1 /*-------------------------------------------------------------------------
2  *
3  * prepunion.c
4  *	  Routines to plan set-operation queries.  The filename is a leftover
5  *	  from a time when only UNIONs were implemented.
6  *
7  * There are two code paths in the planner for set-operation queries.
8  * If a subquery consists entirely of simple UNION ALL operations, it
9  * is converted into an "append relation".  Otherwise, it is handled
10  * by the general code in this module (plan_set_operations and its
11  * subroutines).  There is some support code here for the append-relation
12  * case, but most of the heavy lifting for that is done elsewhere,
13  * notably in prepjointree.c and allpaths.c.
14  *
15  * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
16  * Portions Copyright (c) 1994, Regents of the University of California
17  *
18  *
19  * IDENTIFICATION
20  *	  src/backend/optimizer/prep/prepunion.c
21  *
22  *-------------------------------------------------------------------------
23  */
24 #include "postgres.h"
25 
26 #include "access/htup_details.h"
27 #include "access/sysattr.h"
28 #include "catalog/partition.h"
29 #include "catalog/pg_inherits.h"
30 #include "catalog/pg_type.h"
31 #include "miscadmin.h"
32 #include "nodes/makefuncs.h"
33 #include "nodes/nodeFuncs.h"
34 #include "optimizer/cost.h"
35 #include "optimizer/pathnode.h"
36 #include "optimizer/paths.h"
37 #include "optimizer/planmain.h"
38 #include "optimizer/planner.h"
39 #include "optimizer/prep.h"
40 #include "optimizer/tlist.h"
41 #include "parser/parse_coerce.h"
42 #include "parser/parsetree.h"
43 #include "utils/lsyscache.h"
44 #include "utils/rel.h"
45 #include "utils/selfuncs.h"
46 #include "utils/syscache.h"
47 
48 
49 static RelOptInfo *recurse_set_operations(Node *setOp, PlannerInfo *root,
50 										  List *colTypes, List *colCollations,
51 										  bool junkOK,
52 										  int flag, List *refnames_tlist,
53 										  List **pTargetList,
54 										  double *pNumGroups);
55 static RelOptInfo *generate_recursion_path(SetOperationStmt *setOp,
56 										   PlannerInfo *root,
57 										   List *refnames_tlist,
58 										   List **pTargetList);
59 static RelOptInfo *generate_union_paths(SetOperationStmt *op, PlannerInfo *root,
60 										List *refnames_tlist,
61 										List **pTargetList);
62 static RelOptInfo *generate_nonunion_paths(SetOperationStmt *op, PlannerInfo *root,
63 										   List *refnames_tlist,
64 										   List **pTargetList);
65 static List *plan_union_children(PlannerInfo *root,
66 								 SetOperationStmt *top_union,
67 								 List *refnames_tlist,
68 								 List **tlist_list);
69 static Path *make_union_unique(SetOperationStmt *op, Path *path, List *tlist,
70 							   PlannerInfo *root);
71 static void postprocess_setop_rel(PlannerInfo *root, RelOptInfo *rel);
72 static bool choose_hashed_setop(PlannerInfo *root, List *groupClauses,
73 								Path *input_path,
74 								double dNumGroups, double dNumOutputRows,
75 								const char *construct);
76 static List *generate_setop_tlist(List *colTypes, List *colCollations,
77 								  int flag,
78 								  Index varno,
79 								  bool hack_constants,
80 								  List *input_tlist,
81 								  List *refnames_tlist);
82 static List *generate_append_tlist(List *colTypes, List *colCollations,
83 								   bool flag,
84 								   List *input_tlists,
85 								   List *refnames_tlist);
86 static List *generate_setop_grouplist(SetOperationStmt *op, List *targetlist);
87 
88 
89 /*
90  * plan_set_operations
91  *
92  *	  Plans the queries for a tree of set operations (UNION/INTERSECT/EXCEPT)
93  *
94  * This routine only deals with the setOperations tree of the given query.
95  * Any top-level ORDER BY requested in root->parse->sortClause will be handled
96  * when we return to grouping_planner; likewise for LIMIT.
97  *
98  * What we return is an "upperrel" RelOptInfo containing at least one Path
99  * that implements the set-operation tree.  In addition, root->processed_tlist
100  * receives a targetlist representing the output of the topmost setop node.
101  */
102 RelOptInfo *
plan_set_operations(PlannerInfo * root)103 plan_set_operations(PlannerInfo *root)
104 {
105 	Query	   *parse = root->parse;
106 	SetOperationStmt *topop = castNode(SetOperationStmt, parse->setOperations);
107 	Node	   *node;
108 	RangeTblEntry *leftmostRTE;
109 	Query	   *leftmostQuery;
110 	RelOptInfo *setop_rel;
111 	List	   *top_tlist;
112 
113 	Assert(topop);
114 
115 	/* check for unsupported stuff */
116 	Assert(parse->jointree->fromlist == NIL);
117 	Assert(parse->jointree->quals == NULL);
118 	Assert(parse->groupClause == NIL);
119 	Assert(parse->havingQual == NULL);
120 	Assert(parse->windowClause == NIL);
121 	Assert(parse->distinctClause == NIL);
122 
123 	/*
124 	 * We'll need to build RelOptInfos for each of the leaf subqueries, which
125 	 * are RTE_SUBQUERY rangetable entries in this Query.  Prepare the index
126 	 * arrays for that.
127 	 */
128 	setup_simple_rel_arrays(root);
129 
130 	/*
131 	 * Populate append_rel_array with each AppendRelInfo to allow direct
132 	 * lookups by child relid.
133 	 */
134 	setup_append_rel_array(root);
135 
136 	/*
137 	 * Find the leftmost component Query.  We need to use its column names for
138 	 * all generated tlists (else SELECT INTO won't work right).
139 	 */
140 	node = topop->larg;
141 	while (node && IsA(node, SetOperationStmt))
142 		node = ((SetOperationStmt *) node)->larg;
143 	Assert(node && IsA(node, RangeTblRef));
144 	leftmostRTE = root->simple_rte_array[((RangeTblRef *) node)->rtindex];
145 	leftmostQuery = leftmostRTE->subquery;
146 	Assert(leftmostQuery != NULL);
147 
148 	/*
149 	 * If the topmost node is a recursive union, it needs special processing.
150 	 */
151 	if (root->hasRecursion)
152 	{
153 		setop_rel = generate_recursion_path(topop, root,
154 											leftmostQuery->targetList,
155 											&top_tlist);
156 	}
157 	else
158 	{
159 		/*
160 		 * Recurse on setOperations tree to generate paths for set ops. The
161 		 * final output paths should have just the column types shown as the
162 		 * output from the top-level node, plus possibly resjunk working
163 		 * columns (we can rely on upper-level nodes to deal with that).
164 		 */
165 		setop_rel = recurse_set_operations((Node *) topop, root,
166 										   topop->colTypes, topop->colCollations,
167 										   true, -1,
168 										   leftmostQuery->targetList,
169 										   &top_tlist,
170 										   NULL);
171 	}
172 
173 	/* Must return the built tlist into root->processed_tlist. */
174 	root->processed_tlist = top_tlist;
175 
176 	return setop_rel;
177 }
178 
179 /*
180  * recurse_set_operations
181  *	  Recursively handle one step in a tree of set operations
182  *
183  * colTypes: OID list of set-op's result column datatypes
184  * colCollations: OID list of set-op's result column collations
185  * junkOK: if true, child resjunk columns may be left in the result
186  * flag: if >= 0, add a resjunk output column indicating value of flag
187  * refnames_tlist: targetlist to take column names from
188  *
189  * Returns a RelOptInfo for the subtree, as well as these output parameters:
190  * *pTargetList: receives the fully-fledged tlist for the subtree's top plan
191  * *pNumGroups: if not NULL, we estimate the number of distinct groups
192  *		in the result, and store it there
193  *
194  * The pTargetList output parameter is mostly redundant with the pathtarget
195  * of the returned RelOptInfo, but for the moment we need it because much of
196  * the logic in this file depends on flag columns being marked resjunk.
197  * Pending a redesign of how that works, this is the easy way out.
198  *
199  * We don't have to care about typmods here: the only allowed difference
200  * between set-op input and output typmods is input is a specific typmod
201  * and output is -1, and that does not require a coercion.
202  */
203 static RelOptInfo *
recurse_set_operations(Node * setOp,PlannerInfo * root,List * colTypes,List * colCollations,bool junkOK,int flag,List * refnames_tlist,List ** pTargetList,double * pNumGroups)204 recurse_set_operations(Node *setOp, PlannerInfo *root,
205 					   List *colTypes, List *colCollations,
206 					   bool junkOK,
207 					   int flag, List *refnames_tlist,
208 					   List **pTargetList,
209 					   double *pNumGroups)
210 {
211 	RelOptInfo *rel = NULL;		/* keep compiler quiet */
212 
213 	/* Guard against stack overflow due to overly complex setop nests */
214 	check_stack_depth();
215 
216 	if (IsA(setOp, RangeTblRef))
217 	{
218 		RangeTblRef *rtr = (RangeTblRef *) setOp;
219 		RangeTblEntry *rte = root->simple_rte_array[rtr->rtindex];
220 		Query	   *subquery = rte->subquery;
221 		PlannerInfo *subroot;
222 		RelOptInfo *final_rel;
223 		Path	   *subpath;
224 		Path	   *path;
225 		List	   *tlist;
226 
227 		Assert(subquery != NULL);
228 
229 		/* Build a RelOptInfo for this leaf subquery. */
230 		rel = build_simple_rel(root, rtr->rtindex, NULL);
231 
232 		/* plan_params should not be in use in current query level */
233 		Assert(root->plan_params == NIL);
234 
235 		/* Generate a subroot and Paths for the subquery */
236 		subroot = rel->subroot = subquery_planner(root->glob, subquery,
237 												  root,
238 												  false,
239 												  root->tuple_fraction);
240 
241 		/*
242 		 * It should not be possible for the primitive query to contain any
243 		 * cross-references to other primitive queries in the setop tree.
244 		 */
245 		if (root->plan_params)
246 			elog(ERROR, "unexpected outer reference in set operation subquery");
247 
248 		/* Figure out the appropriate target list for this subquery. */
249 		tlist = generate_setop_tlist(colTypes, colCollations,
250 									 flag,
251 									 rtr->rtindex,
252 									 true,
253 									 subroot->processed_tlist,
254 									 refnames_tlist);
255 		rel->reltarget = create_pathtarget(root, tlist);
256 
257 		/* Return the fully-fledged tlist to caller, too */
258 		*pTargetList = tlist;
259 
260 		/*
261 		 * Mark rel with estimated output rows, width, etc.  Note that we have
262 		 * to do this before generating outer-query paths, else
263 		 * cost_subqueryscan is not happy.
264 		 */
265 		set_subquery_size_estimates(root, rel);
266 
267 		/*
268 		 * Since we may want to add a partial path to this relation, we must
269 		 * set its consider_parallel flag correctly.
270 		 */
271 		final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
272 		rel->consider_parallel = final_rel->consider_parallel;
273 
274 		/*
275 		 * For the moment, we consider only a single Path for the subquery.
276 		 * This should change soon (make it look more like
277 		 * set_subquery_pathlist).
278 		 */
279 		subpath = get_cheapest_fractional_path(final_rel,
280 											   root->tuple_fraction);
281 
282 		/*
283 		 * Stick a SubqueryScanPath atop that.
284 		 *
285 		 * We don't bother to determine the subquery's output ordering since
286 		 * it won't be reflected in the set-op result anyhow; so just label
287 		 * the SubqueryScanPath with nil pathkeys.  (XXX that should change
288 		 * soon too, likely.)
289 		 */
290 		path = (Path *) create_subqueryscan_path(root, rel, subpath,
291 												 NIL, NULL);
292 
293 		add_path(rel, path);
294 
295 		/*
296 		 * If we have a partial path for the child relation, we can use that
297 		 * to build a partial path for this relation.  But there's no point in
298 		 * considering any path but the cheapest.
299 		 */
300 		if (rel->consider_parallel && bms_is_empty(rel->lateral_relids) &&
301 			final_rel->partial_pathlist != NIL)
302 		{
303 			Path	   *partial_subpath;
304 			Path	   *partial_path;
305 
306 			partial_subpath = linitial(final_rel->partial_pathlist);
307 			partial_path = (Path *)
308 				create_subqueryscan_path(root, rel, partial_subpath,
309 										 NIL, NULL);
310 			add_partial_path(rel, partial_path);
311 		}
312 
313 		/*
314 		 * Estimate number of groups if caller wants it.  If the subquery used
315 		 * grouping or aggregation, its output is probably mostly unique
316 		 * anyway; otherwise do statistical estimation.
317 		 *
318 		 * XXX you don't really want to know about this: we do the estimation
319 		 * using the subquery's original targetlist expressions, not the
320 		 * subroot->processed_tlist which might seem more appropriate.  The
321 		 * reason is that if the subquery is itself a setop, it may return a
322 		 * processed_tlist containing "varno 0" Vars generated by
323 		 * generate_append_tlist, and those would confuse estimate_num_groups
324 		 * mightily.  We ought to get rid of the "varno 0" hack, but that
325 		 * requires a redesign of the parsetree representation of setops, so
326 		 * that there can be an RTE corresponding to each setop's output.
327 		 */
328 		if (pNumGroups)
329 		{
330 			if (subquery->groupClause || subquery->groupingSets ||
331 				subquery->distinctClause ||
332 				subroot->hasHavingQual || subquery->hasAggs)
333 				*pNumGroups = subpath->rows;
334 			else
335 				*pNumGroups = estimate_num_groups(subroot,
336 												  get_tlist_exprs(subquery->targetList, false),
337 												  subpath->rows,
338 												  NULL);
339 		}
340 	}
341 	else if (IsA(setOp, SetOperationStmt))
342 	{
343 		SetOperationStmt *op = (SetOperationStmt *) setOp;
344 
345 		/* UNIONs are much different from INTERSECT/EXCEPT */
346 		if (op->op == SETOP_UNION)
347 			rel = generate_union_paths(op, root,
348 									   refnames_tlist,
349 									   pTargetList);
350 		else
351 			rel = generate_nonunion_paths(op, root,
352 										  refnames_tlist,
353 										  pTargetList);
354 		if (pNumGroups)
355 			*pNumGroups = rel->rows;
356 
357 		/*
358 		 * If necessary, add a Result node to project the caller-requested
359 		 * output columns.
360 		 *
361 		 * XXX you don't really want to know about this: setrefs.c will apply
362 		 * fix_upper_expr() to the Result node's tlist. This would fail if the
363 		 * Vars generated by generate_setop_tlist() were not exactly equal()
364 		 * to the corresponding tlist entries of the subplan. However, since
365 		 * the subplan was generated by generate_union_plan() or
366 		 * generate_nonunion_plan(), and hence its tlist was generated by
367 		 * generate_append_tlist(), this will work.  We just tell
368 		 * generate_setop_tlist() to use varno 0.
369 		 */
370 		if (flag >= 0 ||
371 			!tlist_same_datatypes(*pTargetList, colTypes, junkOK) ||
372 			!tlist_same_collations(*pTargetList, colCollations, junkOK))
373 		{
374 			PathTarget *target;
375 			ListCell   *lc;
376 
377 			*pTargetList = generate_setop_tlist(colTypes, colCollations,
378 												flag,
379 												0,
380 												false,
381 												*pTargetList,
382 												refnames_tlist);
383 			target = create_pathtarget(root, *pTargetList);
384 
385 			/* Apply projection to each path */
386 			foreach(lc, rel->pathlist)
387 			{
388 				Path	   *subpath = (Path *) lfirst(lc);
389 				Path	   *path;
390 
391 				Assert(subpath->param_info == NULL);
392 				path = apply_projection_to_path(root, subpath->parent,
393 												subpath, target);
394 				/* If we had to add a Result, path is different from subpath */
395 				if (path != subpath)
396 					lfirst(lc) = path;
397 			}
398 
399 			/* Apply projection to each partial path */
400 			foreach(lc, rel->partial_pathlist)
401 			{
402 				Path	   *subpath = (Path *) lfirst(lc);
403 				Path	   *path;
404 
405 				Assert(subpath->param_info == NULL);
406 
407 				/* avoid apply_projection_to_path, in case of multiple refs */
408 				path = (Path *) create_projection_path(root, subpath->parent,
409 													   subpath, target);
410 				lfirst(lc) = path;
411 			}
412 		}
413 	}
414 	else
415 	{
416 		elog(ERROR, "unrecognized node type: %d",
417 			 (int) nodeTag(setOp));
418 		*pTargetList = NIL;
419 	}
420 
421 	postprocess_setop_rel(root, rel);
422 
423 	return rel;
424 }
425 
426 /*
427  * Generate paths for a recursive UNION node
428  */
429 static RelOptInfo *
generate_recursion_path(SetOperationStmt * setOp,PlannerInfo * root,List * refnames_tlist,List ** pTargetList)430 generate_recursion_path(SetOperationStmt *setOp, PlannerInfo *root,
431 						List *refnames_tlist,
432 						List **pTargetList)
433 {
434 	RelOptInfo *result_rel;
435 	Path	   *path;
436 	RelOptInfo *lrel,
437 			   *rrel;
438 	Path	   *lpath;
439 	Path	   *rpath;
440 	List	   *lpath_tlist;
441 	List	   *rpath_tlist;
442 	List	   *tlist;
443 	List	   *groupList;
444 	double		dNumGroups;
445 
446 	/* Parser should have rejected other cases */
447 	if (setOp->op != SETOP_UNION)
448 		elog(ERROR, "only UNION queries can be recursive");
449 	/* Worktable ID should be assigned */
450 	Assert(root->wt_param_id >= 0);
451 
452 	/*
453 	 * Unlike a regular UNION node, process the left and right inputs
454 	 * separately without any intention of combining them into one Append.
455 	 */
456 	lrel = recurse_set_operations(setOp->larg, root,
457 								  setOp->colTypes, setOp->colCollations,
458 								  false, -1,
459 								  refnames_tlist,
460 								  &lpath_tlist,
461 								  NULL);
462 	lpath = lrel->cheapest_total_path;
463 	/* The right path will want to look at the left one ... */
464 	root->non_recursive_path = lpath;
465 	rrel = recurse_set_operations(setOp->rarg, root,
466 								  setOp->colTypes, setOp->colCollations,
467 								  false, -1,
468 								  refnames_tlist,
469 								  &rpath_tlist,
470 								  NULL);
471 	rpath = rrel->cheapest_total_path;
472 	root->non_recursive_path = NULL;
473 
474 	/*
475 	 * Generate tlist for RecursiveUnion path node --- same as in Append cases
476 	 */
477 	tlist = generate_append_tlist(setOp->colTypes, setOp->colCollations, false,
478 								  list_make2(lpath_tlist, rpath_tlist),
479 								  refnames_tlist);
480 
481 	*pTargetList = tlist;
482 
483 	/* Build result relation. */
484 	result_rel = fetch_upper_rel(root, UPPERREL_SETOP,
485 								 bms_union(lrel->relids, rrel->relids));
486 	result_rel->reltarget = create_pathtarget(root, tlist);
487 
488 	/*
489 	 * If UNION, identify the grouping operators
490 	 */
491 	if (setOp->all)
492 	{
493 		groupList = NIL;
494 		dNumGroups = 0;
495 	}
496 	else
497 	{
498 		/* Identify the grouping semantics */
499 		groupList = generate_setop_grouplist(setOp, tlist);
500 
501 		/* We only support hashing here */
502 		if (!grouping_is_hashable(groupList))
503 			ereport(ERROR,
504 					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
505 					 errmsg("could not implement recursive UNION"),
506 					 errdetail("All column datatypes must be hashable.")));
507 
508 		/*
509 		 * For the moment, take the number of distinct groups as equal to the
510 		 * total input size, ie, the worst case.
511 		 */
512 		dNumGroups = lpath->rows + rpath->rows * 10;
513 	}
514 
515 	/*
516 	 * And make the path node.
517 	 */
518 	path = (Path *) create_recursiveunion_path(root,
519 											   result_rel,
520 											   lpath,
521 											   rpath,
522 											   result_rel->reltarget,
523 											   groupList,
524 											   root->wt_param_id,
525 											   dNumGroups);
526 
527 	add_path(result_rel, path);
528 	postprocess_setop_rel(root, result_rel);
529 	return result_rel;
530 }
531 
532 /*
533  * Generate paths for a UNION or UNION ALL node
534  */
535 static RelOptInfo *
generate_union_paths(SetOperationStmt * op,PlannerInfo * root,List * refnames_tlist,List ** pTargetList)536 generate_union_paths(SetOperationStmt *op, PlannerInfo *root,
537 					 List *refnames_tlist,
538 					 List **pTargetList)
539 {
540 	Relids		relids = NULL;
541 	RelOptInfo *result_rel;
542 	double		save_fraction = root->tuple_fraction;
543 	ListCell   *lc;
544 	List	   *pathlist = NIL;
545 	List	   *partial_pathlist = NIL;
546 	bool		partial_paths_valid = true;
547 	bool		consider_parallel = true;
548 	List	   *rellist;
549 	List	   *tlist_list;
550 	List	   *tlist;
551 	Path	   *path;
552 
553 	/*
554 	 * If plain UNION, tell children to fetch all tuples.
555 	 *
556 	 * Note: in UNION ALL, we pass the top-level tuple_fraction unmodified to
557 	 * each arm of the UNION ALL.  One could make a case for reducing the
558 	 * tuple fraction for later arms (discounting by the expected size of the
559 	 * earlier arms' results) but it seems not worth the trouble. The normal
560 	 * case where tuple_fraction isn't already zero is a LIMIT at top level,
561 	 * and passing it down as-is is usually enough to get the desired result
562 	 * of preferring fast-start plans.
563 	 */
564 	if (!op->all)
565 		root->tuple_fraction = 0.0;
566 
567 	/*
568 	 * If any of my children are identical UNION nodes (same op, all-flag, and
569 	 * colTypes) then they can be merged into this node so that we generate
570 	 * only one Append and unique-ification for the lot.  Recurse to find such
571 	 * nodes and compute their children's paths.
572 	 */
573 	rellist = plan_union_children(root, op, refnames_tlist, &tlist_list);
574 
575 	/*
576 	 * Generate tlist for Append plan node.
577 	 *
578 	 * The tlist for an Append plan isn't important as far as the Append is
579 	 * concerned, but we must make it look real anyway for the benefit of the
580 	 * next plan level up.
581 	 */
582 	tlist = generate_append_tlist(op->colTypes, op->colCollations, false,
583 								  tlist_list, refnames_tlist);
584 
585 	*pTargetList = tlist;
586 
587 	/* Build path lists and relid set. */
588 	foreach(lc, rellist)
589 	{
590 		RelOptInfo *rel = lfirst(lc);
591 
592 		pathlist = lappend(pathlist, rel->cheapest_total_path);
593 
594 		if (consider_parallel)
595 		{
596 			if (!rel->consider_parallel)
597 			{
598 				consider_parallel = false;
599 				partial_paths_valid = false;
600 			}
601 			else if (rel->partial_pathlist == NIL)
602 				partial_paths_valid = false;
603 			else
604 				partial_pathlist = lappend(partial_pathlist,
605 										   linitial(rel->partial_pathlist));
606 		}
607 
608 		relids = bms_union(relids, rel->relids);
609 	}
610 
611 	/* Build result relation. */
612 	result_rel = fetch_upper_rel(root, UPPERREL_SETOP, relids);
613 	result_rel->reltarget = create_pathtarget(root, tlist);
614 	result_rel->consider_parallel = consider_parallel;
615 
616 	/*
617 	 * Append the child results together.
618 	 */
619 	path = (Path *) create_append_path(root, result_rel, pathlist, NIL,
620 									   NIL, NULL, 0, false, NIL, -1);
621 
622 	/*
623 	 * For UNION ALL, we just need the Append path.  For UNION, need to add
624 	 * node(s) to remove duplicates.
625 	 */
626 	if (!op->all)
627 		path = make_union_unique(op, path, tlist, root);
628 
629 	add_path(result_rel, path);
630 
631 	/*
632 	 * Estimate number of groups.  For now we just assume the output is unique
633 	 * --- this is certainly true for the UNION case, and we want worst-case
634 	 * estimates anyway.
635 	 */
636 	result_rel->rows = path->rows;
637 
638 	/*
639 	 * Now consider doing the same thing using the partial paths plus Append
640 	 * plus Gather.
641 	 */
642 	if (partial_paths_valid)
643 	{
644 		Path	   *ppath;
645 		ListCell   *lc;
646 		int			parallel_workers = 0;
647 
648 		/* Find the highest number of workers requested for any subpath. */
649 		foreach(lc, partial_pathlist)
650 		{
651 			Path	   *path = lfirst(lc);
652 
653 			parallel_workers = Max(parallel_workers, path->parallel_workers);
654 		}
655 		Assert(parallel_workers > 0);
656 
657 		/*
658 		 * If the use of parallel append is permitted, always request at least
659 		 * log2(# of children) paths.  We assume it can be useful to have
660 		 * extra workers in this case because they will be spread out across
661 		 * the children.  The precise formula is just a guess; see
662 		 * add_paths_to_append_rel.
663 		 */
664 		if (enable_parallel_append)
665 		{
666 			parallel_workers = Max(parallel_workers,
667 								   fls(list_length(partial_pathlist)));
668 			parallel_workers = Min(parallel_workers,
669 								   max_parallel_workers_per_gather);
670 		}
671 		Assert(parallel_workers > 0);
672 
673 		ppath = (Path *)
674 			create_append_path(root, result_rel, NIL, partial_pathlist,
675 							   NIL, NULL,
676 							   parallel_workers, enable_parallel_append,
677 							   NIL, -1);
678 		ppath = (Path *)
679 			create_gather_path(root, result_rel, ppath,
680 							   result_rel->reltarget, NULL, NULL);
681 		if (!op->all)
682 			ppath = make_union_unique(op, ppath, tlist, root);
683 		add_path(result_rel, ppath);
684 	}
685 
686 	/* Undo effects of possibly forcing tuple_fraction to 0 */
687 	root->tuple_fraction = save_fraction;
688 
689 	return result_rel;
690 }
691 
692 /*
693  * Generate paths for an INTERSECT, INTERSECT ALL, EXCEPT, or EXCEPT ALL node
694  */
695 static RelOptInfo *
generate_nonunion_paths(SetOperationStmt * op,PlannerInfo * root,List * refnames_tlist,List ** pTargetList)696 generate_nonunion_paths(SetOperationStmt *op, PlannerInfo *root,
697 						List *refnames_tlist,
698 						List **pTargetList)
699 {
700 	RelOptInfo *result_rel;
701 	RelOptInfo *lrel,
702 			   *rrel;
703 	double		save_fraction = root->tuple_fraction;
704 	Path	   *lpath,
705 			   *rpath,
706 			   *path;
707 	List	   *lpath_tlist,
708 			   *rpath_tlist,
709 			   *tlist_list,
710 			   *tlist,
711 			   *groupList,
712 			   *pathlist;
713 	double		dLeftGroups,
714 				dRightGroups,
715 				dNumGroups,
716 				dNumOutputRows;
717 	bool		use_hash;
718 	SetOpCmd	cmd;
719 	int			firstFlag;
720 
721 	/*
722 	 * Tell children to fetch all tuples.
723 	 */
724 	root->tuple_fraction = 0.0;
725 
726 	/* Recurse on children, ensuring their outputs are marked */
727 	lrel = recurse_set_operations(op->larg, root,
728 								  op->colTypes, op->colCollations,
729 								  false, 0,
730 								  refnames_tlist,
731 								  &lpath_tlist,
732 								  &dLeftGroups);
733 	lpath = lrel->cheapest_total_path;
734 	rrel = recurse_set_operations(op->rarg, root,
735 								  op->colTypes, op->colCollations,
736 								  false, 1,
737 								  refnames_tlist,
738 								  &rpath_tlist,
739 								  &dRightGroups);
740 	rpath = rrel->cheapest_total_path;
741 
742 	/* Undo effects of forcing tuple_fraction to 0 */
743 	root->tuple_fraction = save_fraction;
744 
745 	/*
746 	 * For EXCEPT, we must put the left input first.  For INTERSECT, either
747 	 * order should give the same results, and we prefer to put the smaller
748 	 * input first in order to minimize the size of the hash table in the
749 	 * hashing case.  "Smaller" means the one with the fewer groups.
750 	 */
751 	if (op->op == SETOP_EXCEPT || dLeftGroups <= dRightGroups)
752 	{
753 		pathlist = list_make2(lpath, rpath);
754 		tlist_list = list_make2(lpath_tlist, rpath_tlist);
755 		firstFlag = 0;
756 	}
757 	else
758 	{
759 		pathlist = list_make2(rpath, lpath);
760 		tlist_list = list_make2(rpath_tlist, lpath_tlist);
761 		firstFlag = 1;
762 	}
763 
764 	/*
765 	 * Generate tlist for Append plan node.
766 	 *
767 	 * The tlist for an Append plan isn't important as far as the Append is
768 	 * concerned, but we must make it look real anyway for the benefit of the
769 	 * next plan level up.  In fact, it has to be real enough that the flag
770 	 * column is shown as a variable not a constant, else setrefs.c will get
771 	 * confused.
772 	 */
773 	tlist = generate_append_tlist(op->colTypes, op->colCollations, true,
774 								  tlist_list, refnames_tlist);
775 
776 	*pTargetList = tlist;
777 
778 	/* Build result relation. */
779 	result_rel = fetch_upper_rel(root, UPPERREL_SETOP,
780 								 bms_union(lrel->relids, rrel->relids));
781 	result_rel->reltarget = create_pathtarget(root, tlist);
782 
783 	/*
784 	 * Append the child results together.
785 	 */
786 	path = (Path *) create_append_path(root, result_rel, pathlist, NIL,
787 									   NIL, NULL, 0, false, NIL, -1);
788 
789 	/* Identify the grouping semantics */
790 	groupList = generate_setop_grouplist(op, tlist);
791 
792 	/*
793 	 * Estimate number of distinct groups that we'll need hashtable entries
794 	 * for; this is the size of the left-hand input for EXCEPT, or the smaller
795 	 * input for INTERSECT.  Also estimate the number of eventual output rows.
796 	 * In non-ALL cases, we estimate each group produces one output row; in
797 	 * ALL cases use the relevant relation size.  These are worst-case
798 	 * estimates, of course, but we need to be conservative.
799 	 */
800 	if (op->op == SETOP_EXCEPT)
801 	{
802 		dNumGroups = dLeftGroups;
803 		dNumOutputRows = op->all ? lpath->rows : dNumGroups;
804 	}
805 	else
806 	{
807 		dNumGroups = Min(dLeftGroups, dRightGroups);
808 		dNumOutputRows = op->all ? Min(lpath->rows, rpath->rows) : dNumGroups;
809 	}
810 
811 	/*
812 	 * Decide whether to hash or sort, and add a sort node if needed.
813 	 */
814 	use_hash = choose_hashed_setop(root, groupList, path,
815 								   dNumGroups, dNumOutputRows,
816 								   (op->op == SETOP_INTERSECT) ? "INTERSECT" : "EXCEPT");
817 
818 	if (groupList && !use_hash)
819 		path = (Path *) create_sort_path(root,
820 										 result_rel,
821 										 path,
822 										 make_pathkeys_for_sortclauses(root,
823 																	   groupList,
824 																	   tlist),
825 										 -1.0);
826 
827 	/*
828 	 * Finally, add a SetOp path node to generate the correct output.
829 	 */
830 	switch (op->op)
831 	{
832 		case SETOP_INTERSECT:
833 			cmd = op->all ? SETOPCMD_INTERSECT_ALL : SETOPCMD_INTERSECT;
834 			break;
835 		case SETOP_EXCEPT:
836 			cmd = op->all ? SETOPCMD_EXCEPT_ALL : SETOPCMD_EXCEPT;
837 			break;
838 		default:
839 			elog(ERROR, "unrecognized set op: %d", (int) op->op);
840 			cmd = SETOPCMD_INTERSECT;	/* keep compiler quiet */
841 			break;
842 	}
843 	path = (Path *) create_setop_path(root,
844 									  result_rel,
845 									  path,
846 									  cmd,
847 									  use_hash ? SETOP_HASHED : SETOP_SORTED,
848 									  groupList,
849 									  list_length(op->colTypes) + 1,
850 									  use_hash ? firstFlag : -1,
851 									  dNumGroups,
852 									  dNumOutputRows);
853 
854 	result_rel->rows = path->rows;
855 	add_path(result_rel, path);
856 	return result_rel;
857 }
858 
859 /*
860  * Pull up children of a UNION node that are identically-propertied UNIONs.
861  *
862  * NOTE: we can also pull a UNION ALL up into a UNION, since the distinct
863  * output rows will be lost anyway.
864  *
865  * NOTE: currently, we ignore collations while determining if a child has
866  * the same properties.  This is semantically sound only so long as all
867  * collations have the same notion of equality.  It is valid from an
868  * implementation standpoint because we don't care about the ordering of
869  * a UNION child's result: UNION ALL results are always unordered, and
870  * generate_union_paths will force a fresh sort if the top level is a UNION.
871  */
872 static List *
plan_union_children(PlannerInfo * root,SetOperationStmt * top_union,List * refnames_tlist,List ** tlist_list)873 plan_union_children(PlannerInfo *root,
874 					SetOperationStmt *top_union,
875 					List *refnames_tlist,
876 					List **tlist_list)
877 {
878 	List	   *pending_rels = list_make1(top_union);
879 	List	   *result = NIL;
880 	List	   *child_tlist;
881 
882 	*tlist_list = NIL;
883 
884 	while (pending_rels != NIL)
885 	{
886 		Node	   *setOp = linitial(pending_rels);
887 
888 		pending_rels = list_delete_first(pending_rels);
889 
890 		if (IsA(setOp, SetOperationStmt))
891 		{
892 			SetOperationStmt *op = (SetOperationStmt *) setOp;
893 
894 			if (op->op == top_union->op &&
895 				(op->all == top_union->all || op->all) &&
896 				equal(op->colTypes, top_union->colTypes))
897 			{
898 				/* Same UNION, so fold children into parent */
899 				pending_rels = lcons(op->rarg, pending_rels);
900 				pending_rels = lcons(op->larg, pending_rels);
901 				continue;
902 			}
903 		}
904 
905 		/*
906 		 * Not same, so plan this child separately.
907 		 *
908 		 * Note we disallow any resjunk columns in child results.  This is
909 		 * necessary since the Append node that implements the union won't do
910 		 * any projection, and upper levels will get confused if some of our
911 		 * output tuples have junk and some don't.  This case only arises when
912 		 * we have an EXCEPT or INTERSECT as child, else there won't be
913 		 * resjunk anyway.
914 		 */
915 		result = lappend(result, recurse_set_operations(setOp, root,
916 														top_union->colTypes,
917 														top_union->colCollations,
918 														false, -1,
919 														refnames_tlist,
920 														&child_tlist,
921 														NULL));
922 		*tlist_list = lappend(*tlist_list, child_tlist);
923 	}
924 
925 	return result;
926 }
927 
928 /*
929  * Add nodes to the given path tree to unique-ify the result of a UNION.
930  */
931 static Path *
make_union_unique(SetOperationStmt * op,Path * path,List * tlist,PlannerInfo * root)932 make_union_unique(SetOperationStmt *op, Path *path, List *tlist,
933 				  PlannerInfo *root)
934 {
935 	RelOptInfo *result_rel = fetch_upper_rel(root, UPPERREL_SETOP, NULL);
936 	List	   *groupList;
937 	double		dNumGroups;
938 
939 	/* Identify the grouping semantics */
940 	groupList = generate_setop_grouplist(op, tlist);
941 
942 	/*
943 	 * XXX for the moment, take the number of distinct groups as equal to the
944 	 * total input size, ie, the worst case.  This is too conservative, but we
945 	 * don't want to risk having the hashtable overrun memory; also, it's not
946 	 * clear how to get a decent estimate of the true size.  One should note
947 	 * as well the propensity of novices to write UNION rather than UNION ALL
948 	 * even when they don't expect any duplicates...
949 	 */
950 	dNumGroups = path->rows;
951 
952 	/* Decide whether to hash or sort */
953 	if (choose_hashed_setop(root, groupList, path,
954 							dNumGroups, dNumGroups,
955 							"UNION"))
956 	{
957 		/* Hashed aggregate plan --- no sort needed */
958 		path = (Path *) create_agg_path(root,
959 										result_rel,
960 										path,
961 										create_pathtarget(root, tlist),
962 										AGG_HASHED,
963 										AGGSPLIT_SIMPLE,
964 										groupList,
965 										NIL,
966 										NULL,
967 										dNumGroups);
968 	}
969 	else
970 	{
971 		/* Sort and Unique */
972 		if (groupList)
973 			path = (Path *)
974 				create_sort_path(root,
975 								 result_rel,
976 								 path,
977 								 make_pathkeys_for_sortclauses(root,
978 															   groupList,
979 															   tlist),
980 								 -1.0);
981 		path = (Path *) create_upper_unique_path(root,
982 												 result_rel,
983 												 path,
984 												 list_length(path->pathkeys),
985 												 dNumGroups);
986 	}
987 
988 	return path;
989 }
990 
991 /*
992  * postprocess_setop_rel - perform steps required after adding paths
993  */
994 static void
postprocess_setop_rel(PlannerInfo * root,RelOptInfo * rel)995 postprocess_setop_rel(PlannerInfo *root, RelOptInfo *rel)
996 {
997 	/*
998 	 * We don't currently worry about allowing FDWs to contribute paths to
999 	 * this relation, but give extensions a chance.
1000 	 */
1001 	if (create_upper_paths_hook)
1002 		(*create_upper_paths_hook) (root, UPPERREL_SETOP,
1003 									NULL, rel, NULL);
1004 
1005 	/* Select cheapest path */
1006 	set_cheapest(rel);
1007 }
1008 
1009 /*
1010  * choose_hashed_setop - should we use hashing for a set operation?
1011  */
1012 static bool
choose_hashed_setop(PlannerInfo * root,List * groupClauses,Path * input_path,double dNumGroups,double dNumOutputRows,const char * construct)1013 choose_hashed_setop(PlannerInfo *root, List *groupClauses,
1014 					Path *input_path,
1015 					double dNumGroups, double dNumOutputRows,
1016 					const char *construct)
1017 {
1018 	int			numGroupCols = list_length(groupClauses);
1019 	bool		can_sort;
1020 	bool		can_hash;
1021 	Size		hashentrysize;
1022 	Path		hashed_p;
1023 	Path		sorted_p;
1024 	double		tuple_fraction;
1025 
1026 	/* Check whether the operators support sorting or hashing */
1027 	can_sort = grouping_is_sortable(groupClauses);
1028 	can_hash = grouping_is_hashable(groupClauses);
1029 	if (can_hash && can_sort)
1030 	{
1031 		/* we have a meaningful choice to make, continue ... */
1032 	}
1033 	else if (can_hash)
1034 		return true;
1035 	else if (can_sort)
1036 		return false;
1037 	else
1038 		ereport(ERROR,
1039 				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1040 		/* translator: %s is UNION, INTERSECT, or EXCEPT */
1041 				 errmsg("could not implement %s", construct),
1042 				 errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
1043 
1044 	/* Prefer sorting when enable_hashagg is off */
1045 	if (!enable_hashagg)
1046 		return false;
1047 
1048 	/*
1049 	 * Don't do it if it doesn't look like the hashtable will fit into
1050 	 * work_mem.
1051 	 */
1052 	hashentrysize = MAXALIGN(input_path->pathtarget->width) + MAXALIGN(SizeofMinimalTupleHeader);
1053 
1054 	if (hashentrysize * dNumGroups > work_mem * 1024L)
1055 		return false;
1056 
1057 	/*
1058 	 * See if the estimated cost is no more than doing it the other way.
1059 	 *
1060 	 * We need to consider input_plan + hashagg versus input_plan + sort +
1061 	 * group.  Note that the actual result plan might involve a SetOp or
1062 	 * Unique node, not Agg or Group, but the cost estimates for Agg and Group
1063 	 * should be close enough for our purposes here.
1064 	 *
1065 	 * These path variables are dummies that just hold cost fields; we don't
1066 	 * make actual Paths for these steps.
1067 	 */
1068 	cost_agg(&hashed_p, root, AGG_HASHED, NULL,
1069 			 numGroupCols, dNumGroups,
1070 			 NIL,
1071 			 input_path->startup_cost, input_path->total_cost,
1072 			 input_path->rows);
1073 
1074 	/*
1075 	 * Now for the sorted case.  Note that the input is *always* unsorted,
1076 	 * since it was made by appending unrelated sub-relations together.
1077 	 */
1078 	sorted_p.startup_cost = input_path->startup_cost;
1079 	sorted_p.total_cost = input_path->total_cost;
1080 	/* XXX cost_sort doesn't actually look at pathkeys, so just pass NIL */
1081 	cost_sort(&sorted_p, root, NIL, sorted_p.total_cost,
1082 			  input_path->rows, input_path->pathtarget->width,
1083 			  0.0, work_mem, -1.0);
1084 	cost_group(&sorted_p, root, numGroupCols, dNumGroups,
1085 			   NIL,
1086 			   sorted_p.startup_cost, sorted_p.total_cost,
1087 			   input_path->rows);
1088 
1089 	/*
1090 	 * Now make the decision using the top-level tuple fraction.  First we
1091 	 * have to convert an absolute count (LIMIT) into fractional form.
1092 	 */
1093 	tuple_fraction = root->tuple_fraction;
1094 	if (tuple_fraction >= 1.0)
1095 		tuple_fraction /= dNumOutputRows;
1096 
1097 	if (compare_fractional_path_costs(&hashed_p, &sorted_p,
1098 									  tuple_fraction) < 0)
1099 	{
1100 		/* Hashed is cheaper, so use it */
1101 		return true;
1102 	}
1103 	return false;
1104 }
1105 
1106 /*
1107  * Generate targetlist for a set-operation plan node
1108  *
1109  * colTypes: OID list of set-op's result column datatypes
1110  * colCollations: OID list of set-op's result column collations
1111  * flag: -1 if no flag column needed, 0 or 1 to create a const flag column
1112  * varno: varno to use in generated Vars
1113  * hack_constants: true to copy up constants (see comments in code)
1114  * input_tlist: targetlist of this node's input node
1115  * refnames_tlist: targetlist to take column names from
1116  */
1117 static List *
generate_setop_tlist(List * colTypes,List * colCollations,int flag,Index varno,bool hack_constants,List * input_tlist,List * refnames_tlist)1118 generate_setop_tlist(List *colTypes, List *colCollations,
1119 					 int flag,
1120 					 Index varno,
1121 					 bool hack_constants,
1122 					 List *input_tlist,
1123 					 List *refnames_tlist)
1124 {
1125 	List	   *tlist = NIL;
1126 	int			resno = 1;
1127 	ListCell   *ctlc,
1128 			   *cclc,
1129 			   *itlc,
1130 			   *rtlc;
1131 	TargetEntry *tle;
1132 	Node	   *expr;
1133 
1134 	forfour(ctlc, colTypes, cclc, colCollations,
1135 			itlc, input_tlist, rtlc, refnames_tlist)
1136 	{
1137 		Oid			colType = lfirst_oid(ctlc);
1138 		Oid			colColl = lfirst_oid(cclc);
1139 		TargetEntry *inputtle = (TargetEntry *) lfirst(itlc);
1140 		TargetEntry *reftle = (TargetEntry *) lfirst(rtlc);
1141 
1142 		Assert(inputtle->resno == resno);
1143 		Assert(reftle->resno == resno);
1144 		Assert(!inputtle->resjunk);
1145 		Assert(!reftle->resjunk);
1146 
1147 		/*
1148 		 * Generate columns referencing input columns and having appropriate
1149 		 * data types and column names.  Insert datatype coercions where
1150 		 * necessary.
1151 		 *
1152 		 * HACK: constants in the input's targetlist are copied up as-is
1153 		 * rather than being referenced as subquery outputs.  This is mainly
1154 		 * to ensure that when we try to coerce them to the output column's
1155 		 * datatype, the right things happen for UNKNOWN constants.  But do
1156 		 * this only at the first level of subquery-scan plans; we don't want
1157 		 * phony constants appearing in the output tlists of upper-level
1158 		 * nodes!
1159 		 */
1160 		if (hack_constants && inputtle->expr && IsA(inputtle->expr, Const))
1161 			expr = (Node *) inputtle->expr;
1162 		else
1163 			expr = (Node *) makeVar(varno,
1164 									inputtle->resno,
1165 									exprType((Node *) inputtle->expr),
1166 									exprTypmod((Node *) inputtle->expr),
1167 									exprCollation((Node *) inputtle->expr),
1168 									0);
1169 
1170 		if (exprType(expr) != colType)
1171 		{
1172 			/*
1173 			 * Note: it's not really cool to be applying coerce_to_common_type
1174 			 * here; one notable point is that assign_expr_collations never
1175 			 * gets run on any generated nodes.  For the moment that's not a
1176 			 * problem because we force the correct exposed collation below.
1177 			 * It would likely be best to make the parser generate the correct
1178 			 * output tlist for every set-op to begin with, though.
1179 			 */
1180 			expr = coerce_to_common_type(NULL,	/* no UNKNOWNs here */
1181 										 expr,
1182 										 colType,
1183 										 "UNION/INTERSECT/EXCEPT");
1184 		}
1185 
1186 		/*
1187 		 * Ensure the tlist entry's exposed collation matches the set-op. This
1188 		 * is necessary because plan_set_operations() reports the result
1189 		 * ordering as a list of SortGroupClauses, which don't carry collation
1190 		 * themselves but just refer to tlist entries.  If we don't show the
1191 		 * right collation then planner.c might do the wrong thing in
1192 		 * higher-level queries.
1193 		 *
1194 		 * Note we use RelabelType, not CollateExpr, since this expression
1195 		 * will reach the executor without any further processing.
1196 		 */
1197 		if (exprCollation(expr) != colColl)
1198 			expr = applyRelabelType(expr,
1199 									exprType(expr), exprTypmod(expr), colColl,
1200 									COERCE_IMPLICIT_CAST, -1, false);
1201 
1202 		tle = makeTargetEntry((Expr *) expr,
1203 							  (AttrNumber) resno++,
1204 							  pstrdup(reftle->resname),
1205 							  false);
1206 
1207 		/*
1208 		 * By convention, all non-resjunk columns in a setop tree have
1209 		 * ressortgroupref equal to their resno.  In some cases the ref isn't
1210 		 * needed, but this is a cleaner way than modifying the tlist later.
1211 		 */
1212 		tle->ressortgroupref = tle->resno;
1213 
1214 		tlist = lappend(tlist, tle);
1215 	}
1216 
1217 	if (flag >= 0)
1218 	{
1219 		/* Add a resjunk flag column */
1220 		/* flag value is the given constant */
1221 		expr = (Node *) makeConst(INT4OID,
1222 								  -1,
1223 								  InvalidOid,
1224 								  sizeof(int32),
1225 								  Int32GetDatum(flag),
1226 								  false,
1227 								  true);
1228 		tle = makeTargetEntry((Expr *) expr,
1229 							  (AttrNumber) resno++,
1230 							  pstrdup("flag"),
1231 							  true);
1232 		tlist = lappend(tlist, tle);
1233 	}
1234 
1235 	return tlist;
1236 }
1237 
1238 /*
1239  * Generate targetlist for a set-operation Append node
1240  *
1241  * colTypes: OID list of set-op's result column datatypes
1242  * colCollations: OID list of set-op's result column collations
1243  * flag: true to create a flag column copied up from subplans
1244  * input_tlists: list of tlists for sub-plans of the Append
1245  * refnames_tlist: targetlist to take column names from
1246  *
1247  * The entries in the Append's targetlist should always be simple Vars;
1248  * we just have to make sure they have the right datatypes/typmods/collations.
1249  * The Vars are always generated with varno 0.
1250  *
1251  * XXX a problem with the varno-zero approach is that set_pathtarget_cost_width
1252  * cannot figure out a realistic width for the tlist we make here.  But we
1253  * ought to refactor this code to produce a PathTarget directly, anyway.
1254  */
1255 static List *
generate_append_tlist(List * colTypes,List * colCollations,bool flag,List * input_tlists,List * refnames_tlist)1256 generate_append_tlist(List *colTypes, List *colCollations,
1257 					  bool flag,
1258 					  List *input_tlists,
1259 					  List *refnames_tlist)
1260 {
1261 	List	   *tlist = NIL;
1262 	int			resno = 1;
1263 	ListCell   *curColType;
1264 	ListCell   *curColCollation;
1265 	ListCell   *ref_tl_item;
1266 	int			colindex;
1267 	TargetEntry *tle;
1268 	Node	   *expr;
1269 	ListCell   *tlistl;
1270 	int32	   *colTypmods;
1271 
1272 	/*
1273 	 * First extract typmods to use.
1274 	 *
1275 	 * If the inputs all agree on type and typmod of a particular column, use
1276 	 * that typmod; else use -1.
1277 	 */
1278 	colTypmods = (int32 *) palloc(list_length(colTypes) * sizeof(int32));
1279 
1280 	foreach(tlistl, input_tlists)
1281 	{
1282 		List	   *subtlist = (List *) lfirst(tlistl);
1283 		ListCell   *subtlistl;
1284 
1285 		curColType = list_head(colTypes);
1286 		colindex = 0;
1287 		foreach(subtlistl, subtlist)
1288 		{
1289 			TargetEntry *subtle = (TargetEntry *) lfirst(subtlistl);
1290 
1291 			if (subtle->resjunk)
1292 				continue;
1293 			Assert(curColType != NULL);
1294 			if (exprType((Node *) subtle->expr) == lfirst_oid(curColType))
1295 			{
1296 				/* If first subplan, copy the typmod; else compare */
1297 				int32		subtypmod = exprTypmod((Node *) subtle->expr);
1298 
1299 				if (tlistl == list_head(input_tlists))
1300 					colTypmods[colindex] = subtypmod;
1301 				else if (subtypmod != colTypmods[colindex])
1302 					colTypmods[colindex] = -1;
1303 			}
1304 			else
1305 			{
1306 				/* types disagree, so force typmod to -1 */
1307 				colTypmods[colindex] = -1;
1308 			}
1309 			curColType = lnext(curColType);
1310 			colindex++;
1311 		}
1312 		Assert(curColType == NULL);
1313 	}
1314 
1315 	/*
1316 	 * Now we can build the tlist for the Append.
1317 	 */
1318 	colindex = 0;
1319 	forthree(curColType, colTypes, curColCollation, colCollations,
1320 			 ref_tl_item, refnames_tlist)
1321 	{
1322 		Oid			colType = lfirst_oid(curColType);
1323 		int32		colTypmod = colTypmods[colindex++];
1324 		Oid			colColl = lfirst_oid(curColCollation);
1325 		TargetEntry *reftle = (TargetEntry *) lfirst(ref_tl_item);
1326 
1327 		Assert(reftle->resno == resno);
1328 		Assert(!reftle->resjunk);
1329 		expr = (Node *) makeVar(0,
1330 								resno,
1331 								colType,
1332 								colTypmod,
1333 								colColl,
1334 								0);
1335 		tle = makeTargetEntry((Expr *) expr,
1336 							  (AttrNumber) resno++,
1337 							  pstrdup(reftle->resname),
1338 							  false);
1339 
1340 		/*
1341 		 * By convention, all non-resjunk columns in a setop tree have
1342 		 * ressortgroupref equal to their resno.  In some cases the ref isn't
1343 		 * needed, but this is a cleaner way than modifying the tlist later.
1344 		 */
1345 		tle->ressortgroupref = tle->resno;
1346 
1347 		tlist = lappend(tlist, tle);
1348 	}
1349 
1350 	if (flag)
1351 	{
1352 		/* Add a resjunk flag column */
1353 		/* flag value is shown as copied up from subplan */
1354 		expr = (Node *) makeVar(0,
1355 								resno,
1356 								INT4OID,
1357 								-1,
1358 								InvalidOid,
1359 								0);
1360 		tle = makeTargetEntry((Expr *) expr,
1361 							  (AttrNumber) resno++,
1362 							  pstrdup("flag"),
1363 							  true);
1364 		tlist = lappend(tlist, tle);
1365 	}
1366 
1367 	pfree(colTypmods);
1368 
1369 	return tlist;
1370 }
1371 
1372 /*
1373  * generate_setop_grouplist
1374  *		Build a SortGroupClause list defining the sort/grouping properties
1375  *		of the setop's output columns.
1376  *
1377  * Parse analysis already determined the properties and built a suitable
1378  * list, except that the entries do not have sortgrouprefs set because
1379  * the parser output representation doesn't include a tlist for each
1380  * setop.  So what we need to do here is copy that list and install
1381  * proper sortgrouprefs into it (copying those from the targetlist).
1382  */
1383 static List *
generate_setop_grouplist(SetOperationStmt * op,List * targetlist)1384 generate_setop_grouplist(SetOperationStmt *op, List *targetlist)
1385 {
1386 	List	   *grouplist = copyObject(op->groupClauses);
1387 	ListCell   *lg;
1388 	ListCell   *lt;
1389 
1390 	lg = list_head(grouplist);
1391 	foreach(lt, targetlist)
1392 	{
1393 		TargetEntry *tle = (TargetEntry *) lfirst(lt);
1394 		SortGroupClause *sgc;
1395 
1396 		if (tle->resjunk)
1397 		{
1398 			/* resjunk columns should not have sortgrouprefs */
1399 			Assert(tle->ressortgroupref == 0);
1400 			continue;			/* ignore resjunk columns */
1401 		}
1402 
1403 		/* non-resjunk columns should have sortgroupref = resno */
1404 		Assert(tle->ressortgroupref == tle->resno);
1405 
1406 		/* non-resjunk columns should have grouping clauses */
1407 		Assert(lg != NULL);
1408 		sgc = (SortGroupClause *) lfirst(lg);
1409 		lg = lnext(lg);
1410 		Assert(sgc->tleSortGroupRef == 0);
1411 
1412 		sgc->tleSortGroupRef = tle->ressortgroupref;
1413 	}
1414 	Assert(lg == NULL);
1415 	return grouplist;
1416 }
1417