (query_len > 0 && scanner_isspace(query[query_len - 1]))
1145 		query_len--;
1146 
1147 	/*
1148 	 * For utility statements, we just hash the query string to get an ID.
1149 	 */
1150 	if (queryId == UINT64CONST(0))
1151 		queryId = pgss_hash_string(query, query_len);
1152 
1153 	/* Set up key for hashtable search */
1154 	key.userid = GetUserId();
1155 	key.dbid = MyDatabaseId;
1156 	key.queryid = queryId;
1157 
1158 	/* Lookup the hash table entry with shared lock. */
1159 	LWLockAcquire(pgss->lock, LW_SHARED);
1160 
1161 	entry = (pgssEntry *) hash_search(pgss_hash, &key, HASH_FIND, NULL);
1162 
1163 	/* Create new entry, if not present */
1164 	if (!entry)
1165 	{
1166 		Size		query_offset;
1167 		int			gc_count;
1168 		bool		stored;
1169 		bool		do_gc;
1170 
1171 		/*
1172 		 * Create a new, normalized query string if caller asked.  We don't
1173 		 * need to hold the lock while doing this work.  (Note: in any case,
1174 		 * it's possible that someone else creates a duplicate hashtable entry
1175 		 * in the interval where we don't hold the lock below.  That case is
1176 		 * handled by entry_alloc.)
1177 		 */
1178 		if (jstate)
1179 		{
1180 			LWLockRelease(pgss->lock);
1181 			norm_query = generate_normalized_query(jstate, query,
1182 												   query_location,
1183 												   &query_len,
1184 												   encoding);
1185 			LWLockAcquire(pgss->lock, LW_SHARED);
1186 		}
1187 
1188 		/* Append new query text to file with only shared lock held */
1189 		stored = qtext_store(norm_query ? norm_query : query, query_len,
1190 							 &query_offset, &gc_count);
1191 
1192 		/*
1193 		 * Determine whether we need to garbage collect external query texts
1194 		 * while the shared lock is still held.  This micro-optimization
1195 		 * avoids taking the time to decide this while holding exclusive lock.
1196 		 */
1197 		do_gc = need_gc_qtexts();
1198 
1199 		/* Need exclusive lock to make a new hashtable entry - promote */
1200 		LWLockRelease(pgss->lock);
1201 		LWLockAcquire(pgss->lock, LW_EXCLUSIVE);
1202 
1203 		/*
1204 		 * A garbage collection may have occurred while we weren't holding the
1205 		 * lock.  In the unlikely event that this happens, the query text we
1206 		 * stored above will have been garbage collected, so write it again.
1207 		 * This should be infrequent enough that doing it while holding
1208 		 * exclusive lock isn't a performance problem.
1209 		 */
1210 		if (!stored || pgss->gc_count != gc_count)
1211 			stored = qtext_store(norm_query ? norm_query : query, query_len,
1212 								 &query_offset, NULL);
1213 
1214 		/* If we failed to write to the text file, give up */
1215 		if (!stored)
1216 			goto done;
1217 
1218 		/* OK to create a new hashtable entry */
1219 		entry = entry_alloc(&key, query_offset, query_len, encoding,
1220 							jstate != NULL);
1221 
1222 		/* If needed, perform garbage collection while exclusive lock held */
1223 		if (do_gc)
1224 			gc_qtexts();
1225 	}
1226 
1227 	/* Increment the counts, except when jstate is not NULL */
1228 	if (!jstate)
1229 	{
1230 		/*
1231 		 * Grab the spinlock while updating the counters (see comment about
1232 		 * locking rules at the head of the file)
1233 		 */
1234 		volatile pgssEntry *e = (volatile pgssEntry *) entry;
1235 
1236 		SpinLockAcquire(&e->mutex);
1237 
1238 		/* "Unstick" entry if it was previously sticky */
1239 		if (e->counters.calls == 0)
1240 			e->counters.usage = USAGE_INIT;
1241 
1242 		e->counters.calls += 1;
1243 		e->counters.total_time += total_time;
1244 		if (e->counters.calls == 1)
1245 		{
1246 			e->counters.min_time = total_time;
1247 			e->counters.max_time = total_time;
1248 			e->counters.mean_time = total_time;
1249 		}
1250 		else
1251 		{
1252 			/*
1253 			 * Welford's method for accurately computing variance. See
1254 			 * <http://www.johndcook.com/blog/standard_deviation/>
1255 			 */
1256 			double		old_mean = e->counters.mean_time;
1257 
1258 			e->counters.mean_time +=
1259 				(total_time - old_mean) / e->counters.calls;
1260 			e->counters.sum_var_time +=
1261 				(total_time - old_mean) * (total_time - e->counters.mean_time);
1262 
1263 			/* calculate min and max time */
1264 			if (e->counters.min_time > total_time)
1265 				e->counters.min_time = total_time;
1266 			if (e->counters.max_time < total_time)
1267 				e->counters.max_time = total_time;
1268 		}
1269 		e->counters.rows += rows;
1270 		e->counters.shared_blks_hit += bufusage->shared_blks_hit;
1271 		e->counters.shared_blks_read += bufusage->shared_blks_read;
1272 		e->counters.shared_blks_dirtied += bufusage->shared_blks_dirtied;
1273 		e->counters.shared_blks_written += bufusage->shared_blks_written;
1274 		e->counters.local_blks_hit += bufusage->local_blks_hit;
1275 		e->counters.local_blks_read += bufusage->local_blks_read;
1276 		e->counters.local_blks_dirtied += bufusage->local_blks_dirtied;
1277 		e->counters.local_blks_written += bufusage->local_blks_written;
1278 		e->counters.temp_blks_read += bufusage->temp_blks_read;
1279 		e->counters.temp_blks_written += bufusage->temp_blks_written;
1280 		e->counters.blk_read_time += INSTR_TIME_GET_MILLISEC(bufusage->blk_read_time);
1281 		e->counters.blk_write_time += INSTR_TIME_GET_MILLISEC(bufusage->blk_write_time);
1282 		e->counters.usage += USAGE_EXEC(total_time);
1283 
1284 		SpinLockRelease(&e->mutex);
1285 	}
1286 
1287 done:
1288 	LWLockRelease(pgss->lock);
1289 
1290 	/* We postpone this clean-up until we're out of the lock */
1291 	if (norm_query)
1292 		pfree(norm_query);
1293 }
1294 
1295 /*
1296  * Reset all statement statistics.
1297  */
1298 Datum
1299 pg_stat_statements_reset(PG_FUNCTION_ARGS)
1300 {
1301 	if (!pgss || !pgss_hash)
1302 		ereport(ERROR,
1303 				(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
1304 				 errmsg("pg_stat_statements must be loaded via shared_preload_libraries")));
1305 	entry_reset();
1306 	PG_RETURN_VOID();
1307 }
1308 
1309 /* Number of output arguments (columns) for various API versions */
1310 #define PG_STAT_STATEMENTS_COLS_V1_0	14
1311 #define PG_STAT_STATEMENTS_COLS_V1_1	18
1312 #define PG_STAT_STATEMENTS_COLS_V1_2	19
1313 #define PG_STAT_STATEMENTS_COLS_V1_3	23
1314 #define PG_STAT_STATEMENTS_COLS			23	/* maximum of above */
1315 
1316 /*
1317  * Retrieve statement statistics.
1318  *
1319  * The SQL API of this function has changed multiple times, and will likely
1320  * do so again in future.  To support the case where a newer version of this
1321  * loadable module is being used with an old SQL declaration of the function,
1322  * we continue to support the older API versions.  For 1.2 and later, the
1323  * expected API version is identified by embedding it in the C name of the
1324  * function.  Unfortunately we weren't bright enough to do that for 1.1.
1325  */
1326 Datum
1327 pg_stat_statements_1_3(PG_FUNCTION_ARGS)
1328 {
1329 	bool		showtext = PG_GETARG_BOOL(0);
1330 
1331 	pg_stat_statements_internal(fcinfo, PGSS_V1_3, showtext);
1332 
1333 	return (Datum) 0;
1334 }
1335 
1336 Datum
1337 pg_stat_statements_1_2(PG_FUNCTION_ARGS)
1338 {
1339 	bool		showtext = PG_GETARG_BOOL(0);
1340 
1341 	pg_stat_statements_internal(fcinfo, PGSS_V1_2, showtext);
1342 
1343 	return (Datum) 0;
1344 }
1345 
1346 /*
1347  * Legacy entry point for pg_stat_statements() API versions 1.0 and 1.1.
1348  * This can be removed someday, perhaps.
1349  */
1350 Datum
1351 pg_stat_statements(PG_FUNCTION_ARGS)
1352 {
1353 	/* If it's really API 1.1, we'll figure that out below */
1354 	pg_stat_statements_internal(fcinfo, PGSS_V1_0, true);
1355 
1356 	return (Datum) 0;
1357 }
1358 
1359 /* Common code for all versions of pg_stat_statements() */
1360 static void
1361 pg_stat_statements_internal(FunctionCallInfo fcinfo,
1362 							pgssVersion api_version,
1363 							bool showtext)
1364 {
1365 	ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
1366 	TupleDesc	tupdesc;
1367 	Tuplestorestate *tupstore;
1368 	MemoryContext per_query_ctx;
1369 	MemoryContext oldcontext;
1370 	Oid			userid = GetUserId();
1371 	bool		is_allowed_role = false;
1372 	char	   *qbuffer = NULL;
1373 	Size		qbuffer_size = 0;
1374 	Size		extent = 0;
1375 	int			gc_count = 0;
1376 	HASH_SEQ_STATUS hash_seq;
1377 	pgssEntry  *entry;
1378 
1379 	/* Superusers or members of pg_read_all_stats members are allowed */
1380 	is_allowed_role = is_member_of_role(GetUserId(), DEFAULT_ROLE_READ_ALL_STATS);
1381 
1382 	/* hash table must exist already */
1383 	if (!pgss || !pgss_hash)
1384 		ereport(ERROR,
1385 				(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
1386 				 errmsg("pg_stat_statements must be loaded via shared_preload_libraries")));
1387 
1388 	/* check to see if caller supports us returning a tuplestore */
1389 	if (rsinfo == NULL || !IsA(rsinfo, ReturnSetInfo))
1390 		ereport(ERROR,
1391 				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1392 				 errmsg("set-valued function called in context that cannot accept a set")));
1393 	if (!(rsinfo->allowedModes & SFRM_Materialize))
1394 		ereport(ERROR,
1395 				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1396 				 errmsg("materialize mode required, but it is not " \
1397 						"allowed in this context")));
1398 
1399 	/* Switch into long-lived context to construct returned data structures */
1400 	per_query_ctx = rsinfo->econtext->ecxt_per_query_memory;
1401 	oldcontext = MemoryContextSwitchTo(per_query_ctx);
1402 
1403 	/* Build a tuple descriptor for our result type */
1404 	if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
1405 		elog(ERROR, "return type must be a row type");
1406 
1407 	/*
1408 	 * Check we have the expected number of output arguments.  Aside from
1409 	 * being a good safety check, we need a kluge here to detect API version
1410 	 * 1.1, which was wedged into the code in an ill-considered way.
1411 	 */
1412 	switch (tupdesc->natts)
1413 	{
1414 		case PG_STAT_STATEMENTS_COLS_V1_0:
1415 			if (api_version != PGSS_V1_0)
1416 				elog(ERROR, "incorrect number of output arguments");
1417 			break;
1418 		case PG_STAT_STATEMENTS_COLS_V1_1:
1419 			/* pg_stat_statements() should have told us 1.0 */
1420 			if (api_version != PGSS_V1_0)
1421 				elog(ERROR, "incorrect number of output arguments");
1422 			api_version = PGSS_V1_1;
1423 			break;
1424 		case PG_STAT_STATEMENTS_COLS_V1_2:
1425 			if (api_version != PGSS_V1_2)
1426 				elog(ERROR, "incorrect number of output arguments");
1427 			break;
1428 		case PG_STAT_STATEMENTS_COLS_V1_3:
1429 			if (api_version != PGSS_V1_3)
1430 				elog(ERROR, "incorrect number of output arguments");
1431 			break;
1432 		default:
1433 			elog(ERROR, "incorrect number of output arguments");
1434 	}
1435 
1436 	tupstore = tuplestore_begin_heap(true, false, work_mem);
1437 	rsinfo->returnMode = SFRM_Materialize;
1438 	rsinfo->setResult = tupstore;
1439 	rsinfo->setDesc = tupdesc;
1440 
1441 	MemoryContextSwitchTo(oldcontext);
1442 
1443 	/*
1444 	 * We'd like to load the query text file (if needed) while not holding any
1445 	 * lock on pgss->lock.  In the worst case we'll have to do this again
1446 	 * after we have the lock, but it's unlikely enough to make this a win
1447 	 * despite occasional duplicated work.  We need to reload if anybody
1448 	 * writes to the file (either a retail qtext_store(), or a garbage
1449 	 * collection) between this point and where we've gotten shared lock.  If
1450 	 * a qtext_store is actually in progress when we look, we might as well
1451 	 * skip the speculative load entirely.
1452 	 */
1453 	if (showtext)
1454 	{
1455 		int			n_writers;
1456 
1457 		/* Take the mutex so we can examine variables */
1458 		{
1459 			volatile pgssSharedState *s = (volatile pgssSharedState *) pgss;
1460 
1461 			SpinLockAcquire(&s->mutex);
1462 			extent = s->extent;
1463 			n_writers = s->n_writers;
1464 			gc_count = s->gc_count;
1465 			SpinLockRelease(&s->mutex);
1466 		}
1467 
1468 		/* No point in loading file now if there are active writers */
1469 		if (n_writers == 0)
1470 			qbuffer = qtext_load_file(&qbuffer_size);
1471 	}
1472 
1473 	/*
1474 	 * Get shared lock, load or reload the query text file if we must, and
1475 	 * iterate over the hashtable entries.
1476 	 *
1477 	 * With a large hash table, we might be holding the lock rather longer
1478 	 * than one could wish.  However, this only blocks creation of new hash
1479 	 * table entries, and the larger the hash table the less likely that is to
1480 	 * be needed.  So we can hope this is okay.  Perhaps someday we'll decide
1481 	 * we need to partition the hash table to limit the time spent holding any
1482 	 * one lock.
1483 	 */
1484 	LWLockAcquire(pgss->lock, LW_SHARED);
1485 
1486 	if (showtext)
1487 	{
1488 		/*
1489 		 * Here it is safe to examine extent and gc_count without taking the
1490 		 * mutex.  Note that although other processes might change
1491 		 * pgss->extent just after we look at it, the strings they then write
1492 		 * into the file cannot yet be referenced in the hashtable, so we
1493 		 * don't care whether we see them or not.
1494 		 *
1495 		 * If qtext_load_file fails, we just press on; we'll return NULL for
1496 		 * every query text.
1497 		 */
1498 		if (qbuffer == NULL ||
1499 			pgss->extent != extent ||
1500 			pgss->gc_count != gc_count)
1501 		{
1502 			if (qbuffer)
1503 				free(qbuffer);
1504 			qbuffer = qtext_load_file(&qbuffer_size);
1505 		}
1506 	}
1507 
1508 	hash_seq_init(&hash_seq, pgss_hash);
1509 	while ((entry = hash_seq_search(&hash_seq)) != NULL)
1510 	{
1511 		Datum		values[PG_STAT_STATEMENTS_COLS];
1512 		bool		nulls[PG_STAT_STATEMENTS_COLS];
1513 		int			i = 0;
1514 		Counters	tmp;
1515 		double		stddev;
1516 		int64		queryid = entry->key.queryid;
1517 
1518 		memset(values, 0, sizeof(values));
1519 		memset(nulls, 0, sizeof(nulls));
1520 
1521 		values[i++] = ObjectIdGetDatum(entry->key.userid);
1522 		values[i++] = ObjectIdGetDatum(entry->key.dbid);
1523 
1524 		if (is_allowed_role || entry->key.userid == userid)
1525 		{
1526 			if (api_version >= PGSS_V1_2)
1527 				values[i++] = Int64GetDatumFast(queryid);
1528 
1529 			if (showtext)
1530 			{
1531 				char	   *qstr = qtext_fetch(entry->query_offset,
1532 											   entry->query_len,
1533 											   qbuffer,
1534 											   qbuffer_size);
1535 
1536 				if (qstr)
1537 				{
1538 					char	   *enc;
1539 
1540 					enc = pg_any_to_server(qstr,
1541 										   entry->query_len,
1542 										   entry->encoding);
1543 
1544 					values[i++] = CStringGetTextDatum(enc);
1545 
1546 					if (enc != qstr)
1547 						pfree(enc);
1548 				}
1549 				else
1550 				{
1551 					/* Just return a null if we fail to find the text */
1552 					nulls[i++] = true;
1553 				}
1554 			}
1555 			else
1556 			{
1557 				/* Query text not requested */
1558 				nulls[i++] = true;
1559 			}
1560 		}
1561 		else
1562 		{
1563 			/* Don't show queryid */
1564 			if (api_version >= PGSS_V1_2)
1565 				nulls[i++] = true;
1566 
1567 			/*
1568 			 * Don't show query text, but hint as to the reason for not doing
1569 			 * so if it was requested
1570 			 */
1571 			if (showtext)
1572 				values[i++] = CStringGetTextDatum("<insufficient privilege>");
1573 			else
1574 				nulls[i++] = true;
1575 		}
1576 
1577 		/* copy counters to a local variable to keep locking time short */
1578 		{
1579 			volatile pgssEntry *e = (volatile pgssEntry *) entry;
1580 
1581 			SpinLockAcquire(&e->mutex);
1582 			tmp = e->counters;
1583 			SpinLockRelease(&e->mutex);
1584 		}
1585 
1586 		/* Skip entry if unexecuted (ie, it's a pending "sticky" entry) */
1587 		if (tmp.calls == 0)
1588 			continue;
1589 
1590 		values[i++] = Int64GetDatumFast(tmp.calls);
1591 		values[i++] = Float8GetDatumFast(tmp.total_time);
1592 		if (api_version >= PGSS_V1_3)
1593 		{
1594 			values[i++] = Float8GetDatumFast(tmp.min_time);
1595 			values[i++] = Float8GetDatumFast(tmp.max_time);
1596 			values[i++] = Float8GetDatumFast(tmp.mean_time);
1597 
1598 			/*
1599 			 * Note we are calculating the population variance here, not the
1600 			 * sample variance, as we have data for the whole population, so
1601 			 * Bessel's correction is not used, and we don't divide by
1602 			 * tmp.calls - 1.
1603 			 */
1604 			if (tmp.calls > 1)
1605 				stddev = sqrt(tmp.sum_var_time / tmp.calls);
1606 			else
1607 				stddev = 0.0;
1608 			values[i++] = Float8GetDatumFast(stddev);
1609 		}
1610 		values[i++] = Int64GetDatumFast(tmp.rows);
1611 		values[i++] = Int64GetDatumFast(tmp.shared_blks_hit);
1612 		values[i++] = Int64GetDatumFast(tmp.shared_blks_read);
1613 		if (api_version >= PGSS_V1_1)
1614 			values[i++] = Int64GetDatumFast(tmp.shared_blks_dirtied);
1615 		values[i++] = Int64GetDatumFast(tmp.shared_blks_written);
1616 		values[i++] = Int64GetDatumFast(tmp.local_blks_hit);
1617 		values[i++] = Int64GetDatumFast(tmp.local_blks_read);
1618 		if (api_version >= PGSS_V1_1)
1619 			values[i++] = Int64GetDatumFast(tmp.local_blks_dirtied);
1620 		values[i++] = Int64GetDatumFast(tmp.local_blks_written);
1621 		values[i++] = Int64GetDatumFast(tmp.temp_blks_read);
1622 		values[i++] = Int64GetDatumFast(tmp.temp_blks_written);
1623 		if (api_version >= PGSS_V1_1)
1624 		{
1625 			values[i++] = Float8GetDatumFast(tmp.blk_read_time);
1626 			values[i++] = Float8GetDatumFast(tmp.blk_write_time);
1627 		}
1628 
1629 		Assert(i == (api_version == PGSS_V1_0 ? PG_STAT_STATEMENTS_COLS_V1_0 :
1630 					 api_version == PGSS_V1_1 ? PG_STAT_STATEMENTS_COLS_V1_1 :
1631 					 api_version == PGSS_V1_2 ? PG_STAT_STATEMENTS_COLS_V1_2 :
1632 					 api_version == PGSS_V1_3 ? PG_STAT_STATEMENTS_COLS_V1_3 :
1633 					 -1 /* fail if you forget to update this assert */ ));
1634 
1635 		tuplestore_putvalues(tupstore, tupdesc, values, nulls);
1636 	}
1637 
1638 	/* clean up and return the tuplestore */
1639 	LWLockRelease(pgss->lock);
1640 
1641 	if (qbuffer)
1642 		free(qbuffer);
1643 
1644 	tuplestore_donestoring(tupstore);
1645 }
1646 
1647 /*
1648  * Estimate shared memory space needed.
1649  */
1650 static Size
1651 pgss_memsize(void)
1652 {
1653 	Size		size;
1654 
1655 	size = MAXALIGN(sizeof(pgssSharedState));
1656 	size = add_size(size, hash_estimate_size(pgss_max, sizeof(pgssEntry)));
1657 
1658 	return size;
1659 }
1660 
1661 /*
1662  * Allocate a new hashtable entry.
1663  * caller must hold an exclusive lock on pgss->lock
1664  *
1665  * "query" need not be null-terminated; we rely on query_len instead
1666  *
1667  * If "sticky" is true, make the new entry artificially sticky so that it will
1668  * probably still be there when the query finishes execution.  We do this by
1669  * giving it a median usage value rather than the normal value.  (Strictly
1670  * speaking, query strings are normalized on a best effort basis, though it
1671  * would be difficult to demonstrate this even under artificial conditions.)
1672  *
1673  * Note: despite needing exclusive lock, it's not an error for the target
1674  * entry to already exist.  This is because pgss_store releases and
1675  * reacquires lock after failing to find a match; so someone else could
1676  * have made the entry while we waited to get exclusive lock.
1677  */
1678 static pgssEntry *
1679 entry_alloc(pgssHashKey *key, Size query_offset, int query_len, int encoding,
1680 			bool sticky)
1681 {
1682 	pgssEntry  *entry;
1683 	bool		found;
1684 
1685 	/* Make space if needed */
1686 	while (hash_get_num_entries(pgss_hash) >= pgss_max)
1687 		entry_dealloc();
1688 
1689 	/* Find or create an entry with desired hash code */
1690 	entry = (pgssEntry *) hash_search(pgss_hash, key, HASH_ENTER, &found);
1691 
1692 	if (!found)
1693 	{
1694 		/* New entry, initialize it */
1695 
1696 		/* reset the statistics */
1697 		memset(&entry->counters, 0, sizeof(Counters));
1698 		/* set the appropriate initial usage count */
1699 		entry->counters.usage = sticky ? pgss->cur_median_usage : USAGE_INIT;
1700 		/* re-initialize the mutex each time ... we assume no one using it */
1701 		SpinLockInit(&entry->mutex);
1702 		/* ... and don't forget the query text metadata */
1703 		Assert(query_len >= 0);
1704 		entry->query_offset = query_offset;
1705 		entry->query_len = query_len;
1706 		entry->encoding = encoding;
1707 	}
1708 
1709 	return entry;
1710 }
1711 
1712 /*
1713  * qsort comparator for sorting into increasing usage order
1714  */
1715 static int
1716 entry_cmp(const void *lhs, const void *rhs)
1717 {
1718 	double		l_usage = (*(pgssEntry *const *) lhs)->counters.usage;
1719 	double		r_usage = (*(pgssEntry *const *) rhs)->counters.usage;
1720 
1721 	if (l_usage < r_usage)
1722 		return -1;
1723 	else if (l_usage > r_usage)
1724 		return +1;
1725 	else
1726 		return 0;
1727 }
1728 
1729 /*
1730  * Deallocate least-used entries.
1731  *
1732  * Caller must hold an exclusive lock on pgss->lock.
1733  */
1734 static void
1735 entry_dealloc(void)
1736 {
1737 	HASH_SEQ_STATUS hash_seq;
1738 	pgssEntry **entries;
1739 	pgssEntry  *entry;
1740 	int			nvictims;
1741 	int			i;
1742 	Size		tottextlen;
1743 	int			nvalidtexts;
1744 
1745 	/*
1746 	 * Sort entries by usage and deallocate USAGE_DEALLOC_PERCENT of them.
1747 	 * While we're scanning the table, apply the decay factor to the usage
1748 	 * values, and update the mean query length.
1749 	 *
1750 	 * Note that the mean query length is almost immediately obsolete, since
1751 	 * we compute it before not after discarding the least-used entries.
1752 	 * Hopefully, that doesn't affect the mean too much; it doesn't seem worth
1753 	 * making two passes to get a more current result.  Likewise, the new
1754 	 * cur_median_usage includes the entries we're about to zap.
1755 	 */
1756 
1757 	entries = palloc(hash_get_num_entries(pgss_hash) * sizeof(pgssEntry *));
1758 
1759 	i = 0;
1760 	tottextlen = 0;
1761 	nvalidtexts = 0;
1762 
1763 	hash_seq_init(&hash_seq, pgss_hash);
1764 	while ((entry = hash_seq_search(&hash_seq)) != NULL)
1765 	{
1766 		entries[i++] = entry;
1767 		/* "Sticky" entries get a different usage decay rate. */
1768 		if (entry->counters.calls == 0)
1769 			entry->counters.usage *= STICKY_DECREASE_FACTOR;
1770 		else
1771 			entry->counters.usage *= USAGE_DECREASE_FACTOR;
1772 		/* In the mean length computation, ignore dropped texts. */
1773 		if (entry->query_len >= 0)
1774 		{
1775 			tottextlen += entry->query_len + 1;
1776 			nvalidtexts++;
1777 		}
1778 	}
1779 
1780 	/* Sort into increasing order by usage */
1781 	qsort(entries, i, sizeof(pgssEntry *), entry_cmp);
1782 
1783 	/* Record the (approximate) median usage */
1784 	if (i > 0)
1785 		pgss->cur_median_usage = entries[i / 2]->counters.usage;
1786 	/* Record the mean query length */
1787 	if (nvalidtexts > 0)
1788 		pgss->mean_query_len = tottextlen / nvalidtexts;
1789 	else
1790 		pgss->mean_query_len = ASSUMED_LENGTH_INIT;
1791 
1792 	/* Now zap an appropriate fraction of lowest-usage entries */
1793 	nvictims = Max(10, i * USAGE_DEALLOC_PERCENT / 100);
1794 	nvictims = Min(nvictims, i);
1795 
1796 	for (i = 0; i < nvictims; i++)
1797 	{
1798 		hash_search(pgss_hash, &entries[i]->key, HASH_REMOVE, NULL);
1799 	}
1800 
1801 	pfree(entries);
1802 }
1803 
1804 /*
1805  * Given a query string (not necessarily null-terminated), allocate a new
1806  * entry in the external query text file and store the string there.
1807  *
1808  * If successful, returns true, and stores the new entry's offset in the file
1809  * into *query_offset.  Also, if gc_count isn't NULL, *gc_count is set to the
1810  * number of garbage collections that have occurred so far.
1811  *
1812  * On failure, returns false.
1813  *
1814  * At least a shared lock on pgss->lock must be held by the caller, so as
1815  * to prevent a concurrent garbage collection.  Share-lock-holding callers
1816  * should pass a gc_count pointer to obtain the number of garbage collections,
1817  * so that they can recheck the count after obtaining exclusive lock to
1818  * detect whether a garbage collection occurred (and removed this entry).
1819  */
1820 static bool
1821 qtext_store(const char *query, int query_len,
1822 			Size *query_offset, int *gc_count)
1823 {
1824 	Size		off;
1825 	int			fd;
1826 
1827 	/*
1828 	 * We use a spinlock to protect extent/n_writers/gc_count, so that
1829 	 * multiple processes may execute this function concurrently.
1830 	 */
1831 	{
1832 		volatile pgssSharedState *s = (volatile pgssSharedState *) pgss;
1833 
1834 		SpinLockAcquire(&s->mutex);
1835 		off = s->extent;
1836 		s->extent += query_len + 1;
1837 		s->n_writers++;
1838 		if (gc_count)
1839 			*gc_count = s->gc_count;
1840 		SpinLockRelease(&s->mutex);
1841 	}
1842 
1843 	*query_offset = off;
1844 
1845 	/* Now write the data into the successfully-reserved part of the file */
1846 	fd = OpenTransientFile(PGSS_TEXT_FILE, O_RDWR | O_CREAT | PG_BINARY);
1847 	if (fd < 0)
1848 		goto error;
1849 
1850 	if (lseek(fd, off, SEEK_SET) != off)
1851 		goto error;
1852 
1853 	if (write(fd, query, query_len) != query_len)
1854 		goto error;
1855 	if (write(fd, "\0", 1) != 1)
1856 		goto error;
1857 
1858 	CloseTransientFile(fd);
1859 
1860 	/* Mark our write complete */
1861 	{
1862 		volatile pgssSharedState *s = (volatile pgssSharedState *) pgss;
1863 
1864 		SpinLockAcquire(&s->mutex);
1865 		s->n_writers--;
1866 		SpinLockRelease(&s->mutex);
1867 	}
1868 
1869 	return true;
1870 
1871 error:
1872 	ereport(LOG,
1873 			(errcode_for_file_access(),
1874 			 errmsg("could not write pg_stat_statement file \"%s\": %m",
1875 					PGSS_TEXT_FILE)));
1876 
1877 	if (fd >= 0)
1878 		CloseTransientFile(fd);
1879 
1880 	/* Mark our write complete */
1881 	{
1882 		volatile pgssSharedState *s = (volatile pgssSharedState *) pgss;
1883 
1884 		SpinLockAcquire(&s->mutex);
1885 		s->n_writers--;
1886 		SpinLockRelease(&s->mutex);
1887 	}
1888 
1889 	return false;
1890 }
1891 
1892 /*
1893  * Read the external query text file into a malloc'd buffer.
1894  *
1895  * Returns NULL (without throwing an error) if unable to read, eg
1896  * file not there or insufficient memory.
1897  *
1898  * On success, the buffer size is also returned into *buffer_size.
1899  *
1900  * This can be called without any lock on pgss->lock, but in that case
1901  * the caller is responsible for verifying that the result is sane.
1902  */
1903 static char *
1904 qtext_load_file(Size *buffer_size)
1905 {
1906 	char	   *buf;
1907 	int			fd;
1908 	struct stat stat;
1909 	Size		nread;
1910 
1911 	fd = OpenTransientFile(PGSS_TEXT_FILE, O_RDONLY | PG_BINARY);
1912 	if (fd < 0)
1913 	{
1914 		if (errno != ENOENT)
1915 			ereport(LOG,
1916 					(errcode_for_file_access(),
1917 					 errmsg("could not read pg_stat_statement file \"%s\": %m",
1918 							PGSS_TEXT_FILE)));
1919 		return NULL;
1920 	}
1921 
1922 	/* Get file length */
1923 	if (fstat(fd, &stat))
1924 	{
1925 		ereport(LOG,
1926 				(errcode_for_file_access(),
1927 				 errmsg("could not stat pg_stat_statement file \"%s\": %m",
1928 						PGSS_TEXT_FILE)));
1929 		CloseTransientFile(fd);
1930 		return NULL;
1931 	}
1932 
1933 	/* Allocate buffer; beware that off_t might be wider than size_t */
1934 	if (stat.st_size <= MaxAllocHugeSize)
1935 		buf = (char *) malloc(stat.st_size);
1936 	else
1937 		buf = NULL;
1938 	if (buf == NULL)
1939 	{
1940 		ereport(LOG,
1941 				(errcode(ERRCODE_OUT_OF_MEMORY),
1942 				 errmsg("out of memory"),
1943 				 errdetail("Could not allocate enough memory to read pg_stat_statement file \"%s\".",
1944 						   PGSS_TEXT_FILE)));
1945 		CloseTransientFile(fd);
1946 		return NULL;
1947 	}
1948 
1949 	/*
1950 	 * OK, slurp in the file.  Windows fails if we try to read more than
1951 	 * INT_MAX bytes at once, and other platforms might not like that either,
1952 	 * so read a very large file in 1GB segments.
1953 	 */
1954 	nread = 0;
1955 	while (nread < stat.st_size)
1956 	{
1957 		int			toread = Min(1024 * 1024 * 1024, stat.st_size - nread);
1958 
1959 		/*
1960 		 * If we get a short read and errno doesn't get set, the reason is
1961 		 * probably that garbage collection truncated the file since we did
1962 		 * the fstat(), so we don't log a complaint --- but we don't return
1963 		 * the data, either, since it's most likely corrupt due to concurrent
1964 		 * writes from garbage collection.
1965 		 */
1966 		errno = 0;
1967 		if (read(fd, buf + nread, toread) != toread)
1968 		{
1969 			if (errno)
1970 				ereport(LOG,
1971 						(errcode_for_file_access(),
1972 						 errmsg("could not read pg_stat_statement file \"%s\": %m",
1973 								PGSS_TEXT_FILE)));
1974 			free(buf);
1975 			CloseTransientFile(fd);
1976 			return NULL;
1977 		}
1978 		nread += toread;
1979 	}
1980 
1981 	CloseTransientFile(fd);
1982 
1983 	*buffer_size = nread;
1984 	return buf;
1985 }
1986 
1987 /*
1988  * Locate a query text in the file image previously read by qtext_load_file().
1989  *
1990  * We validate the given offset/length, and return NULL if bogus.  Otherwise,
1991  * the result points to a null-terminated string within the buffer.
1992  */
1993 static char *
1994 qtext_fetch(Size query_offset, int query_len,
1995 			char *buffer, Size buffer_size)
1996 {
1997 	/* File read failed? */
1998 	if (buffer == NULL)
1999 		return NULL;
2000 	/* Bogus offset/length? */
2001 	if (query_len < 0 ||
2002 		query_offset + query_len >= buffer_size)
2003 		return NULL;
2004 	/* As a further sanity check, make sure there's a trailing null */
2005 	if (buffer[query_offset + query_len] != '\0')
2006 		return NULL;
2007 	/* Looks OK */
2008 	return buffer + query_offset;
2009 }
2010 
2011 /*
2012  * Do we need to garbage-collect the external query text file?
2013  *
2014  * Caller should hold at least a shared lock on pgss->lock.
2015  */
2016 static bool
2017 need_gc_qtexts(void)
2018 {
2019 	Size		extent;
2020 
2021 	/* Read shared extent pointer */
2022 	{
2023 		volatile pgssSharedState *s = (volatile pgssSharedState *) pgss;
2024 
2025 		SpinLockAcquire(&s->mutex);
2026 		extent = s->extent;
2027 		SpinLockRelease(&s->mutex);
2028 	}
2029 
2030 	/* Don't proceed if file does not exceed 512 bytes per possible entry */
2031 	if (extent < 512 * pgss_max)
2032 		return false;
2033 
2034 	/*
2035 	 * Don't proceed if file is less than about 50% bloat.  Nothing can or
2036 	 * should be done in the event of unusually large query texts accounting
2037 	 * for file's large size.  We go to the trouble of maintaining the mean
2038 	 * query length in order to prevent garbage collection from thrashing
2039 	 * uselessly.
2040 	 */
2041 	if (extent < pgss->mean_query_len * pgss_max * 2)
2042 		return false;
2043 
2044 	return true;
2045 }
2046 
2047 /*
2048  * Garbage-collect orphaned query texts in external file.
2049  *
2050  * This won't be called often in the typical case, since it's likely that
2051  * there won't be too much churn, and besides, a similar compaction process
2052  * occurs when serializing to disk at shutdown or as part of resetting.
2053  * Despite this, it seems prudent to plan for the edge case where the file
2054  * becomes unreasonably large, with no other method of compaction likely to
2055  * occur in the foreseeable future.
2056  *
2057  * The caller must hold an exclusive lock on pgss->lock.
2058  *
2059  * At the first sign of trouble we unlink the query text file to get a clean
2060  * slate (although existing statistics are retained), rather than risk
2061  * thrashing by allowing the same problem case to recur indefinitely.
2062  */
2063 static void
2064 gc_qtexts(void)
2065 {
2066 	char	   *qbuffer;
2067 	Size		qbuffer_size;
2068 	FILE	   *qfile = NULL;
2069 	HASH_SEQ_STATUS hash_seq;
2070 	pgssEntry  *entry;
2071 	Size		extent;
2072 	int			nentries;
2073 
2074 	/*
2075 	 * When called from pgss_store, some other session might have proceeded
2076 	 * with garbage collection in the no-lock-held interim of lock strength
2077 	 * escalation.  Check once more that this is actually necessary.
2078 	 */
2079 	if (!need_gc_qtexts())
2080 		return;
2081 
2082 	/*
2083 	 * Load the old texts file.  If we fail (out of memory, for instance),
2084 	 * invalidate query texts.  Hopefully this is rare.  It might seem better
2085 	 * to leave things alone on an OOM failure, but the problem is that the
2086 	 * file is only going to get bigger; hoping for a future non-OOM result is
2087 	 * risky and can easily lead to complete denial of service.
2088 	 */
2089 	qbuffer = qtext_load_file(&qbuffer_size);
2090 	if (qbuffer == NULL)
2091 		goto gc_fail;
2092 
2093 	/*
2094 	 * We overwrite the query texts file in place, so as to reduce the risk of
2095 	 * an out-of-disk-space failure.  Since the file is guaranteed not to get
2096 	 * larger, this should always work on traditional filesystems; though we
2097 	 * could still lose on copy-on-write filesystems.
2098 	 */
2099 	qfile = AllocateFile(PGSS_TEXT_FILE, PG_BINARY_W);
2100 	if (qfile == NULL)
2101 	{
2102 		ereport(LOG,
2103 				(errcode_for_file_access(),
2104 				 errmsg("could not write pg_stat_statement file \"%s\": %m",
2105 						PGSS_TEXT_FILE)));
2106 		goto gc_fail;
2107 	}
2108 
2109 	extent = 0;
2110 	nentries = 0;
2111 
2112 	hash_seq_init(&hash_seq, pgss_hash);
2113 	while ((entry = hash_seq_search(&hash_seq)) != NULL)
2114 	{
2115 		int			query_len = entry->query_len;
2116 		char	   *qry = qtext_fetch(entry->query_offset,
2117 									  query_len,
2118 									  qbuffer,
2119 									  qbuffer_size);
2120 
2121 		if (qry == NULL)
2122 		{
2123 			/* Trouble ... drop the text */
2124 			entry->query_offset = 0;
2125 			entry->query_len = -1;
2126 			/* entry will not be counted in mean query length computation */
2127 			continue;
2128 		}
2129 
2130 		if (fwrite(qry, 1, query_len + 1, qfile) != query_len + 1)
2131 		{
2132 			ereport(LOG,
2133 					(errcode_for_file_access(),
2134 					 errmsg("could not write pg_stat_statement file \"%s\": %m",
2135 							PGSS_TEXT_FILE)));
2136 			hash_seq_term(&hash_seq);
2137 			goto gc_fail;
2138 		}
2139 
2140 		entry->query_offset = extent;
2141 		extent += query_len + 1;
2142 		nentries++;
2143 	}
2144 
2145 	/*
2146 	 * Truncate away any now-unused space.  If this fails for some odd reason,
2147 	 * we log it, but there's no need to fail.
2148 	 */
2149 	if (ftruncate(fileno(qfile), extent) != 0)
2150 		ereport(LOG,
2151 				(errcode_for_file_access(),
2152 				 errmsg("could not truncate pg_stat_statement file \"%s\": %m",
2153 						PGSS_TEXT_FILE)));
2154 
2155 	if (FreeFile(qfile))
2156 	{
2157 		ereport(LOG,
2158 				(errcode_for_file_access(),
2159 				 errmsg("could not write pg_stat_statement file \"%s\": %m",
2160 						PGSS_TEXT_FILE)));
2161 		qfile = NULL;
2162 		goto gc_fail;
2163 	}
2164 
2165 	elog(DEBUG1, "pgss gc of queries file shrunk size from %zu to %zu",
2166 		 pgss->extent, extent);
2167 
2168 	/* Reset the shared extent pointer */
2169 	pgss->extent = extent;
2170 
2171 	/*
2172 	 * Also update the mean query length, to be sure that need_gc_qtexts()
2173 	 * won't still think we have a problem.
2174 	 */
2175 	if (nentries > 0)
2176 		pgss->mean_query_len = extent / nentries;
2177 	else
2178 		pgss->mean_query_len = ASSUMED_LENGTH_INIT;
2179 
2180 	free(qbuffer);
2181 
2182 	/*
2183 	 * OK, count a garbage collection cycle.  (Note: even though we have
2184 	 * exclusive lock on pgss->lock, we must take pgss->mutex for this, since
2185 	 * other processes may examine gc_count while holding only the mutex.
2186 	 * Also, we have to advance the count *after* we've rewritten the file,
2187 	 * else other processes might not realize they read a stale file.)
2188 	 */
2189 	record_gc_qtexts();
2190 
2191 	return;
2192 
2193 gc_fail:
2194 	/* clean up resources */
2195 	if (qfile)
2196 		FreeFile(qfile);
2197 	if (qbuffer)
2198 		free(qbuffer);
2199 
2200 	/*
2201 	 * Since the contents of the external file are now uncertain, mark all
2202 	 * hashtable entries as having invalid texts.
2203 	 */
2204 	hash_seq_init(&hash_seq, pgss_hash);
2205 	while ((entry = hash_seq_search(&hash_seq)) != NULL)
2206 	{
2207 		entry->query_offset = 0;
2208 		entry->query_len = -1;
2209 	}
2210 
2211 	/*
2212 	 * Destroy the query text file and create a new, empty one
2213 	 */
2214 	(void) unlink(PGSS_TEXT_FILE);
2215 	qfile = AllocateFile(PGSS_TEXT_FILE, PG_BINARY_W);
2216 	if (qfile == NULL)
2217 		ereport(LOG,
2218 				(errcode_for_file_access(),
2219 				 errmsg("could not write new pg_stat_statement file \"%s\": %m",
2220 						PGSS_TEXT_FILE)));
2221 	else
2222 		FreeFile(qfile);
2223 
2224 	/* Reset the shared extent pointer */
2225 	pgss->extent = 0;
2226 
2227 	/* Reset mean_query_len to match the new state */
2228 	pgss->mean_query_len = ASSUMED_LENGTH_INIT;
2229 
2230 	/*
2231 	 * Bump the GC count even though we failed.
2232 	 *
2233 	 * This is needed to make concurrent readers of file without any lock on
2234 	 * pgss->lock notice existence of new version of file.  Once readers
2235 	 * subsequently observe a change in GC count with pgss->lock held, that
2236 	 * forces a safe reopen of file.  Writers also require that we bump here,
2237 	 * of course.  (As required by locking protocol, readers and writers don't
2238 	 * trust earlier file contents until gc_count is found unchanged after
2239 	 * pgss->lock acquired in shared or exclusive mode respectively.)
2240 	 */
2241 	record_gc_qtexts();
2242 }
2243 
2244 /*
2245  * Release all entries.
2246  */
2247 static void
2248 entry_reset(void)
2249 {
2250 	HASH_SEQ_STATUS hash_seq;
2251 	pgssEntry  *entry;
2252 	FILE	   *qfile;
2253 
2254 	LWLockAcquire(pgss->lock, LW_EXCLUSIVE);
2255 
2256 	hash_seq_init(&hash_seq, pgss_hash);
2257 	while ((entry = hash_seq_search(&hash_seq)) != NULL)
2258 	{
2259 		hash_search(pgss_hash, &entry->key, HASH_REMOVE, NULL);
2260 	}
2261 
2262 	/*
2263 	 * Write new empty query file, perhaps even creating a new one to recover
2264 	 * if the file was missing.
2265 	 */
2266 	qfile = AllocateFile(PGSS_TEXT_FILE, PG_BINARY_W);
2267 	if (qfile == NULL)
2268 	{
2269 		ereport(LOG,
2270 				(errcode_for_file_access(),
2271 				 errmsg("could not create pg_stat_statement file \"%s\": %m",
2272 						PGSS_TEXT_FILE)));
2273 		goto done;
2274 	}
2275 
2276 	/* If ftruncate fails, log it, but it's not a fatal problem */
2277 	if (ftruncate(fileno(qfile), 0) != 0)
2278 		ereport(LOG,
2279 				(errcode_for_file_access(),
2280 				 errmsg("could not truncate pg_stat_statement file \"%s\": %m",
2281 						PGSS_TEXT_FILE)));
2282 
2283 	FreeFile(qfile);
2284 
2285 done:
2286 	pgss->extent = 0;
2287 	/* This counts as a query text garbage collection for our purposes */
2288 	record_gc_qtexts();
2289 
2290 	LWLockRelease(pgss->lock);
2291 }
2292 
2293 /*
2294  * AppendJumble: Append a value that is substantive in a given query to
2295  * the current jumble.
2296  */
2297 static void
2298 AppendJumble(pgssJumbleState *jstate, const unsigned char *item, Size size)
2299 {
2300 	unsigned char *jumble = jstate->jumble;
2301 	Size		jumble_len = jstate->jumble_len;
2302 
2303 	/*
2304 	 * Whenever the jumble buffer is full, we hash the current contents and
2305 	 * reset the buffer to contain just that hash value, thus relying on the
2306 	 * hash to summarize everything so far.
2307 	 */
2308 	while (size > 0)
2309 	{
2310 		Size		part_size;
2311 
2312 		if (jumble_len >= JUMBLE_SIZE)
2313 		{
2314 			uint64		start_hash;
2315 
2316 			start_hash = DatumGetUInt64(hash_any_extended(jumble,
2317 														  JUMBLE_SIZE, 0));
2318 			memcpy(jumble, &start_hash, sizeof(start_hash));
2319 			jumble_len = sizeof(start_hash);
2320 		}
2321 		part_size = Min(size, JUMBLE_SIZE - jumble_len);
2322 		memcpy(jumble + jumble_len, item, part_size);
2323 		jumble_len += part_size;
2324 		item += part_size;
2325 		size -= part_size;
2326 	}
2327 	jstate->jumble_len = jumble_len;
2328 }
2329 
2330 /*
2331  * Wrappers around AppendJumble to encapsulate details of serialization
2332  * of individual local variable elements.
2333  */
2334 #define APP_JUMB(item) \
2335 	AppendJumble(jstate, (const unsigned char *) &(item), sizeof(item))
2336 #define APP_JUMB_STRING(str) \
2337 	AppendJumble(jstate, (const unsigned char *) (str), strlen(str) + 1)
2338 
2339 /*
2340  * JumbleQuery: Selectively serialize the query tree, appending significant
2341  * data to the "query jumble" while ignoring nonsignificant data.
2342  *
2343  * Rule of thumb for what to include is that we should ignore anything not
2344  * semantically significant (such as alias names) as well as anything that can
2345  * be deduced from child nodes (else we'd just be double-hashing that piece
2346  * of information).
2347  */
2348 static void
2349 JumbleQuery(pgssJumbleState *jstate, Query *query)
2350 {
2351 	Assert(IsA(query, Query));
2352 	Assert(query->utilityStmt == NULL);
2353 
2354 	APP_JUMB(query->commandType);
2355 	/* resultRelation is usually predictable from commandType */
2356 	JumbleExpr(jstate, (Node *) query->cteList);
2357 	JumbleRangeTable(jstate, query->rtable);
2358 	JumbleExpr(jstate, (Node *) query->jointree);
2359 	JumbleExpr(jstate, (Node *) query->targetList);
2360 	JumbleExpr(jstate, (Node *) query->onConflict);
2361 	JumbleExpr(jstate, (Node *) query->returningList);
2362 	JumbleExpr(jstate, (Node *) query->groupClause);
2363 	JumbleExpr(jstate, (Node *) query->groupingSets);
2364 	JumbleExpr(jstate, query->havingQual);
2365 	JumbleExpr(jstate, (Node *) query->windowClause);
2366 	JumbleExpr(jstate, (Node *) query->distinctClause);
2367 	JumbleExpr(jstate, (Node *) query->sortClause);
2368 	JumbleExpr(jstate, query->limitOffset);
2369 	JumbleExpr(jstate, query->limitCount);
2370 	/* we ignore rowMarks */
2371 	JumbleExpr(jstate, query->setOperations);
2372 }
2373 
2374 /*
2375  * Jumble a range table
2376  */
2377 static void
2378 JumbleRangeTable(pgssJumbleState *jstate, List *rtable)
2379 {
2380 	ListCell   *lc;
2381 
2382 	foreach(lc, rtable)
2383 	{
2384 		RangeTblEntry *rte = lfirst_node(RangeTblEntry, lc);
2385 
2386 		APP_JUMB(rte->rtekind);
2387 		switch (rte->rtekind)
2388 		{
2389 			case RTE_RELATION:
2390 				APP_JUMB(rte->relid);
2391 				JumbleExpr(jstate, (Node *) rte->tablesample);
2392 				break;
2393 			case RTE_SUBQUERY:
2394 				JumbleQuery(jstate, rte->subquery);
2395 				break;
2396 			case RTE_JOIN:
2397 				APP_JUMB(rte->jointype);
2398 				break;
2399 			case RTE_FUNCTION:
2400 				JumbleExpr(jstate, (Node *) rte->functions);
2401 				break;
2402 			case RTE_TABLEFUNC:
2403 				JumbleExpr(jstate, (Node *) rte->tablefunc);
2404 				break;
2405 			case RTE_VALUES:
2406 				JumbleExpr(jstate, (Node *) rte->values_lists);
2407 				break;
2408 			case RTE_CTE:
2409 
2410 				/*
2411 				 * Depending on the CTE name here isn't ideal, but it's the
2412 				 * only info we have to identify the referenced WITH item.
2413 				 */
2414 				APP_JUMB_STRING(rte->ctename);
2415 				APP_JUMB(rte->ctelevelsup);
2416 				break;
2417 			case RTE_NAMEDTUPLESTORE:
2418 				APP_JUMB_STRING(rte->enrname);
2419 				break;
2420 			default:
2421 				elog(ERROR, "unrecognized RTE kind: %d", (int) rte->rtekind);
2422 				break;
2423 		}
2424 	}
2425 }
2426 
2427 /*
2428  * Jumble an expression tree
2429  *
2430  * In general this function should handle all the same node types that
2431  * expression_tree_walker() does, and therefore it's coded to be as parallel
2432  * to that function as possible.  However, since we are only invoked on
2433  * queries immediately post-parse-analysis, we need not handle node types
2434  * that only appear in planning.
2435  *
2436  * Note: the reason we don't simply use expression_tree_walker() is that the
2437  * point of that function is to support tree walkers that don't care about
2438  * most tree node types, but here we care about all types.  We should complain
2439  * about any unrecognized node type.
2440  */
2441 static void
2442 JumbleExpr(pgssJumbleState *jstate, Node *node)
2443 {
2444 	ListCell   *temp;
2445 
2446 	if (node == NULL)
2447 		return;
2448 
2449 	/* Guard against stack overflow due to overly complex expressions */
2450 	check_stack_depth();
2451 
2452 	/*
2453 	 * We always emit the node's NodeTag, then any additional fields that are
2454 	 * considered significant, and then we recurse to any child nodes.
2455 	 */
2456 	APP_JUMB(node->type);
2457 
2458 	switch (nodeTag(node))
2459 	{
2460 		case T_Var:
2461 			{
2462 				Var		   *var = (Var *) node;
2463 
2464 				APP_JUMB(var->varno);
2465 				APP_JUMB(var->varattno);
2466 				APP_JUMB(var->varlevelsup);
2467 			}
2468 			break;
2469 		case T_Const:
2470 			{
2471 				Const	   *c = (Const *) node;
2472 
2473 				/* We jumble only the constant's type, not its value */
2474 				APP_JUMB(c->consttype);
2475 				/* Also, record its parse location for query normalization */
2476 				RecordConstLocation(jstate, c->location);
2477 			}
2478 			break;
2479 		case T_Param:
2480 			{
2481 				Param	   *p = (Param *) node;
2482 
2483 				APP_JUMB(p->paramkind);
2484 				APP_JUMB(p->paramid);
2485 				APP_JUMB(p->paramtype);
2486 				/* Also, track the highest external Param id */
2487 				if (p->paramkind == PARAM_EXTERN &&
2488 					p->paramid > jstate->highest_extern_param_id)
2489 					jstate->highest_extern_param_id = p->paramid;
2490 			}
2491 			break;
2492 		case T_Aggref:
2493 			{
2494 				Aggref	   *expr = (Aggref *) node;
2495 
2496 				APP_JUMB(expr->aggfnoid);
2497 				JumbleExpr(jstate, (Node *) expr->aggdirectargs);
2498 				JumbleExpr(jstate, (Node *) expr->args);
2499 				JumbleExpr(jstate, (Node *) expr->aggorder);
2500 				JumbleExpr(jstate, (Node *) expr->aggdistinct);
2501 				JumbleExpr(jstate, (Node *) expr->aggfilter);
2502 			}
2503 			break;
2504 		case T_GroupingFunc:
2505 			{
2506 				GroupingFunc *grpnode = (GroupingFunc *) node;
2507 
2508 				JumbleExpr(jstate, (Node *) grpnode->refs);
2509 			}
2510 			break;
2511 		case T_WindowFunc:
2512 			{
2513 				WindowFunc *expr = (WindowFunc *) node;
2514 
2515 				APP_JUMB(expr->winfnoid);
2516 				APP_JUMB(expr->winref);
2517 				JumbleExpr(jstate, (Node *) expr->args);
2518 				JumbleExpr(jstate, (Node *) expr->aggfilter);
2519 			}
2520 			break;
2521 		case T_ArrayRef:
2522 			{
2523 				ArrayRef   *aref = (ArrayRef *) node;
2524 
2525 				JumbleExpr(jstate, (Node *) aref->refupperindexpr);
2526 				JumbleExpr(jstate, (Node *) aref->reflowerindexpr);
2527 				JumbleExpr(jstate, (Node *) aref->refexpr);
2528 				JumbleExpr(jstate, (Node *) aref->refassgnexpr);
2529 			}
2530 			break;
2531 		case T_FuncExpr:
2532 			{
2533 				FuncExpr   *expr = (FuncExpr *) node;
2534 
2535 				APP_JUMB(expr->funcid);
2536 				JumbleExpr(jstate, (Node *) expr->args);
2537 			}
2538 			break;
2539 		case T_NamedArgExpr:
2540 			{
2541 				NamedArgExpr *nae = (NamedArgExpr *) node;
2542 
2543 				APP_JUMB(nae->argnumber);
2544 				JumbleExpr(jstate, (Node *) nae->arg);
2545 			}
2546 			break;
2547 		case T_OpExpr:
2548 		case T_DistinctExpr:	/* struct-equivalent to OpExpr */
2549 		case T_NullIfExpr:		/* struct-equivalent to OpExpr */
2550 			{
2551 				OpExpr	   *expr = (OpExpr *) node;
2552 
2553 				APP_JUMB(expr->opno);
2554 				JumbleExpr(jstate, (Node *) expr->args);
2555 			}
2556 			break;
2557 		case T_ScalarArrayOpExpr:
2558 			{
2559 				ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) node;
2560 
2561 				APP_JUMB(expr->opno);
2562 				APP_JUMB(expr->useOr);
2563 				JumbleExpr(jstate, (Node *) expr->args);
2564 			}
2565 			break;
2566 		case T_BoolExpr:
2567 			{
2568 				BoolExpr   *expr = (BoolExpr *) node;
2569 
2570 				APP_JUMB(expr->boolop);
2571 				JumbleExpr(jstate, (Node *) expr->args);
2572 			}
2573 			break;
2574 		case T_SubLink:
2575 			{
2576 				SubLink    *sublink = (SubLink *) node;
2577 
2578 				APP_JUMB(sublink->subLinkType);
2579 				APP_JUMB(sublink->subLinkId);
2580 				JumbleExpr(jstate, (Node *) sublink->testexpr);
2581 				JumbleQuery(jstate, castNode(Query, sublink->subselect));
2582 			}
2583 			break;
2584 		case T_FieldSelect:
2585 			{
2586 				FieldSelect *fs = (FieldSelect *) node;
2587 
2588 				APP_JUMB(fs->fieldnum);
2589 				JumbleExpr(jstate, (Node *) fs->arg);
2590 			}
2591 			break;
2592 		case T_FieldStore:
2593 			{
2594 				FieldStore *fstore = (FieldStore *) node;
2595 
2596 				JumbleExpr(jstate, (Node *) fstore->arg);
2597 				JumbleExpr(jstate, (Node *) fstore->newvals);
2598 			}
2599 			break;
2600 		case T_RelabelType:
2601 			{
2602 				RelabelType *rt = (RelabelType *) node;
2603 
2604 				APP_JUMB(rt->resulttype);
2605 				JumbleExpr(jstate, (Node *) rt->arg);
2606 			}
2607 			break;
2608 		case T_CoerceViaIO:
2609 			{
2610 				CoerceViaIO *cio = (CoerceViaIO *) node;
2611 
2612 				APP_JUMB(cio->resulttype);
2613 				JumbleExpr(jstate, (Node *) cio->arg);
2614 			}
2615 			break;
2616 		case T_ArrayCoerceExpr:
2617 			{
2618 				ArrayCoerceExpr *acexpr = (ArrayCoerceExpr *) node;
2619 
2620 				APP_JUMB(acexpr->resulttype);
2621 				JumbleExpr(jstate, (Node *) acexpr->arg);
2622 				JumbleExpr(jstate, (Node *) acexpr->elemexpr);
2623 			}
2624 			break;
2625 		case T_ConvertRowtypeExpr:
2626 			{
2627 				ConvertRowtypeExpr *crexpr = (ConvertRowtypeExpr *) node;
2628 
2629 				APP_JUMB(crexpr->resulttype);
2630 				JumbleExpr(jstate, (Node *) crexpr->arg);
2631 			}
2632 			break;
2633 		case T_CollateExpr:
2634 			{
2635 				CollateExpr *ce = (CollateExpr *) node;
2636 
2637 				APP_JUMB(ce->collOid);
2638 				JumbleExpr(jstate, (Node *) ce->arg);
2639 			}
2640 			break;
2641 		case T_CaseExpr:
2642 			{
2643 				CaseExpr   *caseexpr = (CaseExpr *) node;
2644 
2645 				JumbleExpr(jstate, (Node *) caseexpr->arg);
2646 				foreach(temp, caseexpr->args)
2647 				{
2648 					CaseWhen   *when = lfirst_node(CaseWhen, temp);
2649 
2650 					JumbleExpr(jstate, (Node *) when->expr);
2651 					JumbleExpr(jstate, (Node *) when->result);
2652 				}
2653 				JumbleExpr(jstate, (Node *) caseexpr->defresult);
2654 			}
2655 			break;
2656 		case T_CaseTestExpr:
2657 			{
2658 				CaseTestExpr *ct = (CaseTestExpr *) node;
2659 
2660 				APP_JUMB(ct->typeId);
2661 			}
2662 			break;
2663 		case T_ArrayExpr:
2664 			JumbleExpr(jstate, (Node *) ((ArrayExpr *) node)->elements);
2665 			break;
2666 		case T_RowExpr:
2667 			JumbleExpr(jstate, (Node *) ((RowExpr *) node)->args);
2668 			break;
2669 		case T_RowCompareExpr:
2670 			{
2671 				RowCompareExpr *rcexpr = (RowCompareExpr *) node;
2672 
2673 				APP_JUMB(rcexpr->rctype);
2674 				JumbleExpr(jstate, (Node *) rcexpr->largs);
2675 				JumbleExpr(jstate, (Node *) rcexpr->rargs);
2676 			}
2677 			break;
2678 		case T_CoalesceExpr:
2679 			JumbleExpr(jstate, (Node *) ((CoalesceExpr *) node)->args);
2680 			break;
2681 		case T_MinMaxExpr:
2682 			{
2683 				MinMaxExpr *mmexpr = (MinMaxExpr *) node;
2684 
2685 				APP_JUMB(mmexpr->op);
2686 				JumbleExpr(jstate, (Node *) mmexpr->args);
2687 			}
2688 			break;
2689 		case T_SQLValueFunction:
2690 			{
2691 				SQLValueFunction *svf = (SQLValueFunction *) node;
2692 
2693 				APP_JUMB(svf->op);
2694 				/* type is fully determined by op */
2695 				APP_JUMB(svf->typmod);
2696 			}
2697 			break;
2698 		case T_XmlExpr:
2699 			{
2700 				XmlExpr    *xexpr = (XmlExpr *) node;
2701 
2702 				APP_JUMB(xexpr->op);
2703 				JumbleExpr(jstate, (Node *) xexpr->named_args);
2704 				JumbleExpr(jstate, (Node *) xexpr->args);
2705 			}
2706 			break;
2707 		case T_NullTest:
2708 			{
2709 				NullTest   *nt = (NullTest *) node;
2710 
2711 				APP_JUMB(nt->nulltesttype);
2712 				JumbleExpr(jstate, (Node *) nt->arg);
2713 			}
2714 			break;
2715 		case T_BooleanTest:
2716 			{
2717 				BooleanTest *bt = (BooleanTest *) node;
2718 
2719 				APP_JUMB(bt->booltesttype);
2720 				JumbleExpr(jstate, (Node *) bt->arg);
2721 			}
2722 			break;
2723 		case T_CoerceToDomain:
2724 			{
2725 				CoerceToDomain *cd = (CoerceToDomain *) node;
2726 
2727 				APP_JUMB(cd->resulttype);
2728 				JumbleExpr(jstate, (Node *) cd->arg);
2729 			}
2730 			break;
2731 		case T_CoerceToDomainValue:
2732 			{
2733 				CoerceToDomainValue *cdv = (CoerceToDomainValue *) node;
2734 
2735 				APP_JUMB(cdv->typeId);
2736 			}
2737 			break;
2738 		case T_SetToDefault:
2739 			{
2740 				SetToDefault *sd = (SetToDefault *) node;
2741 
2742 				APP_JUMB(sd->typeId);
2743 			}
2744 			break;
2745 		case T_CurrentOfExpr:
2746 			{
2747 				CurrentOfExpr *ce = (CurrentOfExpr *) node;
2748 
2749 				APP_JUMB(ce->cvarno);
2750 				if (ce->cursor_name)
2751 					APP_JUMB_STRING(ce->cursor_name);
2752 				APP_JUMB(ce->cursor_param);
2753 			}
2754 			break;
2755 		case T_NextValueExpr:
2756 			{
2757 				NextValueExpr *nve = (NextValueExpr *) node;
2758 
2759 				APP_JUMB(nve->seqid);
2760 				APP_JUMB(nve->typeId);
2761 			}
2762 			break;
2763 		case T_InferenceElem:
2764 			{
2765 				InferenceElem *ie = (InferenceElem *) node;
2766 
2767 				APP_JUMB(ie->infercollid);
2768 				APP_JUMB(ie->inferopclass);
2769 				JumbleExpr(jstate, ie->expr);
2770 			}
2771 			break;
2772 		case T_TargetEntry:
2773 			{
2774 				TargetEntry *tle = (TargetEntry *) node;
2775 
2776 				APP_JUMB(tle->resno);
2777 				APP_JUMB(tle->ressortgroupref);
2778 				JumbleExpr(jstate, (Node *) tle->expr);
2779 			}
2780 			break;
2781 		case T_RangeTblRef:
2782 			{
2783 				RangeTblRef *rtr = (RangeTblRef *) node;
2784 
2785 				APP_JUMB(rtr->rtindex);
2786 			}
2787 			break;
2788 		case T_JoinExpr:
2789 			{
2790 				JoinExpr   *join = (JoinExpr *) node;
2791 
2792 				APP_JUMB(join->jointype);
2793 				APP_JUMB(join->isNatural);
2794 				APP_JUMB(join->rtindex);
2795 				JumbleExpr(jstate, join->larg);
2796 				JumbleExpr(jstate, join->rarg);
2797 				JumbleExpr(jstate, join->quals);
2798 			}
2799 			break;
2800 		case T_FromExpr:
2801 			{
2802 				FromExpr   *from = (FromExpr *) node;
2803 
2804 				JumbleExpr(jstate, (Node *) from->fromlist);
2805 				JumbleExpr(jstate, from->quals);
2806 			}
2807 			break;
2808 		case T_OnConflictExpr:
2809 			{
2810 				OnConflictExpr *conf = (OnConflictExpr *) node;
2811 
2812 				APP_JUMB(conf->action);
2813 				JumbleExpr(jstate, (Node *) conf->arbiterElems);
2814 				JumbleExpr(jstate, conf->arbiterWhere);
2815 				JumbleExpr(jstate, (Node *) conf->onConflictSet);
2816 				JumbleExpr(jstate, conf->onConflictWhere);
2817 				APP_JUMB(conf->constraint);
2818 				APP_JUMB(conf->exclRelIndex);
2819 				JumbleExpr(jstate, (Node *) conf->exclRelTlist);
2820 			}
2821 			break;
2822 		case T_List:
2823 			foreach(temp, (List *) node)
2824 			{
2825 				JumbleExpr(jstate, (Node *) lfirst(temp));
2826 			}
2827 			break;
2828 		case T_IntList:
2829 			foreach(temp, (List *) node)
2830 			{
2831 				APP_JUMB(lfirst_int(temp));
2832 			}
2833 			break;
2834 		case T_SortGroupClause:
2835 			{
2836 				SortGroupClause *sgc = (SortGroupClause *) node;
2837 
2838 				APP_JUMB(sgc->tleSortGroupRef);
2839 				APP_JUMB(sgc->eqop);
2840 				APP_JUMB(sgc->sortop);
2841 				APP_JUMB(sgc->nulls_first);
2842 			}
2843 			break;
2844 		case T_GroupingSet:
2845 			{
2846 				GroupingSet *gsnode = (GroupingSet *) node;
2847 
2848 				JumbleExpr(jstate, (Node *) gsnode->content);
2849 			}
2850 			break;
2851 		case T_WindowClause:
2852 			{
2853 				WindowClause *wc = (WindowClause *) node;
2854 
2855 				APP_JUMB(wc->winref);
2856 				APP_JUMB(wc->frameOptions);
2857 				JumbleExpr(jstate, (Node *) wc->partitionClause);
2858 				JumbleExpr(jstate, (Node *) wc->orderClause);
2859 				JumbleExpr(jstate, wc->startOffset);
2860 				JumbleExpr(jstate, wc->endOffset);
2861 			}
2862 			break;
2863 		case T_CommonTableExpr:
2864 			{
2865 				CommonTableExpr *cte = (CommonTableExpr *) node;
2866 
2867 				/* we store the string name because RTE_CTE RTEs need it */
2868 				APP_JUMB_STRING(cte->ctename);
2869 				JumbleQuery(jstate, castNode(Query, cte->ctequery));
2870 			}
2871 			break;
2872 		case T_SetOperationStmt:
2873 			{
2874 				SetOperationStmt *setop = (SetOperationStmt *) node;
2875 
2876 				APP_JUMB(setop->op);
2877 				APP_JUMB(setop->all);
2878 				JumbleExpr(jstate, setop->larg);
2879 				JumbleExpr(jstate, setop->rarg);
2880 			}
2881 			break;
2882 		case T_RangeTblFunction:
2883 			{
2884 				RangeTblFunction *rtfunc = (RangeTblFunction *) node;
2885 
2886 				JumbleExpr(jstate, rtfunc->funcexpr);
2887 			}
2888 			break;
2889 		case T_TableFunc:
2890 			{
2891 				TableFunc  *tablefunc = (TableFunc *) node;
2892 
2893 				JumbleExpr(jstate, tablefunc->docexpr);
2894 				JumbleExpr(jstate, tablefunc->rowexpr);
2895 				JumbleExpr(jstate, (Node *) tablefunc->colexprs);
2896 			}
2897 			break;
2898 		case T_TableSampleClause:
2899 			{
2900 				TableSampleClause *tsc = (TableSampleClause *) node;
2901 
2902 				APP_JUMB(tsc->tsmhandler);
2903 				JumbleExpr(jstate, (Node *) tsc->args);
2904 				JumbleExpr(jstate, (Node *) tsc->repeatable);
2905 			}
2906 			break;
2907 		default:
2908 			/* Only a warning, since we can stumble along anyway */
2909 			elog(WARNING, "unrecognized node type: %d",
2910 				 (int) nodeTag(node));
2911 			break;
2912 	}
2913 }
2914 
2915 /*
2916  * Record location of constant within query string of query tree
2917  * that is currently being walked.
2918  */
2919 static void
2920 RecordConstLocation(pgssJumbleState *jstate, int location)
2921 {
2922 	/* -1 indicates unknown or undefined location */
2923 	if (location >= 0)
2924 	{
2925 		/* enlarge array if needed */
2926 		if (jstate->clocations_count >= jstate->clocations_buf_size)
2927 		{
2928 			jstate->clocations_buf_size *= 2;
2929 			jstate->clocations = (pgssLocationLen *)
2930 				repalloc(jstate->clocations,
2931 						 jstate->clocations_buf_size *
2932 						 sizeof(pgssLocationLen));
2933 		}
2934 		jstate->clocations[jstate->clocations_count].location = location;
2935 		/* initialize lengths to -1 to simplify fill_in_constant_lengths */
2936 		jstate->clocations[jstate->clocations_count].length = -1;
2937 		jstate->clocations_count++;
2938 	}
2939 }
2940 
2941 /*
2942  * Generate a normalized version of the query string that will be used to
2943  * represent all similar queries.
2944  *
2945  * Note that the normalized representation may well vary depending on
2946  * just which "equivalent" query is used to create the hashtable entry.
2947  * We assume this is OK.
2948  *
2949  * If query_loc > 0, then "query" has been advanced by that much compared to
2950  * the original string start, so we need to translate the provided locations
2951  * to compensate.  (This lets us avoid re-scanning statements before the one
2952  * of interest, so it's worth doing.)
2953  *
2954  * *query_len_p contains the input string length, and is updated with
2955  * the result string length on exit.  The resulting string might be longer
2956  * or shorter depending on what happens with replacement of constants.
2957  *
2958  * Returns a palloc'd string.
2959  */
2960 static char *
2961 generate_normalized_query(pgssJumbleState *jstate, const char *query,
2962 						  int query_loc, int *query_len_p, int encoding)
2963 {
2964 	char	   *norm_query;
2965 	int			query_len = *query_len_p;
2966 	int			i,
2967 				norm_query_buflen,	/* Space allowed for norm_query */
2968 				len_to_wrt,		/* Length (in bytes) to write */
2969 				quer_loc = 0,	/* Source query byte location */
2970 				n_quer_loc = 0, /* Normalized query byte location */
2971 				last_off = 0,	/* Offset from start for previous tok */
2972 				last_tok_len = 0;	/* Length (in bytes) of that tok */
2973 
2974 	/*
2975 	 * Get constants' lengths (core system only gives us locations).  Note
2976 	 * this also ensures the items are sorted by location.
2977 	 */
2978 	fill_in_constant_lengths(jstate, query, query_loc);
2979 
2980 	/*
2981 	 * Allow for $n symbols to be longer than the constants they replace.
2982 	 * Constants must take at least one byte in text form, while a $n symbol
2983 	 * certainly isn't more than 11 bytes, even if n reaches INT_MAX.  We
2984 	 * could refine that limit based on the max value of n for the current
2985 	 * query, but it hardly seems worth any extra effort to do so.
2986 	 */
2987 	norm_query_buflen = query_len + jstate->clocations_count * 10;
2988 
2989 	/* Allocate result buffer */
2990 	norm_query = palloc(norm_query_buflen + 1);
2991 
2992 	for (i = 0; i < jstate->clocations_count; i++)
2993 	{
2994 		int			off,		/* Offset from start for cur tok */
2995 					tok_len;	/* Length (in bytes) of that tok */
2996 
2997 		off = jstate->clocations[i].location;
2998 		/* Adjust recorded location if we're dealing with partial string */
2999 		off -= query_loc;
3000 
3001 		tok_len = jstate->clocations[i].length;
3002 
3003 		if (tok_len < 0)
3004 			continue;			/* ignore any duplicates */
3005 
3006 		/* Copy next chunk (what precedes the next constant) */
3007 		len_to_wrt = off - last_off;
3008 		len_to_wrt -= last_tok_len;
3009 
3010 		Assert(len_to_wrt >= 0);
3011 		memcpy(norm_query + n_quer_loc, query + quer_loc, len_to_wrt);
3012 		n_quer_loc += len_to_wrt;
3013 
3014 		/* And insert a param symbol in place of the constant token */
3015 		n_quer_loc += sprintf(norm_query + n_quer_loc, "$%d",
3016 							  i + 1 + jstate->highest_extern_param_id);
3017 
3018 		quer_loc = off + tok_len;
3019 		last_off = off;
3020 		last_tok_len = tok_len;
3021 	}
3022 
3023 	/*
3024 	 * We've copied up until the last ignorable constant.  Copy over the
3025 	 * remaining bytes of the original query string.
3026 	 */
3027 	len_to_wrt = query_len - quer_loc;
3028 
3029 	Assert(len_to_wrt >= 0);
3030 	memcpy(norm_query + n_quer_loc, query + quer_loc, len_to_wrt);
3031 	n_quer_loc += len_to_wrt;
3032 
3033 	Assert(n_quer_loc <= norm_query_buflen);
3034 	norm_query[n_quer_loc] = '\0';
3035 
3036 	*query_len_p = n_quer_loc;
3037 	return norm_query;
3038 }
3039 
3040 /*
3041  * Given a valid SQL string and an array of constant-location records,
3042  * fill in the textual lengths of those constants.
3043  *
3044  * The constants may use any allowed constant syntax, such as float literals,
3045  * bit-strings, single-quoted strings and dollar-quoted strings.  This is
3046  * accomplished by using the public API for the core scanner.
3047  *
3048  * It is the caller's job to ensure that the string is a valid SQL statement
3049  * with constants at the indicated locations.  Since in practice the string
3050  * has already been parsed, and the locations that the caller provides will
3051  * have originated from within the authoritative parser, this should not be
3052  * a problem.
3053  *
3054  * Duplicate constant pointers are possible, and will have their lengths
3055  * marked as '-1', so that they are later ignored.  (Actually, we assume the
3056  * lengths were initialized as -1 to start with, and don't change them here.)
3057  *
3058  * If query_loc > 0, then "query" has been advanced by that much compared to
3059  * the original string start, so we need to translate the provided locations
3060  * to compensate.  (This lets us avoid re-scanning statements before the one
3061  * of interest, so it's worth doing.)
3062  *
3063  * N.B. There is an assumption that a '-' character at a Const location begins
3064  * a negative numeric constant.  This precludes there ever being another
3065  * reason for a constant to start with a '-'.
3066  */
3067 static void
3068 fill_in_constant_lengths(pgssJumbleState *jstate, const char *query,
3069 						 int query_loc)
3070 {
3071 	pgssLocationLen *locs;
3072 	core_yyscan_t yyscanner;
3073 	core_yy_extra_type yyextra;
3074 	core_YYSTYPE yylval;
3075 	YYLTYPE		yylloc;
3076 	int			last_loc = -1;
3077 	int			i;
3078 
3079 	/*
3080 	 * Sort the records by location so that we can process them in order while
3081 	 * scanning the query text.
3082 	 */
3083 	if (jstate->clocations_count > 1)
3084 		qsort(jstate->clocations, jstate->clocations_count,
3085 			  sizeof(pgssLocationLen), comp_location);
3086 	locs = jstate->clocations;
3087 
3088 	/* initialize the flex scanner --- should match raw_parser() */
3089 	yyscanner = scanner_init(query,
3090 							 &yyextra,
3091 							 ScanKeywords,
3092 							 NumScanKeywords);
3093 
3094 	/* we don't want to re-emit any escape string warnings */
3095 	yyextra.escape_string_warning = false;
3096 
3097 	/* Search for each constant, in sequence */
3098 	for (i = 0; i < jstate->clocations_count; i++)
3099 	{
3100 		int			loc = locs[i].location;
3101 		int			tok;
3102 
3103 		/* Adjust recorded location if we're dealing with partial string */
3104 		loc -= query_loc;
3105 
3106 		Assert(loc >= 0);
3107 
3108 		if (loc <= last_loc)
3109 			continue;			/* Duplicate constant, ignore */
3110 
3111 		/* Lex tokens until we find the desired constant */
3112 		for (;;)
3113 		{
3114 			tok = core_yylex(&yylval, &yylloc, yyscanner);
3115 
3116 			/* We should not hit end-of-string, but if we do, behave sanely */
3117 			if (tok == 0)
3118 				break;			/* out of inner for-loop */
3119 
3120 			/*
3121 			 * We should find the token position exactly, but if we somehow
3122 			 * run past it, work with that.
3123 			 */
3124 			if (yylloc >= loc)
3125 			{
3126 				if (query[loc] == '-')
3127 				{
3128 					/*
3129 					 * It's a negative value - this is the one and only case
3130 					 * where we replace more than a single token.
3131 					 *
3132 					 * Do not compensate for the core system's special-case
3133 					 * adjustment of location to that of the leading '-'
3134 					 * operator in the event of a negative constant.  It is
3135 					 * also useful for our purposes to start from the minus
3136 					 * symbol.  In this way, queries like "select * from foo
3137 					 * where bar = 1" and "select * from foo where bar = -2"
3138 					 * will have identical normalized query strings.
3139 					 */
3140 					tok = core_yylex(&yylval, &yylloc, yyscanner);
3141 					if (tok == 0)
3142 						break;	/* out of inner for-loop */
3143 				}
3144 
3145 				/*
3146 				 * We now rely on the assumption that flex has placed a zero
3147 				 * byte after the text of the current token in scanbuf.
3148 				 */
3149 				locs[i].length = strlen(yyextra.scanbuf + loc);
3150 				break;			/* out of inner for-loop */
3151 			}
3152 		}
3153 
3154 		/* If we hit end-of-string, give up, leaving remaining lengths -1 */
3155 		if (tok == 0)
3156 			break;
3157 
3158 		last_loc = loc;
3159 	}
3160 
3161 	scanner_finish(yyscanner);
3162 }
3163 
3164 /*
3165  * comp_location: comparator for qsorting pgssLocationLen structs by location
3166  */
3167 static int
3168 comp_location(const void *a, const void *b)
3169 {
3170 	int			l = ((const pgssLocationLen *) a)->location;
3171 	int			r = ((const pgssLocationLen *) b)->location;
3172 
3173 	if (l < r)
3174 		return -1;
3175 	else if (l > r)
3176 		return +1;
3177 	else
3178 		return 0;
3179 }
3180