1 /*-------------------------------------------------------------------------
2  *
3  * levenshtein.c
4  *	  Levenshtein distance implementation.
5  *
6  * Original author:  Joe Conway <mail@joeconway.com>
7  *
8  * This file is included by varlena.c twice, to provide matching code for (1)
9  * Levenshtein distance with custom costings, and (2) Levenshtein distance with
10  * custom costings and a "max" value above which exact distances are not
11  * interesting.  Before the inclusion, we rely on the presence of the inline
12  * function rest_of_char_same().
13  *
14  * Written based on a description of the algorithm by Michael Gilleland found
15  * at http://www.merriampark.com/ld.htm.  Also looked at levenshtein.c in the
16  * PHP 4.0.6 distribution for inspiration.  Configurable penalty costs
17  * extension is introduced by Volkan YAZICI <volkan.yazici@gmail.com.
18  *
19  * Copyright (c) 2001-2018, PostgreSQL Global Development Group
20  *
21  * IDENTIFICATION
22  *	src/backend/utils/adt/levenshtein.c
23  *
24  *-------------------------------------------------------------------------
25  */
26 #define MAX_LEVENSHTEIN_STRLEN		255
27 
28 /*
29  * Calculates Levenshtein distance metric between supplied strings, which are
30  * not necessarily null-terminated.
31  *
32  * source: source string, of length slen bytes.
33  * target: target string, of length tlen bytes.
34  * ins_c, del_c, sub_c: costs to charge for character insertion, deletion,
35  *		and substitution respectively; (1, 1, 1) costs suffice for common
36  *		cases, but your mileage may vary.
37  * max_d: if provided and >= 0, maximum distance we care about; see below.
38  * trusted: caller is trusted and need not obey MAX_LEVENSHTEIN_STRLEN.
39  *
40  * One way to compute Levenshtein distance is to incrementally construct
41  * an (m+1)x(n+1) matrix where cell (i, j) represents the minimum number
42  * of operations required to transform the first i characters of s into
43  * the first j characters of t.  The last column of the final row is the
44  * answer.
45  *
46  * We use that algorithm here with some modification.  In lieu of holding
47  * the entire array in memory at once, we'll just use two arrays of size
48  * m+1 for storing accumulated values. At each step one array represents
49  * the "previous" row and one is the "current" row of the notional large
50  * array.
51  *
52  * If max_d >= 0, we only need to provide an accurate answer when that answer
data_source_editor_get_type(void)53  * is less than or equal to max_d.  From any cell in the matrix, there is
54  * theoretical "minimum residual distance" from that cell to the last column
55  * of the final row.  This minimum residual distance is zero when the
56  * untransformed portions of the strings are of equal length (because we might
57  * get lucky and find all the remaining characters matching) and is otherwise
58  * based on the minimum number of insertions or deletions needed to make them
59  * equal length.  The residual distance grows as we move toward the upper
60  * right or lower left corners of the matrix.  When the max_d bound is
61  * usefully tight, we can use this property to avoid computing the entirety
62  * of each row; instead, we maintain a start_column and stop_column that
63  * identify the portion of the matrix close to the diagonal which can still
64  * affect the final answer.
65  */
66 int
67 #ifdef LEVENSHTEIN_LESS_EQUAL
68 varstr_levenshtein_less_equal(const char *source, int slen,
69 							  const char *target, int tlen,
70 							  int ins_c, int del_c, int sub_c,
71 							  int max_d, bool trusted)
72 #else
73 varstr_levenshtein(const char *source, int slen,
74 				   const char *target, int tlen,
75 				   int ins_c, int del_c, int sub_c,
76 				   bool trusted)
77 #endif
78 {
79 	int			m,
80 				n;
81 	int		   *prev;
82 	int		   *curr;
83 	int		   *s_char_len = NULL;
84 	int			i,
85 				j;
86 	const char *y;
87 
88 	/*
89 	 * For varstr_levenshtein_less_equal, we have real variables called
90 	 * start_column and stop_column; otherwise it's just short-hand for 0 and
91 	 * m.
92 	 */
93 #ifdef LEVENSHTEIN_LESS_EQUAL
94 	int			start_column,
95 				stop_column;
96 
97 #undef START_COLUMN
98 #undef STOP_COLUMN
99 #define START_COLUMN start_column
100 #define STOP_COLUMN stop_column
101 #else
102 #undef START_COLUMN
103 #undef STOP_COLUMN
104 #define START_COLUMN 0
105 #define STOP_COLUMN m
106 #endif
107 
108 	/* Convert string lengths (in bytes) to lengths in characters */
109 	m = pg_mbstrlen_with_len(source, slen);
110 	n = pg_mbstrlen_with_len(target, tlen);
111 
112 	/*
113 	 * We can transform an empty s into t with n insertions, or a non-empty t
114 	 * into an empty s with m deletions.
115 	 */
116 	if (!m)
117 		return n * ins_c;
118 	if (!n)
119 		return m * del_c;
120 
121 	/*
122 	 * For security concerns, restrict excessive CPU+RAM usage. (This
123 	 * implementation uses O(m) memory and has O(mn) complexity.)  If
124 	 * "trusted" is true, caller is responsible for not making excessive
125 	 * requests, typically by using a small max_d along with strings that are
126 	 * bounded, though not necessarily to MAX_LEVENSHTEIN_STRLEN exactly.
127 	 */
128 	if (!trusted &&
129 		(m > MAX_LEVENSHTEIN_STRLEN ||
130 		 n > MAX_LEVENSHTEIN_STRLEN))
131 		ereport(ERROR,
132 				(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
133 				 errmsg("levenshtein argument exceeds maximum length of %d characters",
134 						MAX_LEVENSHTEIN_STRLEN)));
135 
136 #ifdef LEVENSHTEIN_LESS_EQUAL
137 	/* Initialize start and stop columns. */
138 	start_column = 0;
139 	stop_column = m + 1;
140 
141 	/*
142 	 * If max_d >= 0, determine whether the bound is impossibly tight.  If so,
143 	 * return max_d + 1 immediately.  Otherwise, determine whether it's tight
144 	 * enough to limit the computation we must perform.  If so, figure out
145 	 * initial stop column.
146 	 */
147 	if (max_d >= 0)
148 	{
149 		int			min_theo_d; /* Theoretical minimum distance. */
150 		int			max_theo_d; /* Theoretical maximum distance. */
151 		int			net_inserts = n - m;
152 
153 		min_theo_d = net_inserts < 0 ?
154 			-net_inserts * del_c : net_inserts * ins_c;
155 		if (min_theo_d > max_d)
156 			return max_d + 1;
157 		if (ins_c + del_c < sub_c)
158 			sub_c = ins_c + del_c;
159 		max_theo_d = min_theo_d + sub_c * Min(m, n);
160 		if (max_d >= max_theo_d)
161 			max_d = -1;
162 		else if (ins_c + del_c > 0)
163 		{
164 			/*
165 			 * Figure out how much of the first row of the notional matrix we
166 			 * need to fill in.  If the string is growing, the theoretical
167 			 * minimum distance already incorporates the cost of deleting the
168 			 * number of characters necessary to make the two strings equal in
169 			 * length.  Each additional deletion forces another insertion, so
170 			 * the best-case total cost increases by ins_c + del_c. If the
171 			 * string is shrinking, the minimum theoretical cost assumes no
172 			 * excess deletions; that is, we're starting no further right than
173 			 * column n - m.  If we do start further right, the best-case
174 			 * total cost increases by ins_c + del_c for each move right.
175 			 */
176 			int			slack_d = max_d - min_theo_d;
177 			int			best_column = net_inserts < 0 ? -net_inserts : 0;
178 
179 			stop_column = best_column + (slack_d / (ins_c + del_c)) + 1;
180 			if (stop_column > m)
181 				stop_column = m + 1;
182 		}
183 	}
184 #endif
185 
186 	/*
187 	 * In order to avoid calling pg_mblen() repeatedly on each character in s,
188 	 * we cache all the lengths before starting the main loop -- but if all
189 	 * the characters in both strings are single byte, then we skip this and
190 	 * use a fast-path in the main loop.  If only one string contains
191 	 * multi-byte characters, we still build the array, so that the fast-path
192 	 * needn't deal with the case where the array hasn't been initialized.
193 	 */
194 	if (m != slen || n != tlen)
195 	{
196 		int			i;
197 		const char *cp = source;
198 
199 		s_char_len = (int *) palloc((m + 1) * sizeof(int));
200 		for (i = 0; i < m; ++i)
201 		{
202 			s_char_len[i] = pg_mblen(cp);
203 			cp += s_char_len[i];
204 		}
205 		s_char_len[i] = 0;
206 	}
207 
208 	/* One more cell for initialization column and row. */
209 	++m;
210 	++n;
211 
212 	/* Previous and current rows of notional array. */
213 	prev = (int *) palloc(2 * m * sizeof(int));
214 	curr = prev + m;
215 
216 	/*
217 	 * To transform the first i characters of s into the first 0 characters of
218 	 * t, we must perform i deletions.
219 	 */
220 	for (i = START_COLUMN; i < STOP_COLUMN; i++)
221 		prev[i] = i * del_c;
222 
223 	/* Loop through rows of the notional array */
224 	for (y = target, j = 1; j < n; j++)
225 	{
226 		int		   *temp;
227 		const char *x = source;
228 		int			y_char_len = n != tlen + 1 ? pg_mblen(y) : 1;
229 
230 #ifdef LEVENSHTEIN_LESS_EQUAL
231 
232 		/*
233 		 * In the best case, values percolate down the diagonal unchanged, so
234 		 * we must increment stop_column unless it's already on the right end
235 		 * of the array.  The inner loop will read prev[stop_column], so we
236 		 * have to initialize it even though it shouldn't affect the result.
237 		 */
238 		if (stop_column < m)
239 		{
240 			prev[stop_column] = max_d + 1;
241 			++stop_column;
242 		}
243 
244 		/*
245 		 * The main loop fills in curr, but curr[0] needs a special case: to
246 		 * transform the first 0 characters of s into the first j characters
247 		 * of t, we must perform j insertions.  However, if start_column > 0,
248 		 * this special case does not apply.
249 		 */
250 		if (start_column == 0)
251 		{
252 			curr[0] = j * ins_c;
253 			i = 1;
254 		}
255 		else
256 			i = start_column;
257 #else
258 		curr[0] = j * ins_c;
259 		i = 1;
260 #endif
261 
262 		/*
263 		 * This inner loop is critical to performance, so we include a
264 		 * fast-path to handle the (fairly common) case where no multibyte
265 		 * characters are in the mix.  The fast-path is entitled to assume
266 		 * that if s_char_len is not initialized then BOTH strings contain
267 		 * only single-byte characters.
268 		 */
269 		if (s_char_len != NULL)
270 		{
271 			for (; i < STOP_COLUMN; i++)
272 			{
273 				int			ins;
274 				int			del;
275 				int			sub;
276 				int			x_char_len = s_char_len[i - 1];
277 
278 				/*
279 				 * Calculate costs for insertion, deletion, and substitution.
280 				 *
281 				 * When calculating cost for substitution, we compare the last
282 				 * character of each possibly-multibyte character first,
283 				 * because that's enough to rule out most mis-matches.  If we
284 				 * get past that test, then we compare the lengths and the
285 				 * remaining bytes.
286 				 */
287 				ins = prev[i] + ins_c;
288 				del = curr[i - 1] + del_c;
289 				if (x[x_char_len - 1] == y[y_char_len - 1]
290 					&& x_char_len == y_char_len &&
291 					(x_char_len == 1 || rest_of_char_same(x, y, x_char_len)))
292 					sub = prev[i - 1];
293 				else
294 					sub = prev[i - 1] + sub_c;
295 
296 				/* Take the one with minimum cost. */
297 				curr[i] = Min(ins, del);
298 				curr[i] = Min(curr[i], sub);
299 
300 				/* Point to next character. */
301 				x += x_char_len;
302 			}
303 		}
304 		else
305 		{
306 			for (; i < STOP_COLUMN; i++)
307 			{
308 				int			ins;
309 				int			del;
310 				int			sub;
311 
312 				/* Calculate costs for insertion, deletion, and substitution. */
313 				ins = prev[i] + ins_c;
314 				del = curr[i - 1] + del_c;
315 				sub = prev[i - 1] + ((*x == *y) ? 0 : sub_c);
316 
317 				/* Take the one with minimum cost. */
318 				curr[i] = Min(ins, del);
319 				curr[i] = Min(curr[i], sub);
320 
321 				/* Point to next character. */
322 				x++;
323 			}
324 		}
325 
326 		/* Swap current row with previous row. */
327 		temp = curr;
328 		curr = prev;
329 		prev = temp;
330 
331 		/* Point to next character. */
332 		y += y_char_len;
333 
334 #ifdef LEVENSHTEIN_LESS_EQUAL
335 
336 		/*
337 		 * This chunk of code represents a significant performance hit if used
338 		 * in the case where there is no max_d bound.  This is probably not
339 		 * because the max_d >= 0 test itself is expensive, but rather because
340 		 * the possibility of needing to execute this code prevents tight
341 		 * optimization of the loop as a whole.
342 		 */
343 		if (max_d >= 0)
344 		{
345 			/*
346 			 * The "zero point" is the column of the current row where the
347 			 * remaining portions of the strings are of equal length.  There
348 			 * are (n - 1) characters in the target string, of which j have
349 			 * been transformed.  There are (m - 1) characters in the source
350 			 * string, so we want to find the value for zp where (n - 1) - j =
351 			 * (m - 1) - zp.
352 			 */
353 			int			zp = j - (n - m);
354 
355 			/* Check whether the stop column can slide left. */
356 			while (stop_column > 0)
357 			{
358 				int			ii = stop_column - 1;
359 				int			net_inserts = ii - zp;
360 
361 				if (prev[ii] + (net_inserts > 0 ? net_inserts * ins_c :
362 								-net_inserts * del_c) <= max_d)
363 					break;
364 				stop_column--;
365 			}
366 
367 			/* Check whether the start column can slide right. */
368 			while (start_column < stop_column)
369 			{
370 				int			net_inserts = start_column - zp;
371 
372 				if (prev[start_column] +
373 					(net_inserts > 0 ? net_inserts * ins_c :
374 					 -net_inserts * del_c) <= max_d)
375 					break;
376 
377 				/*
378 				 * We'll never again update these values, so we must make sure
379 				 * there's nothing here that could confuse any future
380 				 * iteration of the outer loop.
381 				 */
382 				prev[start_column] = max_d + 1;
383 				curr[start_column] = max_d + 1;
384 				if (start_column != 0)
385 					source += (s_char_len != NULL) ? s_char_len[start_column - 1] : 1;
386 				start_column++;
387 			}
388 
389 			/* If they cross, we're going to exceed the bound. */
390 			if (start_column >= stop_column)
391 				return max_d + 1;
392 		}
393 #endif
394 	}
395 
396 	/*
397 	 * Because the final value was swapped from the previous row to the
398 	 * current row, that's where we'll find it.
399 	 */
400 	return prev[m - 1];
401 }
402