1 /*-------------------------------------------------------------------------
2  *
3  * tableam.h
4  *	  POSTGRES table access method definitions.
5  *
6  *
7  * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
8  * Portions Copyright (c) 1994, Regents of the University of California
9  *
10  * src/include/access/tableam.h
11  *
12  * NOTES
13  *		See tableam.sgml for higher level documentation.
14  *
15  *-------------------------------------------------------------------------
16  */
17 #ifndef TABLEAM_H
18 #define TABLEAM_H
19 
20 #include "access/relscan.h"
21 #include "access/sdir.h"
22 #include "utils/guc.h"
23 #include "utils/rel.h"
24 #include "utils/snapshot.h"
25 
26 
27 #define DEFAULT_TABLE_ACCESS_METHOD	"heap"
28 
29 /* GUCs */
30 extern char *default_table_access_method;
31 extern bool synchronize_seqscans;
32 
33 
34 struct BulkInsertStateData;
35 struct IndexInfo;
36 struct SampleScanState;
37 struct TBMIterateResult;
38 struct VacuumParams;
39 struct ValidateIndexState;
40 
41 /*
42  * Bitmask values for the flags argument to the scan_begin callback.
43  */
44 typedef enum ScanOptions
45 {
46 	/* one of SO_TYPE_* may be specified */
47 	SO_TYPE_SEQSCAN = 1 << 0,
48 	SO_TYPE_BITMAPSCAN = 1 << 1,
49 	SO_TYPE_SAMPLESCAN = 1 << 2,
50 	SO_TYPE_ANALYZE = 1 << 3,
51 	SO_TYPE_TIDSCAN = 1 << 8,
52 
53 	/* several of SO_ALLOW_* may be specified */
54 	/* allow or disallow use of access strategy */
55 	SO_ALLOW_STRAT = 1 << 4,
56 	/* report location to syncscan logic? */
57 	SO_ALLOW_SYNC = 1 << 5,
58 	/* verify visibility page-at-a-time? */
59 	SO_ALLOW_PAGEMODE = 1 << 6,
60 
61 	/* unregister snapshot at scan end? */
62 	SO_TEMP_SNAPSHOT = 1 << 7
63 } ScanOptions;
64 
65 /*
66  * Result codes for table_{update,delete,lock_tuple}, and for visibility
67  * routines inside table AMs.
68  */
69 typedef enum TM_Result
70 {
71 	/*
72 	 * Signals that the action succeeded (i.e. update/delete performed, lock
73 	 * was acquired)
74 	 */
75 	TM_Ok,
76 
77 	/* The affected tuple wasn't visible to the relevant snapshot */
78 	TM_Invisible,
79 
80 	/* The affected tuple was already modified by the calling backend */
81 	TM_SelfModified,
82 
83 	/*
84 	 * The affected tuple was updated by another transaction. This includes
85 	 * the case where tuple was moved to another partition.
86 	 */
87 	TM_Updated,
88 
89 	/* The affected tuple was deleted by another transaction */
90 	TM_Deleted,
91 
92 	/*
93 	 * The affected tuple is currently being modified by another session. This
94 	 * will only be returned if table_(update/delete/lock_tuple) are
95 	 * instructed not to wait.
96 	 */
97 	TM_BeingModified,
98 
99 	/* lock couldn't be acquired, action skipped. Only used by lock_tuple */
100 	TM_WouldBlock
101 } TM_Result;
102 
103 /*
104  * When table_tuple_update, table_tuple_delete, or table_tuple_lock fail
105  * because the target tuple is already outdated, they fill in this struct to
106  * provide information to the caller about what happened.
107  *
108  * ctid is the target's ctid link: it is the same as the target's TID if the
109  * target was deleted, or the location of the replacement tuple if the target
110  * was updated.
111  *
112  * xmax is the outdating transaction's XID.  If the caller wants to visit the
113  * replacement tuple, it must check that this matches before believing the
114  * replacement is really a match.
115  *
116  * cmax is the outdating command's CID, but only when the failure code is
117  * TM_SelfModified (i.e., something in the current transaction outdated the
118  * tuple); otherwise cmax is zero.  (We make this restriction because
119  * HeapTupleHeaderGetCmax doesn't work for tuples outdated in other
120  * transactions.)
121  */
122 typedef struct TM_FailureData
123 {
124 	ItemPointerData ctid;
125 	TransactionId xmax;
126 	CommandId	cmax;
127 	bool		traversed;
128 } TM_FailureData;
129 
130 /* "options" flag bits for table_tuple_insert */
131 #define TABLE_INSERT_SKIP_WAL		0x0001
132 #define TABLE_INSERT_SKIP_FSM		0x0002
133 #define TABLE_INSERT_FROZEN			0x0004
134 #define TABLE_INSERT_NO_LOGICAL		0x0008
135 
136 /* flag bits for table_tuple_lock */
137 /* Follow tuples whose update is in progress if lock modes don't conflict  */
138 #define TUPLE_LOCK_FLAG_LOCK_UPDATE_IN_PROGRESS	(1 << 0)
139 /* Follow update chain and lock latest version of tuple */
140 #define TUPLE_LOCK_FLAG_FIND_LAST_VERSION		(1 << 1)
141 
142 
143 /* Typedef for callback function for table_index_build_scan */
144 typedef void (*IndexBuildCallback) (Relation index,
145 									HeapTuple htup,
146 									Datum *values,
147 									bool *isnull,
148 									bool tupleIsAlive,
149 									void *state);
150 
151 /*
152  * API struct for a table AM.  Note this must be allocated in a
153  * server-lifetime manner, typically as a static const struct, which then gets
154  * returned by FormData_pg_am.amhandler.
155  *
156  * In most cases it's not appropriate to call the callbacks directly, use the
157  * table_* wrapper functions instead.
158  *
159  * GetTableAmRoutine() asserts that required callbacks are filled in, remember
160  * to update when adding a callback.
161  */
162 typedef struct TableAmRoutine
163 {
164 	/* this must be set to T_TableAmRoutine */
165 	NodeTag		type;
166 
167 
168 	/* ------------------------------------------------------------------------
169 	 * Slot related callbacks.
170 	 * ------------------------------------------------------------------------
171 	 */
172 
173 	/*
174 	 * Return slot implementation suitable for storing a tuple of this AM.
175 	 */
176 	const TupleTableSlotOps *(*slot_callbacks) (Relation rel);
177 
178 
179 	/* ------------------------------------------------------------------------
180 	 * Table scan callbacks.
181 	 * ------------------------------------------------------------------------
182 	 */
183 
184 	/*
185 	 * Start a scan of `rel`.  The callback has to return a TableScanDesc,
186 	 * which will typically be embedded in a larger, AM specific, struct.
187 	 *
188 	 * If nkeys != 0, the results need to be filtered by those scan keys.
189 	 *
190 	 * pscan, if not NULL, will have already been initialized with
191 	 * parallelscan_initialize(), and has to be for the same relation. Will
192 	 * only be set coming from table_beginscan_parallel().
193 	 *
194 	 * `flags` is a bitmask indicating the type of scan (ScanOptions's
195 	 * SO_TYPE_*, currently only one may be specified), options controlling
196 	 * the scan's behaviour (ScanOptions's SO_ALLOW_*, several may be
197 	 * specified, an AM may ignore unsupported ones) and whether the snapshot
198 	 * needs to be deallocated at scan_end (ScanOptions's SO_TEMP_SNAPSHOT).
199 	 */
200 	TableScanDesc (*scan_begin) (Relation rel,
201 								 Snapshot snapshot,
202 								 int nkeys, struct ScanKeyData *key,
203 								 ParallelTableScanDesc pscan,
204 								 uint32 flags);
205 
206 	/*
207 	 * Release resources and deallocate scan. If TableScanDesc.temp_snap,
208 	 * TableScanDesc.rs_snapshot needs to be unregistered.
209 	 */
210 	void		(*scan_end) (TableScanDesc scan);
211 
212 	/*
213 	 * Restart relation scan.  If set_params is set to true, allow_{strat,
214 	 * sync, pagemode} (see scan_begin) changes should be taken into account.
215 	 */
216 	void		(*scan_rescan) (TableScanDesc scan, struct ScanKeyData *key,
217 								bool set_params, bool allow_strat,
218 								bool allow_sync, bool allow_pagemode);
219 
220 	/*
221 	 * Return next tuple from `scan`, store in slot.
222 	 */
223 	bool		(*scan_getnextslot) (TableScanDesc scan,
224 									 ScanDirection direction,
225 									 TupleTableSlot *slot);
226 
227 
228 	/* ------------------------------------------------------------------------
229 	 * Parallel table scan related functions.
230 	 * ------------------------------------------------------------------------
231 	 */
232 
233 	/*
234 	 * Estimate the size of shared memory needed for a parallel scan of this
235 	 * relation. The snapshot does not need to be accounted for.
236 	 */
237 	Size		(*parallelscan_estimate) (Relation rel);
238 
239 	/*
240 	 * Initialize ParallelTableScanDesc for a parallel scan of this relation.
241 	 * `pscan` will be sized according to parallelscan_estimate() for the same
242 	 * relation.
243 	 */
244 	Size		(*parallelscan_initialize) (Relation rel,
245 											ParallelTableScanDesc pscan);
246 
247 	/*
248 	 * Reinitialize `pscan` for a new scan. `rel` will be the same relation as
249 	 * when `pscan` was initialized by parallelscan_initialize.
250 	 */
251 	void		(*parallelscan_reinitialize) (Relation rel,
252 											  ParallelTableScanDesc pscan);
253 
254 
255 	/* ------------------------------------------------------------------------
256 	 * Index Scan Callbacks
257 	 * ------------------------------------------------------------------------
258 	 */
259 
260 	/*
261 	 * Prepare to fetch tuples from the relation, as needed when fetching
262 	 * tuples for an index scan.  The callback has to return an
263 	 * IndexFetchTableData, which the AM will typically embed in a larger
264 	 * structure with additional information.
265 	 *
266 	 * Tuples for an index scan can then be fetched via index_fetch_tuple.
267 	 */
268 	struct IndexFetchTableData *(*index_fetch_begin) (Relation rel);
269 
270 	/*
271 	 * Reset index fetch. Typically this will release cross index fetch
272 	 * resources held in IndexFetchTableData.
273 	 */
274 	void		(*index_fetch_reset) (struct IndexFetchTableData *data);
275 
276 	/*
277 	 * Release resources and deallocate index fetch.
278 	 */
279 	void		(*index_fetch_end) (struct IndexFetchTableData *data);
280 
281 	/*
282 	 * Fetch tuple at `tid` into `slot`, after doing a visibility test
283 	 * according to `snapshot`. If a tuple was found and passed the visibility
284 	 * test, return true, false otherwise.
285 	 *
286 	 * Note that AMs that do not necessarily update indexes when indexed
287 	 * columns do not change, need to return the current/correct version of
288 	 * the tuple that is visible to the snapshot, even if the tid points to an
289 	 * older version of the tuple.
290 	 *
291 	 * *call_again is false on the first call to index_fetch_tuple for a tid.
292 	 * If there potentially is another tuple matching the tid, *call_again
293 	 * needs be set to true by index_fetch_tuple, signalling to the caller
294 	 * that index_fetch_tuple should be called again for the same tid.
295 	 *
296 	 * *all_dead, if all_dead is not NULL, should be set to true by
297 	 * index_fetch_tuple iff it is guaranteed that no backend needs to see
298 	 * that tuple. Index AMs can use that to avoid returning that tid in
299 	 * future searches.
300 	 */
301 	bool		(*index_fetch_tuple) (struct IndexFetchTableData *scan,
302 									  ItemPointer tid,
303 									  Snapshot snapshot,
304 									  TupleTableSlot *slot,
305 									  bool *call_again, bool *all_dead);
306 
307 
308 	/* ------------------------------------------------------------------------
309 	 * Callbacks for non-modifying operations on individual tuples
310 	 * ------------------------------------------------------------------------
311 	 */
312 
313 	/*
314 	 * Fetch tuple at `tid` into `slot`, after doing a visibility test
315 	 * according to `snapshot`. If a tuple was found and passed the visibility
316 	 * test, returns true, false otherwise.
317 	 */
318 	bool		(*tuple_fetch_row_version) (Relation rel,
319 											ItemPointer tid,
320 											Snapshot snapshot,
321 											TupleTableSlot *slot);
322 
323 	/*
324 	 * Is tid valid for a scan of this relation.
325 	 */
326 	bool		(*tuple_tid_valid) (TableScanDesc scan,
327 									ItemPointer tid);
328 
329 	/*
330 	 * Return the latest version of the tuple at `tid`, by updating `tid` to
331 	 * point at the newest version.
332 	 */
333 	void		(*tuple_get_latest_tid) (TableScanDesc scan,
334 										 ItemPointer tid);
335 
336 	/*
337 	 * Does the tuple in `slot` satisfy `snapshot`?  The slot needs to be of
338 	 * the appropriate type for the AM.
339 	 */
340 	bool		(*tuple_satisfies_snapshot) (Relation rel,
341 											 TupleTableSlot *slot,
342 											 Snapshot snapshot);
343 
344 	/* see table_compute_xid_horizon_for_tuples() */
345 	TransactionId (*compute_xid_horizon_for_tuples) (Relation rel,
346 													 ItemPointerData *items,
347 													 int nitems);
348 
349 
350 	/* ------------------------------------------------------------------------
351 	 * Manipulations of physical tuples.
352 	 * ------------------------------------------------------------------------
353 	 */
354 
355 	/* see table_tuple_insert() for reference about parameters */
356 	void		(*tuple_insert) (Relation rel, TupleTableSlot *slot,
357 								 CommandId cid, int options,
358 								 struct BulkInsertStateData *bistate);
359 
360 	/* see table_tuple_insert_speculative() for reference about parameters */
361 	void		(*tuple_insert_speculative) (Relation rel,
362 											 TupleTableSlot *slot,
363 											 CommandId cid,
364 											 int options,
365 											 struct BulkInsertStateData *bistate,
366 											 uint32 specToken);
367 
368 	/* see table_tuple_complete_speculative() for reference about parameters */
369 	void		(*tuple_complete_speculative) (Relation rel,
370 											   TupleTableSlot *slot,
371 											   uint32 specToken,
372 											   bool succeeded);
373 
374 	/* see table_multi_insert() for reference about parameters */
375 	void		(*multi_insert) (Relation rel, TupleTableSlot **slots, int nslots,
376 								 CommandId cid, int options, struct BulkInsertStateData *bistate);
377 
378 	/* see table_tuple_delete() for reference about parameters */
379 	TM_Result	(*tuple_delete) (Relation rel,
380 								 ItemPointer tid,
381 								 CommandId cid,
382 								 Snapshot snapshot,
383 								 Snapshot crosscheck,
384 								 bool wait,
385 								 TM_FailureData *tmfd,
386 								 bool changingPart);
387 
388 	/* see table_tuple_update() for reference about parameters */
389 	TM_Result	(*tuple_update) (Relation rel,
390 								 ItemPointer otid,
391 								 TupleTableSlot *slot,
392 								 CommandId cid,
393 								 Snapshot snapshot,
394 								 Snapshot crosscheck,
395 								 bool wait,
396 								 TM_FailureData *tmfd,
397 								 LockTupleMode *lockmode,
398 								 bool *update_indexes);
399 
400 	/* see table_tuple_lock() for reference about parameters */
401 	TM_Result	(*tuple_lock) (Relation rel,
402 							   ItemPointer tid,
403 							   Snapshot snapshot,
404 							   TupleTableSlot *slot,
405 							   CommandId cid,
406 							   LockTupleMode mode,
407 							   LockWaitPolicy wait_policy,
408 							   uint8 flags,
409 							   TM_FailureData *tmfd);
410 
411 	/*
412 	 * Perform operations necessary to complete insertions made via
413 	 * tuple_insert and multi_insert with a BulkInsertState specified. This
414 	 * may for example be used to flush the relation, when the
415 	 * TABLE_INSERT_SKIP_WAL option was used.
416 	 *
417 	 * Typically callers of tuple_insert and multi_insert will just pass all
418 	 * the flags that apply to them, and each AM has to decide which of them
419 	 * make sense for it, and then only take actions in finish_bulk_insert for
420 	 * those flags, and ignore others.
421 	 *
422 	 * Optional callback.
423 	 */
424 	void		(*finish_bulk_insert) (Relation rel, int options);
425 
426 
427 	/* ------------------------------------------------------------------------
428 	 * DDL related functionality.
429 	 * ------------------------------------------------------------------------
430 	 */
431 
432 	/*
433 	 * This callback needs to create a new relation filenode for `rel`, with
434 	 * appropriate durability behaviour for `persistence`.
435 	 *
436 	 * Note that only the subset of the relcache filled by
437 	 * RelationBuildLocalRelation() can be relied upon and that the relation's
438 	 * catalog entries will either not yet exist (new relation), or will still
439 	 * reference the old relfilenode.
440 	 *
441 	 * As output *freezeXid, *minmulti must be set to the values appropriate
442 	 * for pg_class.{relfrozenxid, relminmxid}. For AMs that don't need those
443 	 * fields to be filled they can be set to InvalidTransactionId and
444 	 * InvalidMultiXactId, respectively.
445 	 *
446 	 * See also table_relation_set_new_filenode().
447 	 */
448 	void		(*relation_set_new_filenode) (Relation rel,
449 											  const RelFileNode *newrnode,
450 											  char persistence,
451 											  TransactionId *freezeXid,
452 											  MultiXactId *minmulti);
453 
454 	/*
455 	 * This callback needs to remove all contents from `rel`'s current
456 	 * relfilenode. No provisions for transactional behaviour need to be made.
457 	 * Often this can be implemented by truncating the underlying storage to
458 	 * its minimal size.
459 	 *
460 	 * See also table_relation_nontransactional_truncate().
461 	 */
462 	void		(*relation_nontransactional_truncate) (Relation rel);
463 
464 	/*
465 	 * See table_relation_copy_data().
466 	 *
467 	 * This can typically be implemented by directly copying the underlying
468 	 * storage, unless it contains references to the tablespace internally.
469 	 */
470 	void		(*relation_copy_data) (Relation rel,
471 									   const RelFileNode *newrnode);
472 
473 	/* See table_relation_copy_for_cluster() */
474 	void		(*relation_copy_for_cluster) (Relation NewTable,
475 											  Relation OldTable,
476 											  Relation OldIndex,
477 											  bool use_sort,
478 											  TransactionId OldestXmin,
479 											  TransactionId *xid_cutoff,
480 											  MultiXactId *multi_cutoff,
481 											  double *num_tuples,
482 											  double *tups_vacuumed,
483 											  double *tups_recently_dead);
484 
485 	/*
486 	 * React to VACUUM command on the relation. The VACUUM can be
487 	 * triggered by a user or by autovacuum. The specific actions
488 	 * performed by the AM will depend heavily on the individual AM.
489 	 *
490 	 * On entry a transaction is already established, and the relation is
491 	 * locked with a ShareUpdateExclusive lock.
492 	 *
493 	 * Note that neither VACUUM FULL (and CLUSTER), nor ANALYZE go through
494 	 * this routine, even if (for ANALYZE) it is part of the same VACUUM
495 	 * command.
496 	 *
497 	 * There probably, in the future, needs to be a separate callback to
498 	 * integrate with autovacuum's scheduling.
499 	 */
500 	void		(*relation_vacuum) (Relation onerel,
501 									struct VacuumParams *params,
502 									BufferAccessStrategy bstrategy);
503 
504 	/*
505 	 * Prepare to analyze block `blockno` of `scan`. The scan has been started
506 	 * with table_beginscan_analyze().  See also
507 	 * table_scan_analyze_next_block().
508 	 *
509 	 * The callback may acquire resources like locks that are held until
510 	 * table_scan_analyze_next_tuple() returns false. It e.g. can make sense
511 	 * to hold a lock until all tuples on a block have been analyzed by
512 	 * scan_analyze_next_tuple.
513 	 *
514 	 * The callback can return false if the block is not suitable for
515 	 * sampling, e.g. because it's a metapage that could never contain tuples.
516 	 *
517 	 * XXX: This obviously is primarily suited for block-based AMs. It's not
518 	 * clear what a good interface for non block based AMs would be, so there
519 	 * isn't one yet.
520 	 */
521 	bool		(*scan_analyze_next_block) (TableScanDesc scan,
522 											BlockNumber blockno,
523 											BufferAccessStrategy bstrategy);
524 
525 	/*
526 	 * See table_scan_analyze_next_tuple().
527 	 *
528 	 * Not every AM might have a meaningful concept of dead rows, in which
529 	 * case it's OK to not increment *deadrows - but note that that may
530 	 * influence autovacuum scheduling (see comment for relation_vacuum
531 	 * callback).
532 	 */
533 	bool		(*scan_analyze_next_tuple) (TableScanDesc scan,
534 											TransactionId OldestXmin,
535 											double *liverows,
536 											double *deadrows,
537 											TupleTableSlot *slot);
538 
539 	/* see table_index_build_range_scan for reference about parameters */
540 	double		(*index_build_range_scan) (Relation table_rel,
541 										   Relation index_rel,
542 										   struct IndexInfo *index_info,
543 										   bool allow_sync,
544 										   bool anyvisible,
545 										   bool progress,
546 										   BlockNumber start_blockno,
547 										   BlockNumber numblocks,
548 										   IndexBuildCallback callback,
549 										   void *callback_state,
550 										   TableScanDesc scan);
551 
552 	/* see table_index_validate_scan for reference about parameters */
553 	void		(*index_validate_scan) (Relation table_rel,
554 										Relation index_rel,
555 										struct IndexInfo *index_info,
556 										Snapshot snapshot,
557 										struct ValidateIndexState *state);
558 
559 
560 	/* ------------------------------------------------------------------------
561 	 * Miscellaneous functions.
562 	 * ------------------------------------------------------------------------
563 	 */
564 
565 	/*
566 	 * See table_relation_size().
567 	 *
568 	 * Note that currently a few callers use the MAIN_FORKNUM size to figure
569 	 * out the range of potentially interesting blocks (brin, analyze). It's
570 	 * probable that we'll need to revise the interface for those at some
571 	 * point.
572 	 */
573 	uint64		(*relation_size) (Relation rel, ForkNumber forkNumber);
574 
575 
576 	/*
577 	 * This callback should return true if the relation requires a TOAST table
578 	 * and false if it does not.  It may wish to examine the relation's tuple
579 	 * descriptor before making a decision, but if it uses some other method
580 	 * of storing large values (or if it does not support them) it can simply
581 	 * return false.
582 	 */
583 	bool		(*relation_needs_toast_table) (Relation rel);
584 
585 
586 	/* ------------------------------------------------------------------------
587 	 * Planner related functions.
588 	 * ------------------------------------------------------------------------
589 	 */
590 
591 	/*
592 	 * See table_relation_estimate_size().
593 	 *
594 	 * While block oriented, it shouldn't be too hard for an AM that doesn't
595 	 * internally use blocks to convert into a usable representation.
596 	 *
597 	 * This differs from the relation_size callback by returning size
598 	 * estimates (both relation size and tuple count) for planning purposes,
599 	 * rather than returning a currently correct estimate.
600 	 */
601 	void		(*relation_estimate_size) (Relation rel, int32 *attr_widths,
602 										   BlockNumber *pages, double *tuples,
603 										   double *allvisfrac);
604 
605 
606 	/* ------------------------------------------------------------------------
607 	 * Executor related functions.
608 	 * ------------------------------------------------------------------------
609 	 */
610 
611 	/*
612 	 * Prepare to fetch / check / return tuples from `tbmres->blockno` as part
613 	 * of a bitmap table scan. `scan` was started via table_beginscan_bm().
614 	 * Return false if there are no tuples to be found on the page, true
615 	 * otherwise.
616 	 *
617 	 * This will typically read and pin the target block, and do the necessary
618 	 * work to allow scan_bitmap_next_tuple() to return tuples (e.g. it might
619 	 * make sense to perform tuple visibility checks at this time). For some
620 	 * AMs it will make more sense to do all the work referencing `tbmres`
621 	 * contents here, for others it might be better to defer more work to
622 	 * scan_bitmap_next_tuple.
623 	 *
624 	 * If `tbmres->blockno` is -1, this is a lossy scan and all visible tuples
625 	 * on the page have to be returned, otherwise the tuples at offsets in
626 	 * `tbmres->offsets` need to be returned.
627 	 *
628 	 * XXX: Currently this may only be implemented if the AM uses md.c as its
629 	 * storage manager, and uses ItemPointer->ip_blkid in a manner that maps
630 	 * blockids directly to the underlying storage. nodeBitmapHeapscan.c
631 	 * performs prefetching directly using that interface.  This probably
632 	 * needs to be rectified at a later point.
633 	 *
634 	 * XXX: Currently this may only be implemented if the AM uses the
635 	 * visibilitymap, as nodeBitmapHeapscan.c unconditionally accesses it to
636 	 * perform prefetching.  This probably needs to be rectified at a later
637 	 * point.
638 	 *
639 	 * Optional callback, but either both scan_bitmap_next_block and
640 	 * scan_bitmap_next_tuple need to exist, or neither.
641 	 */
642 	bool		(*scan_bitmap_next_block) (TableScanDesc scan,
643 										   struct TBMIterateResult *tbmres);
644 
645 	/*
646 	 * Fetch the next tuple of a bitmap table scan into `slot` and return true
647 	 * if a visible tuple was found, false otherwise.
648 	 *
649 	 * For some AMs it will make more sense to do all the work referencing
650 	 * `tbmres` contents in scan_bitmap_next_block, for others it might be
651 	 * better to defer more work to this callback.
652 	 *
653 	 * Optional callback, but either both scan_bitmap_next_block and
654 	 * scan_bitmap_next_tuple need to exist, or neither.
655 	 */
656 	bool		(*scan_bitmap_next_tuple) (TableScanDesc scan,
657 										   struct TBMIterateResult *tbmres,
658 										   TupleTableSlot *slot);
659 
660 	/*
661 	 * Prepare to fetch tuples from the next block in a sample scan. Return
662 	 * false if the sample scan is finished, true otherwise. `scan` was
663 	 * started via table_beginscan_sampling().
664 	 *
665 	 * Typically this will first determine the target block by calling the
666 	 * TsmRoutine's NextSampleBlock() callback if not NULL, or alternatively
667 	 * perform a sequential scan over all blocks.  The determined block is
668 	 * then typically read and pinned.
669 	 *
670 	 * As the TsmRoutine interface is block based, a block needs to be passed
671 	 * to NextSampleBlock(). If that's not appropriate for an AM, it
672 	 * internally needs to perform mapping between the internal and a block
673 	 * based representation.
674 	 *
675 	 * Note that it's not acceptable to hold deadlock prone resources such as
676 	 * lwlocks until scan_sample_next_tuple() has exhausted the tuples on the
677 	 * block - the tuple is likely to be returned to an upper query node, and
678 	 * the next call could be off a long while. Holding buffer pins and such
679 	 * is obviously OK.
680 	 *
681 	 * Currently it is required to implement this interface, as there's no
682 	 * alternative way (contrary e.g. to bitmap scans) to implement sample
683 	 * scans. If infeasible to implement, the AM may raise an error.
684 	 */
685 	bool		(*scan_sample_next_block) (TableScanDesc scan,
686 										   struct SampleScanState *scanstate);
687 
688 	/*
689 	 * This callback, only called after scan_sample_next_block has returned
690 	 * true, should determine the next tuple to be returned from the selected
691 	 * block using the TsmRoutine's NextSampleTuple() callback.
692 	 *
693 	 * The callback needs to perform visibility checks, and only return
694 	 * visible tuples. That obviously can mean calling NextSampleTuple()
695 	 * multiple times.
696 	 *
697 	 * The TsmRoutine interface assumes that there's a maximum offset on a
698 	 * given page, so if that doesn't apply to an AM, it needs to emulate that
699 	 * assumption somehow.
700 	 */
701 	bool		(*scan_sample_next_tuple) (TableScanDesc scan,
702 										   struct SampleScanState *scanstate,
703 										   TupleTableSlot *slot);
704 
705 } TableAmRoutine;
706 
707 
708 /* ----------------------------------------------------------------------------
709  * Slot functions.
710  * ----------------------------------------------------------------------------
711  */
712 
713 /*
714  * Returns slot callbacks suitable for holding tuples of the appropriate type
715  * for the relation.  Works for tables, views, foreign tables and partitioned
716  * tables.
717  */
718 extern const TupleTableSlotOps *table_slot_callbacks(Relation rel);
719 
720 /*
721  * Returns slot using the callbacks returned by table_slot_callbacks(), and
722  * registers it on *reglist.
723  */
724 extern TupleTableSlot *table_slot_create(Relation rel, List **reglist);
725 
726 
727 /* ----------------------------------------------------------------------------
728  * Table scan functions.
729  * ----------------------------------------------------------------------------
730  */
731 
732 /*
733  * Start a scan of `rel`. Returned tuples pass a visibility test of
734  * `snapshot`, and if nkeys != 0, the results are filtered by those scan keys.
735  */
736 static inline TableScanDesc
table_beginscan(Relation rel,Snapshot snapshot,int nkeys,struct ScanKeyData * key)737 table_beginscan(Relation rel, Snapshot snapshot,
738 				int nkeys, struct ScanKeyData *key)
739 {
740 	uint32		flags = SO_TYPE_SEQSCAN |
741 	SO_ALLOW_STRAT | SO_ALLOW_SYNC | SO_ALLOW_PAGEMODE;
742 
743 	return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags);
744 }
745 
746 /*
747  * Like table_beginscan(), but for scanning catalog. It'll automatically use a
748  * snapshot appropriate for scanning catalog relations.
749  */
750 extern TableScanDesc table_beginscan_catalog(Relation rel, int nkeys,
751 											 struct ScanKeyData *key);
752 
753 /*
754  * Like table_beginscan(), but table_beginscan_strat() offers an extended API
755  * that lets the caller control whether a nondefault buffer access strategy
756  * can be used, and whether syncscan can be chosen (possibly resulting in the
757  * scan not starting from block zero).  Both of these default to true with
758  * plain table_beginscan.
759  */
760 static inline TableScanDesc
table_beginscan_strat(Relation rel,Snapshot snapshot,int nkeys,struct ScanKeyData * key,bool allow_strat,bool allow_sync)761 table_beginscan_strat(Relation rel, Snapshot snapshot,
762 					  int nkeys, struct ScanKeyData *key,
763 					  bool allow_strat, bool allow_sync)
764 {
765 	uint32		flags = SO_TYPE_SEQSCAN | SO_ALLOW_PAGEMODE;
766 
767 	if (allow_strat)
768 		flags |= SO_ALLOW_STRAT;
769 	if (allow_sync)
770 		flags |= SO_ALLOW_SYNC;
771 
772 	return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags);
773 }
774 
775 /*
776  * table_beginscan_bm is an alternative entry point for setting up a
777  * TableScanDesc for a bitmap heap scan.  Although that scan technology is
778  * really quite unlike a standard seqscan, there is just enough commonality to
779  * make it worth using the same data structure.
780  */
781 static inline TableScanDesc
table_beginscan_bm(Relation rel,Snapshot snapshot,int nkeys,struct ScanKeyData * key)782 table_beginscan_bm(Relation rel, Snapshot snapshot,
783 				   int nkeys, struct ScanKeyData *key)
784 {
785 	uint32		flags = SO_TYPE_BITMAPSCAN | SO_ALLOW_PAGEMODE;
786 
787 	return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags);
788 }
789 
790 /*
791  * table_beginscan_sampling is an alternative entry point for setting up a
792  * TableScanDesc for a TABLESAMPLE scan.  As with bitmap scans, it's worth
793  * using the same data structure although the behavior is rather different.
794  * In addition to the options offered by table_beginscan_strat, this call
795  * also allows control of whether page-mode visibility checking is used.
796  */
797 static inline TableScanDesc
table_beginscan_sampling(Relation rel,Snapshot snapshot,int nkeys,struct ScanKeyData * key,bool allow_strat,bool allow_sync,bool allow_pagemode)798 table_beginscan_sampling(Relation rel, Snapshot snapshot,
799 						 int nkeys, struct ScanKeyData *key,
800 						 bool allow_strat, bool allow_sync,
801 						 bool allow_pagemode)
802 {
803 	uint32		flags = SO_TYPE_SAMPLESCAN;
804 
805 	if (allow_strat)
806 		flags |= SO_ALLOW_STRAT;
807 	if (allow_sync)
808 		flags |= SO_ALLOW_SYNC;
809 	if (allow_pagemode)
810 		flags |= SO_ALLOW_PAGEMODE;
811 
812 	return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags);
813 }
814 
815 /*
816  * table_beginscan_tid is an alternative entry point for setting up a
817  * TableScanDesc for a Tid scan. As with bitmap scans, it's worth using
818  * the same data structure although the behavior is rather different.
819  */
820 static inline TableScanDesc
table_beginscan_tid(Relation rel,Snapshot snapshot)821 table_beginscan_tid(Relation rel, Snapshot snapshot)
822 {
823 	uint32		flags = SO_TYPE_TIDSCAN;
824 
825 	return rel->rd_tableam->scan_begin(rel, snapshot, 0, NULL, NULL, flags);
826 }
827 
828 /*
829  * table_beginscan_analyze is an alternative entry point for setting up a
830  * TableScanDesc for an ANALYZE scan.  As with bitmap scans, it's worth using
831  * the same data structure although the behavior is rather different.
832  */
833 static inline TableScanDesc
table_beginscan_analyze(Relation rel)834 table_beginscan_analyze(Relation rel)
835 {
836 	uint32		flags = SO_TYPE_ANALYZE;
837 
838 	return rel->rd_tableam->scan_begin(rel, NULL, 0, NULL, NULL, flags);
839 }
840 
841 /*
842  * End relation scan.
843  */
844 static inline void
table_endscan(TableScanDesc scan)845 table_endscan(TableScanDesc scan)
846 {
847 	scan->rs_rd->rd_tableam->scan_end(scan);
848 }
849 
850 /*
851  * Restart a relation scan.
852  */
853 static inline void
table_rescan(TableScanDesc scan,struct ScanKeyData * key)854 table_rescan(TableScanDesc scan,
855 			 struct ScanKeyData *key)
856 {
857 	scan->rs_rd->rd_tableam->scan_rescan(scan, key, false, false, false, false);
858 }
859 
860 /*
861  * Restart a relation scan after changing params.
862  *
863  * This call allows changing the buffer strategy, syncscan, and pagemode
864  * options before starting a fresh scan.  Note that although the actual use of
865  * syncscan might change (effectively, enabling or disabling reporting), the
866  * previously selected startblock will be kept.
867  */
868 static inline void
table_rescan_set_params(TableScanDesc scan,struct ScanKeyData * key,bool allow_strat,bool allow_sync,bool allow_pagemode)869 table_rescan_set_params(TableScanDesc scan, struct ScanKeyData *key,
870 						bool allow_strat, bool allow_sync, bool allow_pagemode)
871 {
872 	scan->rs_rd->rd_tableam->scan_rescan(scan, key, true,
873 										 allow_strat, allow_sync,
874 										 allow_pagemode);
875 }
876 
877 /*
878  * Update snapshot used by the scan.
879  */
880 extern void table_scan_update_snapshot(TableScanDesc scan, Snapshot snapshot);
881 
882 /*
883  * Return next tuple from `scan`, store in slot.
884  */
885 static inline bool
table_scan_getnextslot(TableScanDesc sscan,ScanDirection direction,TupleTableSlot * slot)886 table_scan_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
887 {
888 	slot->tts_tableOid = RelationGetRelid(sscan->rs_rd);
889 	return sscan->rs_rd->rd_tableam->scan_getnextslot(sscan, direction, slot);
890 }
891 
892 
893 /* ----------------------------------------------------------------------------
894  * Parallel table scan related functions.
895  * ----------------------------------------------------------------------------
896  */
897 
898 /*
899  * Estimate the size of shared memory needed for a parallel scan of this
900  * relation.
901  */
902 extern Size table_parallelscan_estimate(Relation rel, Snapshot snapshot);
903 
904 /*
905  * Initialize ParallelTableScanDesc for a parallel scan of this
906  * relation. `pscan` needs to be sized according to parallelscan_estimate()
907  * for the same relation.  Call this just once in the leader process; then,
908  * individual workers attach via table_beginscan_parallel.
909  */
910 extern void table_parallelscan_initialize(Relation rel,
911 										  ParallelTableScanDesc pscan,
912 										  Snapshot snapshot);
913 
914 /*
915  * Begin a parallel scan. `pscan` needs to have been initialized with
916  * table_parallelscan_initialize(), for the same relation. The initialization
917  * does not need to have happened in this backend.
918  *
919  * Caller must hold a suitable lock on the relation.
920  */
921 extern TableScanDesc table_beginscan_parallel(Relation rel,
922 											  ParallelTableScanDesc pscan);
923 
924 /*
925  * Restart a parallel scan.  Call this in the leader process.  Caller is
926  * responsible for making sure that all workers have finished the scan
927  * beforehand.
928  */
929 static inline void
table_parallelscan_reinitialize(Relation rel,ParallelTableScanDesc pscan)930 table_parallelscan_reinitialize(Relation rel, ParallelTableScanDesc pscan)
931 {
932 	rel->rd_tableam->parallelscan_reinitialize(rel, pscan);
933 }
934 
935 
936 /* ----------------------------------------------------------------------------
937  *  Index scan related functions.
938  * ----------------------------------------------------------------------------
939  */
940 
941 /*
942  * Prepare to fetch tuples from the relation, as needed when fetching tuples
943  * for an index scan.
944  *
945  * Tuples for an index scan can then be fetched via table_index_fetch_tuple().
946  */
947 static inline IndexFetchTableData *
table_index_fetch_begin(Relation rel)948 table_index_fetch_begin(Relation rel)
949 {
950 	return rel->rd_tableam->index_fetch_begin(rel);
951 }
952 
953 /*
954  * Reset index fetch. Typically this will release cross index fetch resources
955  * held in IndexFetchTableData.
956  */
957 static inline void
table_index_fetch_reset(struct IndexFetchTableData * scan)958 table_index_fetch_reset(struct IndexFetchTableData *scan)
959 {
960 	scan->rel->rd_tableam->index_fetch_reset(scan);
961 }
962 
963 /*
964  * Release resources and deallocate index fetch.
965  */
966 static inline void
table_index_fetch_end(struct IndexFetchTableData * scan)967 table_index_fetch_end(struct IndexFetchTableData *scan)
968 {
969 	scan->rel->rd_tableam->index_fetch_end(scan);
970 }
971 
972 /*
973  * Fetches, as part of an index scan, tuple at `tid` into `slot`, after doing
974  * a visibility test according to `snapshot`. If a tuple was found and passed
975  * the visibility test, returns true, false otherwise.
976  *
977  * *call_again needs to be false on the first call to table_index_fetch_tuple() for
978  * a tid. If there potentially is another tuple matching the tid, *call_again
979  * will be set to true, signalling that table_index_fetch_tuple() should be called
980  * again for the same tid.
981  *
982  * *all_dead, if all_dead is not NULL, will be set to true by
983  * table_index_fetch_tuple() iff it is guaranteed that no backend needs to see
984  * that tuple. Index AMs can use that to avoid returning that tid in future
985  * searches.
986  *
987  * The difference between this function and table_tuple_fetch_row_version()
988  * is that this function returns the currently visible version of a row if
989  * the AM supports storing multiple row versions reachable via a single index
990  * entry (like heap's HOT). Whereas table_tuple_fetch_row_version() only
991  * evaluates the tuple exactly at `tid`. Outside of index entry ->table tuple
992  * lookups, table_tuple_fetch_row_version() is what's usually needed.
993  */
994 static inline bool
table_index_fetch_tuple(struct IndexFetchTableData * scan,ItemPointer tid,Snapshot snapshot,TupleTableSlot * slot,bool * call_again,bool * all_dead)995 table_index_fetch_tuple(struct IndexFetchTableData *scan,
996 						ItemPointer tid,
997 						Snapshot snapshot,
998 						TupleTableSlot *slot,
999 						bool *call_again, bool *all_dead)
1000 {
1001 
1002 	return scan->rel->rd_tableam->index_fetch_tuple(scan, tid, snapshot,
1003 													slot, call_again,
1004 													all_dead);
1005 }
1006 
1007 /*
1008  * This is a convenience wrapper around table_index_fetch_tuple() which
1009  * returns whether there are table tuple items corresponding to an index
1010  * entry.  This likely is only useful to verify if there's a conflict in a
1011  * unique index.
1012  */
1013 extern bool table_index_fetch_tuple_check(Relation rel,
1014 										  ItemPointer tid,
1015 										  Snapshot snapshot,
1016 										  bool *all_dead);
1017 
1018 
1019 /* ------------------------------------------------------------------------
1020  * Functions for non-modifying operations on individual tuples
1021  * ------------------------------------------------------------------------
1022  */
1023 
1024 
1025 /*
1026  * Fetch tuple at `tid` into `slot`, after doing a visibility test according to
1027  * `snapshot`. If a tuple was found and passed the visibility test, returns
1028  * true, false otherwise.
1029  *
1030  * See table_index_fetch_tuple's comment about what the difference between
1031  * these functions is. It is correct to use this function outside of index
1032  * entry->table tuple lookups.
1033  */
1034 static inline bool
table_tuple_fetch_row_version(Relation rel,ItemPointer tid,Snapshot snapshot,TupleTableSlot * slot)1035 table_tuple_fetch_row_version(Relation rel,
1036 							  ItemPointer tid,
1037 							  Snapshot snapshot,
1038 							  TupleTableSlot *slot)
1039 {
1040 	return rel->rd_tableam->tuple_fetch_row_version(rel, tid, snapshot, slot);
1041 }
1042 
1043 /*
1044  * Verify that `tid` is a potentially valid tuple identifier. That doesn't
1045  * mean that the pointed to row needs to exist or be visible, but that
1046  * attempting to fetch the row (e.g. with table_tuple_get_latest_tid() or
1047  * table_tuple_fetch_row_version()) should not error out if called with that
1048  * tid.
1049  *
1050  * `scan` needs to have been started via table_beginscan().
1051  */
1052 static inline bool
table_tuple_tid_valid(TableScanDesc scan,ItemPointer tid)1053 table_tuple_tid_valid(TableScanDesc scan, ItemPointer tid)
1054 {
1055 	return scan->rs_rd->rd_tableam->tuple_tid_valid(scan, tid);
1056 }
1057 
1058 /*
1059  * Return the latest version of the tuple at `tid`, by updating `tid` to
1060  * point at the newest version.
1061  */
1062 extern void table_tuple_get_latest_tid(TableScanDesc scan, ItemPointer tid);
1063 
1064 /*
1065  * Return true iff tuple in slot satisfies the snapshot.
1066  *
1067  * This assumes the slot's tuple is valid, and of the appropriate type for the
1068  * AM.
1069  *
1070  * Some AMs might modify the data underlying the tuple as a side-effect. If so
1071  * they ought to mark the relevant buffer dirty.
1072  */
1073 static inline bool
table_tuple_satisfies_snapshot(Relation rel,TupleTableSlot * slot,Snapshot snapshot)1074 table_tuple_satisfies_snapshot(Relation rel, TupleTableSlot *slot,
1075 							   Snapshot snapshot)
1076 {
1077 	return rel->rd_tableam->tuple_satisfies_snapshot(rel, slot, snapshot);
1078 }
1079 
1080 /*
1081  * Compute the newest xid among the tuples pointed to by items. This is used
1082  * to compute what snapshots to conflict with when replaying WAL records for
1083  * page-level index vacuums.
1084  */
1085 static inline TransactionId
table_compute_xid_horizon_for_tuples(Relation rel,ItemPointerData * items,int nitems)1086 table_compute_xid_horizon_for_tuples(Relation rel,
1087 									 ItemPointerData *items,
1088 									 int nitems)
1089 {
1090 	return rel->rd_tableam->compute_xid_horizon_for_tuples(rel, items, nitems);
1091 }
1092 
1093 
1094 /* ----------------------------------------------------------------------------
1095  *  Functions for manipulations of physical tuples.
1096  * ----------------------------------------------------------------------------
1097  */
1098 
1099 /*
1100  * Insert a tuple from a slot into table AM routine.
1101  *
1102  * The options bitmask allows the caller to specify options that may change the
1103  * behaviour of the AM. The AM will ignore options that it does not support.
1104  *
1105  * If the TABLE_INSERT_SKIP_WAL option is specified, the new tuple doesn't
1106  * need to be logged to WAL, even for a non-temp relation. It is the AMs
1107  * choice whether this optimization is supported.
1108  *
1109  * If the TABLE_INSERT_SKIP_FSM option is specified, AMs are free to not reuse
1110  * free space in the relation. This can save some cycles when we know the
1111  * relation is new and doesn't contain useful amounts of free space.
1112  * TABLE_INSERT_SKIP_FSM is commonly passed directly to
1113  * RelationGetBufferForTuple. See that method for more information.
1114  *
1115  * TABLE_INSERT_FROZEN should only be specified for inserts into
1116  * relfilenodes created during the current subtransaction and when
1117  * there are no prior snapshots or pre-existing portals open.
1118  * This causes rows to be frozen, which is an MVCC violation and
1119  * requires explicit options chosen by user.
1120  *
1121  * TABLE_INSERT_NO_LOGICAL force-disables the emitting of logical decoding
1122  * information for the tuple. This should solely be used during table rewrites
1123  * where RelationIsLogicallyLogged(relation) is not yet accurate for the new
1124  * relation.
1125  *
1126  * Note that most of these options will be applied when inserting into the
1127  * heap's TOAST table, too, if the tuple requires any out-of-line data.
1128  *
1129  * The BulkInsertState object (if any; bistate can be NULL for default
1130  * behavior) is also just passed through to RelationGetBufferForTuple. If
1131  * `bistate` is provided, table_finish_bulk_insert() needs to be called.
1132  *
1133  * On return the slot's tts_tid and tts_tableOid are updated to reflect the
1134  * insertion. But note that any toasting of fields within the slot is NOT
1135  * reflected in the slots contents.
1136  */
1137 static inline void
table_tuple_insert(Relation rel,TupleTableSlot * slot,CommandId cid,int options,struct BulkInsertStateData * bistate)1138 table_tuple_insert(Relation rel, TupleTableSlot *slot, CommandId cid,
1139 				   int options, struct BulkInsertStateData *bistate)
1140 {
1141 	rel->rd_tableam->tuple_insert(rel, slot, cid, options,
1142 								  bistate);
1143 }
1144 
1145 /*
1146  * Perform a "speculative insertion". These can be backed out afterwards
1147  * without aborting the whole transaction.  Other sessions can wait for the
1148  * speculative insertion to be confirmed, turning it into a regular tuple, or
1149  * aborted, as if it never existed.  Speculatively inserted tuples behave as
1150  * "value locks" of short duration, used to implement INSERT .. ON CONFLICT.
1151  *
1152  * A transaction having performed a speculative insertion has to either abort,
1153  * or finish the speculative insertion with
1154  * table_tuple_complete_speculative(succeeded = ...).
1155  */
1156 static inline void
table_tuple_insert_speculative(Relation rel,TupleTableSlot * slot,CommandId cid,int options,struct BulkInsertStateData * bistate,uint32 specToken)1157 table_tuple_insert_speculative(Relation rel, TupleTableSlot *slot,
1158 							   CommandId cid, int options,
1159 							   struct BulkInsertStateData *bistate,
1160 							   uint32 specToken)
1161 {
1162 	rel->rd_tableam->tuple_insert_speculative(rel, slot, cid, options,
1163 											  bistate, specToken);
1164 }
1165 
1166 /*
1167  * Complete "speculative insertion" started in the same transaction. If
1168  * succeeded is true, the tuple is fully inserted, if false, it's removed.
1169  */
1170 static inline void
table_tuple_complete_speculative(Relation rel,TupleTableSlot * slot,uint32 specToken,bool succeeded)1171 table_tuple_complete_speculative(Relation rel, TupleTableSlot *slot,
1172 								 uint32 specToken, bool succeeded)
1173 {
1174 	rel->rd_tableam->tuple_complete_speculative(rel, slot, specToken,
1175 												succeeded);
1176 }
1177 
1178 /*
1179  * Insert multiple tuples into a table.
1180  *
1181  * This is like table_tuple_insert(), but inserts multiple tuples in one
1182  * operation. That's often faster than calling table_tuple_insert() in a loop,
1183  * because e.g. the AM can reduce WAL logging and page locking overhead.
1184  *
1185  * Except for taking `nslots` tuples as input, as an array of TupleTableSlots
1186  * in `slots`, the parameters for table_multi_insert() are the same as for
1187  * table_tuple_insert().
1188  *
1189  * Note: this leaks memory into the current memory context. You can create a
1190  * temporary context before calling this, if that's a problem.
1191  */
1192 static inline void
table_multi_insert(Relation rel,TupleTableSlot ** slots,int nslots,CommandId cid,int options,struct BulkInsertStateData * bistate)1193 table_multi_insert(Relation rel, TupleTableSlot **slots, int nslots,
1194 				   CommandId cid, int options, struct BulkInsertStateData *bistate)
1195 {
1196 	rel->rd_tableam->multi_insert(rel, slots, nslots,
1197 								  cid, options, bistate);
1198 }
1199 
1200 /*
1201  * Delete a tuple.
1202  *
1203  * NB: do not call this directly unless prepared to deal with
1204  * concurrent-update conditions.  Use simple_table_tuple_delete instead.
1205  *
1206  * Input parameters:
1207  *	relation - table to be modified (caller must hold suitable lock)
1208  *	tid - TID of tuple to be deleted
1209  *	cid - delete command ID (used for visibility test, and stored into
1210  *		cmax if successful)
1211  *	crosscheck - if not InvalidSnapshot, also check tuple against this
1212  *	wait - true if should wait for any conflicting update to commit/abort
1213  * Output parameters:
1214  *	tmfd - filled in failure cases (see below)
1215  *	changingPart - true iff the tuple is being moved to another partition
1216  *		table due to an update of the partition key. Otherwise, false.
1217  *
1218  * Normal, successful return value is TM_Ok, which means we did actually
1219  * delete it.  Failure return codes are TM_SelfModified, TM_Updated, and
1220  * TM_BeingModified (the last only possible if wait == false).
1221  *
1222  * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
1223  * t_xmax, and, if possible, and, if possible, t_cmax.  See comments for
1224  * struct TM_FailureData for additional info.
1225  */
1226 static inline TM_Result
table_tuple_delete(Relation rel,ItemPointer tid,CommandId cid,Snapshot snapshot,Snapshot crosscheck,bool wait,TM_FailureData * tmfd,bool changingPart)1227 table_tuple_delete(Relation rel, ItemPointer tid, CommandId cid,
1228 				   Snapshot snapshot, Snapshot crosscheck, bool wait,
1229 				   TM_FailureData *tmfd, bool changingPart)
1230 {
1231 	return rel->rd_tableam->tuple_delete(rel, tid, cid,
1232 										 snapshot, crosscheck,
1233 										 wait, tmfd, changingPart);
1234 }
1235 
1236 /*
1237  * Update a tuple.
1238  *
1239  * NB: do not call this directly unless you are prepared to deal with
1240  * concurrent-update conditions.  Use simple_table_tuple_update instead.
1241  *
1242  * Input parameters:
1243  *	relation - table to be modified (caller must hold suitable lock)
1244  *	otid - TID of old tuple to be replaced
1245  *	slot - newly constructed tuple data to store
1246  *	cid - update command ID (used for visibility test, and stored into
1247  *		cmax/cmin if successful)
1248  *	crosscheck - if not InvalidSnapshot, also check old tuple against this
1249  *	wait - true if should wait for any conflicting update to commit/abort
1250  * Output parameters:
1251  *	tmfd - filled in failure cases (see below)
1252  *	lockmode - filled with lock mode acquired on tuple
1253  *  update_indexes - in success cases this is set to true if new index entries
1254  *		are required for this tuple
1255  *
1256  * Normal, successful return value is TM_Ok, which means we did actually
1257  * update it.  Failure return codes are TM_SelfModified, TM_Updated, and
1258  * TM_BeingModified (the last only possible if wait == false).
1259  *
1260  * On success, the slot's tts_tid and tts_tableOid are updated to match the new
1261  * stored tuple; in particular, slot->tts_tid is set to the TID where the
1262  * new tuple was inserted, and its HEAP_ONLY_TUPLE flag is set iff a HOT
1263  * update was done.  However, any TOAST changes in the new tuple's
1264  * data are not reflected into *newtup.
1265  *
1266  * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
1267  * t_xmax, and, if possible, t_cmax.  See comments for struct TM_FailureData
1268  * for additional info.
1269  */
1270 static inline TM_Result
table_tuple_update(Relation rel,ItemPointer otid,TupleTableSlot * slot,CommandId cid,Snapshot snapshot,Snapshot crosscheck,bool wait,TM_FailureData * tmfd,LockTupleMode * lockmode,bool * update_indexes)1271 table_tuple_update(Relation rel, ItemPointer otid, TupleTableSlot *slot,
1272 				   CommandId cid, Snapshot snapshot, Snapshot crosscheck,
1273 				   bool wait, TM_FailureData *tmfd, LockTupleMode *lockmode,
1274 				   bool *update_indexes)
1275 {
1276 	return rel->rd_tableam->tuple_update(rel, otid, slot,
1277 										 cid, snapshot, crosscheck,
1278 										 wait, tmfd,
1279 										 lockmode, update_indexes);
1280 }
1281 
1282 /*
1283  * Lock a tuple in the specified mode.
1284  *
1285  * Input parameters:
1286  *	relation: relation containing tuple (caller must hold suitable lock)
1287  *	tid: TID of tuple to lock
1288  *	snapshot: snapshot to use for visibility determinations
1289  *	cid: current command ID (used for visibility test, and stored into
1290  *		tuple's cmax if lock is successful)
1291  *	mode: lock mode desired
1292  *	wait_policy: what to do if tuple lock is not available
1293  *	flags:
1294  *		If TUPLE_LOCK_FLAG_LOCK_UPDATE_IN_PROGRESS, follow the update chain to
1295  *		also lock descendant tuples if lock modes don't conflict.
1296  *		If TUPLE_LOCK_FLAG_FIND_LAST_VERSION, follow the update chain and lock
1297  *		latest version.
1298  *
1299  * Output parameters:
1300  *	*slot: contains the target tuple
1301  *	*tmfd: filled in failure cases (see below)
1302  *
1303  * Function result may be:
1304  *	TM_Ok: lock was successfully acquired
1305  *	TM_Invisible: lock failed because tuple was never visible to us
1306  *	TM_SelfModified: lock failed because tuple updated by self
1307  *	TM_Updated: lock failed because tuple updated by other xact
1308  *	TM_Deleted: lock failed because tuple deleted by other xact
1309  *	TM_WouldBlock: lock couldn't be acquired and wait_policy is skip
1310  *
1311  * In the failure cases other than TM_Invisible and TM_Deleted, the routine
1312  * fills *tmfd with the tuple's t_ctid, t_xmax, and, if possible, t_cmax.  See
1313  * comments for struct TM_FailureData for additional info.
1314  */
1315 static inline TM_Result
table_tuple_lock(Relation rel,ItemPointer tid,Snapshot snapshot,TupleTableSlot * slot,CommandId cid,LockTupleMode mode,LockWaitPolicy wait_policy,uint8 flags,TM_FailureData * tmfd)1316 table_tuple_lock(Relation rel, ItemPointer tid, Snapshot snapshot,
1317 				 TupleTableSlot *slot, CommandId cid, LockTupleMode mode,
1318 				 LockWaitPolicy wait_policy, uint8 flags,
1319 				 TM_FailureData *tmfd)
1320 {
1321 	return rel->rd_tableam->tuple_lock(rel, tid, snapshot, slot,
1322 									   cid, mode, wait_policy,
1323 									   flags, tmfd);
1324 }
1325 
1326 /*
1327  * Perform operations necessary to complete insertions made via
1328  * tuple_insert and multi_insert with a BulkInsertState specified. This
1329  * e.g. may e.g. used to flush the relation when inserting with
1330  * TABLE_INSERT_SKIP_WAL specified.
1331  */
1332 static inline void
table_finish_bulk_insert(Relation rel,int options)1333 table_finish_bulk_insert(Relation rel, int options)
1334 {
1335 	/* optional callback */
1336 	if (rel->rd_tableam && rel->rd_tableam->finish_bulk_insert)
1337 		rel->rd_tableam->finish_bulk_insert(rel, options);
1338 }
1339 
1340 
1341 /* ------------------------------------------------------------------------
1342  * DDL related functionality.
1343  * ------------------------------------------------------------------------
1344  */
1345 
1346 /*
1347  * Create storage for `rel` in `newrnode`, with persistence set to
1348  * `persistence`.
1349  *
1350  * This is used both during relation creation and various DDL operations to
1351  * create a new relfilenode that can be filled from scratch.  When creating
1352  * new storage for an existing relfilenode, this should be called before the
1353  * relcache entry has been updated.
1354  *
1355  * *freezeXid, *minmulti are set to the xid / multixact horizon for the table
1356  * that pg_class.{relfrozenxid, relminmxid} have to be set to.
1357  */
1358 static inline void
table_relation_set_new_filenode(Relation rel,const RelFileNode * newrnode,char persistence,TransactionId * freezeXid,MultiXactId * minmulti)1359 table_relation_set_new_filenode(Relation rel,
1360 								const RelFileNode *newrnode,
1361 								char persistence,
1362 								TransactionId *freezeXid,
1363 								MultiXactId *minmulti)
1364 {
1365 	rel->rd_tableam->relation_set_new_filenode(rel, newrnode, persistence,
1366 											   freezeXid, minmulti);
1367 }
1368 
1369 /*
1370  * Remove all table contents from `rel`, in a non-transactional manner.
1371  * Non-transactional meaning that there's no need to support rollbacks. This
1372  * commonly only is used to perform truncations for relfilenodes created in the
1373  * current transaction.
1374  */
1375 static inline void
table_relation_nontransactional_truncate(Relation rel)1376 table_relation_nontransactional_truncate(Relation rel)
1377 {
1378 	rel->rd_tableam->relation_nontransactional_truncate(rel);
1379 }
1380 
1381 /*
1382  * Copy data from `rel` into the new relfilenode `newrnode`. The new
1383  * relfilenode may not have storage associated before this function is
1384  * called. This is only supposed to be used for low level operations like
1385  * changing a relation's tablespace.
1386  */
1387 static inline void
table_relation_copy_data(Relation rel,const RelFileNode * newrnode)1388 table_relation_copy_data(Relation rel, const RelFileNode *newrnode)
1389 {
1390 	rel->rd_tableam->relation_copy_data(rel, newrnode);
1391 }
1392 
1393 /*
1394  * Copy data from `OldTable` into `NewTable`, as part of a CLUSTER or VACUUM
1395  * FULL.
1396  *
1397  * Additional Input parameters:
1398  * - use_sort - if true, the table contents are sorted appropriate for
1399  *   `OldIndex`; if false and OldIndex is not InvalidOid, the data is copied
1400  *   in that index's order; if false and OldIndex is InvalidOid, no sorting is
1401  *   performed
1402  * - OldIndex - see use_sort
1403  * - OldestXmin - computed by vacuum_set_xid_limits(), even when
1404  *   not needed for the relation's AM
1405  * - *xid_cutoff - ditto
1406  * - *multi_cutoff - ditto
1407  *
1408  * Output parameters:
1409  * - *xid_cutoff - rel's new relfrozenxid value, may be invalid
1410  * - *multi_cutoff - rel's new relminmxid value, may be invalid
1411  * - *tups_vacuumed - stats, for logging, if appropriate for AM
1412  * - *tups_recently_dead - stats, for logging, if appropriate for AM
1413  */
1414 static inline void
table_relation_copy_for_cluster(Relation OldTable,Relation NewTable,Relation OldIndex,bool use_sort,TransactionId OldestXmin,TransactionId * xid_cutoff,MultiXactId * multi_cutoff,double * num_tuples,double * tups_vacuumed,double * tups_recently_dead)1415 table_relation_copy_for_cluster(Relation OldTable, Relation NewTable,
1416 								Relation OldIndex,
1417 								bool use_sort,
1418 								TransactionId OldestXmin,
1419 								TransactionId *xid_cutoff,
1420 								MultiXactId *multi_cutoff,
1421 								double *num_tuples,
1422 								double *tups_vacuumed,
1423 								double *tups_recently_dead)
1424 {
1425 	OldTable->rd_tableam->relation_copy_for_cluster(OldTable, NewTable, OldIndex,
1426 													use_sort, OldestXmin,
1427 													xid_cutoff, multi_cutoff,
1428 													num_tuples, tups_vacuumed,
1429 													tups_recently_dead);
1430 }
1431 
1432 /*
1433  * Perform VACUUM on the relation. The VACUUM can be triggered by a user or by
1434  * autovacuum. The specific actions performed by the AM will depend heavily on
1435  * the individual AM.
1436  *
1437  * On entry a transaction needs to already been established, and the
1438  * table is locked with a ShareUpdateExclusive lock.
1439  *
1440  * Note that neither VACUUM FULL (and CLUSTER), nor ANALYZE go through this
1441  * routine, even if (for ANALYZE) it is part of the same VACUUM command.
1442  */
1443 static inline void
table_relation_vacuum(Relation rel,struct VacuumParams * params,BufferAccessStrategy bstrategy)1444 table_relation_vacuum(Relation rel, struct VacuumParams *params,
1445 					  BufferAccessStrategy bstrategy)
1446 {
1447 	rel->rd_tableam->relation_vacuum(rel, params, bstrategy);
1448 }
1449 
1450 /*
1451  * Prepare to analyze block `blockno` of `scan`. The scan needs to have been
1452  * started with table_beginscan_analyze().  Note that this routine might
1453  * acquire resources like locks that are held until
1454  * table_scan_analyze_next_tuple() returns false.
1455  *
1456  * Returns false if block is unsuitable for sampling, true otherwise.
1457  */
1458 static inline bool
table_scan_analyze_next_block(TableScanDesc scan,BlockNumber blockno,BufferAccessStrategy bstrategy)1459 table_scan_analyze_next_block(TableScanDesc scan, BlockNumber blockno,
1460 							  BufferAccessStrategy bstrategy)
1461 {
1462 	return scan->rs_rd->rd_tableam->scan_analyze_next_block(scan, blockno,
1463 															bstrategy);
1464 }
1465 
1466 /*
1467  * Iterate over tuples in the block selected with
1468  * table_scan_analyze_next_block() (which needs to have returned true, and
1469  * this routine may not have returned false for the same block before). If a
1470  * tuple that's suitable for sampling is found, true is returned and a tuple
1471  * is stored in `slot`.
1472  *
1473  * *liverows and *deadrows are incremented according to the encountered
1474  * tuples.
1475  */
1476 static inline bool
table_scan_analyze_next_tuple(TableScanDesc scan,TransactionId OldestXmin,double * liverows,double * deadrows,TupleTableSlot * slot)1477 table_scan_analyze_next_tuple(TableScanDesc scan, TransactionId OldestXmin,
1478 							  double *liverows, double *deadrows,
1479 							  TupleTableSlot *slot)
1480 {
1481 	return scan->rs_rd->rd_tableam->scan_analyze_next_tuple(scan, OldestXmin,
1482 															liverows, deadrows,
1483 															slot);
1484 }
1485 
1486 /*
1487  * table_index_build_scan - scan the table to find tuples to be indexed
1488  *
1489  * This is called back from an access-method-specific index build procedure
1490  * after the AM has done whatever setup it needs.  The parent table relation
1491  * is scanned to find tuples that should be entered into the index.  Each
1492  * such tuple is passed to the AM's callback routine, which does the right
1493  * things to add it to the new index.  After we return, the AM's index
1494  * build procedure does whatever cleanup it needs.
1495  *
1496  * The total count of live tuples is returned.  This is for updating pg_class
1497  * statistics.  (It's annoying not to be able to do that here, but we want to
1498  * merge that update with others; see index_update_stats.)  Note that the
1499  * index AM itself must keep track of the number of index tuples; we don't do
1500  * so here because the AM might reject some of the tuples for its own reasons,
1501  * such as being unable to store NULLs.
1502  *
1503  * If 'progress', the PROGRESS_SCAN_BLOCKS_TOTAL counter is updated when
1504  * starting the scan, and PROGRESS_SCAN_BLOCKS_DONE is updated as we go along.
1505  *
1506  * A side effect is to set indexInfo->ii_BrokenHotChain to true if we detect
1507  * any potentially broken HOT chains.  Currently, we set this if there are any
1508  * RECENTLY_DEAD or DELETE_IN_PROGRESS entries in a HOT chain, without trying
1509  * very hard to detect whether they're really incompatible with the chain tip.
1510  * This only really makes sense for heap AM, it might need to be generalized
1511  * for other AMs later.
1512  */
1513 static inline double
table_index_build_scan(Relation table_rel,Relation index_rel,struct IndexInfo * index_info,bool allow_sync,bool progress,IndexBuildCallback callback,void * callback_state,TableScanDesc scan)1514 table_index_build_scan(Relation table_rel,
1515 					   Relation index_rel,
1516 					   struct IndexInfo *index_info,
1517 					   bool allow_sync,
1518 					   bool progress,
1519 					   IndexBuildCallback callback,
1520 					   void *callback_state,
1521 					   TableScanDesc scan)
1522 {
1523 	return table_rel->rd_tableam->index_build_range_scan(table_rel,
1524 														 index_rel,
1525 														 index_info,
1526 														 allow_sync,
1527 														 false,
1528 														 progress,
1529 														 0,
1530 														 InvalidBlockNumber,
1531 														 callback,
1532 														 callback_state,
1533 														 scan);
1534 }
1535 
1536 /*
1537  * As table_index_build_scan(), except that instead of scanning the complete
1538  * table, only the given number of blocks are scanned.  Scan to end-of-rel can
1539  * be signalled by passing InvalidBlockNumber as numblocks.  Note that
1540  * restricting the range to scan cannot be done when requesting syncscan.
1541  *
1542  * When "anyvisible" mode is requested, all tuples visible to any transaction
1543  * are indexed and counted as live, including those inserted or deleted by
1544  * transactions that are still in progress.
1545  */
1546 static inline double
table_index_build_range_scan(Relation table_rel,Relation index_rel,struct IndexInfo * index_info,bool allow_sync,bool anyvisible,bool progress,BlockNumber start_blockno,BlockNumber numblocks,IndexBuildCallback callback,void * callback_state,TableScanDesc scan)1547 table_index_build_range_scan(Relation table_rel,
1548 							 Relation index_rel,
1549 							 struct IndexInfo *index_info,
1550 							 bool allow_sync,
1551 							 bool anyvisible,
1552 							 bool progress,
1553 							 BlockNumber start_blockno,
1554 							 BlockNumber numblocks,
1555 							 IndexBuildCallback callback,
1556 							 void *callback_state,
1557 							 TableScanDesc scan)
1558 {
1559 	return table_rel->rd_tableam->index_build_range_scan(table_rel,
1560 														 index_rel,
1561 														 index_info,
1562 														 allow_sync,
1563 														 anyvisible,
1564 														 progress,
1565 														 start_blockno,
1566 														 numblocks,
1567 														 callback,
1568 														 callback_state,
1569 														 scan);
1570 }
1571 
1572 /*
1573  * table_index_validate_scan - second table scan for concurrent index build
1574  *
1575  * See validate_index() for an explanation.
1576  */
1577 static inline void
table_index_validate_scan(Relation table_rel,Relation index_rel,struct IndexInfo * index_info,Snapshot snapshot,struct ValidateIndexState * state)1578 table_index_validate_scan(Relation table_rel,
1579 						  Relation index_rel,
1580 						  struct IndexInfo *index_info,
1581 						  Snapshot snapshot,
1582 						  struct ValidateIndexState *state)
1583 {
1584 	table_rel->rd_tableam->index_validate_scan(table_rel,
1585 											   index_rel,
1586 											   index_info,
1587 											   snapshot,
1588 											   state);
1589 }
1590 
1591 
1592 /* ----------------------------------------------------------------------------
1593  * Miscellaneous functionality
1594  * ----------------------------------------------------------------------------
1595  */
1596 
1597 /*
1598  * Return the current size of `rel` in bytes. If `forkNumber` is
1599  * InvalidForkNumber, return the relation's overall size, otherwise the size
1600  * for the indicated fork.
1601  *
1602  * Note that the overall size might not be the equivalent of the sum of sizes
1603  * for the individual forks for some AMs, e.g. because the AMs storage does
1604  * not neatly map onto the builtin types of forks.
1605  */
1606 static inline uint64
table_relation_size(Relation rel,ForkNumber forkNumber)1607 table_relation_size(Relation rel, ForkNumber forkNumber)
1608 {
1609 	return rel->rd_tableam->relation_size(rel, forkNumber);
1610 }
1611 
1612 /*
1613  * table_relation_needs_toast_table - does this relation need a toast table?
1614  */
1615 static inline bool
table_relation_needs_toast_table(Relation rel)1616 table_relation_needs_toast_table(Relation rel)
1617 {
1618 	return rel->rd_tableam->relation_needs_toast_table(rel);
1619 }
1620 
1621 
1622 /* ----------------------------------------------------------------------------
1623  * Planner related functionality
1624  * ----------------------------------------------------------------------------
1625  */
1626 
1627 /*
1628  * Estimate the current size of the relation, as an AM specific workhorse for
1629  * estimate_rel_size(). Look there for an explanation of the parameters.
1630  */
1631 static inline void
table_relation_estimate_size(Relation rel,int32 * attr_widths,BlockNumber * pages,double * tuples,double * allvisfrac)1632 table_relation_estimate_size(Relation rel, int32 *attr_widths,
1633 							 BlockNumber *pages, double *tuples,
1634 							 double *allvisfrac)
1635 {
1636 	rel->rd_tableam->relation_estimate_size(rel, attr_widths, pages, tuples,
1637 											allvisfrac);
1638 }
1639 
1640 
1641 /* ----------------------------------------------------------------------------
1642  * Executor related functionality
1643  * ----------------------------------------------------------------------------
1644  */
1645 
1646 /*
1647  * Prepare to fetch / check / return tuples from `tbmres->blockno` as part of
1648  * a bitmap table scan. `scan` needs to have been started via
1649  * table_beginscan_bm(). Returns false if there are no tuples to be found on
1650  * the page, true otherwise.
1651  *
1652  * Note, this is an optionally implemented function, therefore should only be
1653  * used after verifying the presence (at plan time or such).
1654  */
1655 static inline bool
table_scan_bitmap_next_block(TableScanDesc scan,struct TBMIterateResult * tbmres)1656 table_scan_bitmap_next_block(TableScanDesc scan,
1657 							 struct TBMIterateResult *tbmres)
1658 {
1659 	return scan->rs_rd->rd_tableam->scan_bitmap_next_block(scan,
1660 														   tbmres);
1661 }
1662 
1663 /*
1664  * Fetch the next tuple of a bitmap table scan into `slot` and return true if
1665  * a visible tuple was found, false otherwise.
1666  * table_scan_bitmap_next_block() needs to previously have selected a
1667  * block (i.e. returned true), and no previous
1668  * table_scan_bitmap_next_tuple() for the same block may have
1669  * returned false.
1670  */
1671 static inline bool
table_scan_bitmap_next_tuple(TableScanDesc scan,struct TBMIterateResult * tbmres,TupleTableSlot * slot)1672 table_scan_bitmap_next_tuple(TableScanDesc scan,
1673 							 struct TBMIterateResult *tbmres,
1674 							 TupleTableSlot *slot)
1675 {
1676 	return scan->rs_rd->rd_tableam->scan_bitmap_next_tuple(scan,
1677 														   tbmres,
1678 														   slot);
1679 }
1680 
1681 /*
1682  * Prepare to fetch tuples from the next block in a sample scan. Returns false
1683  * if the sample scan is finished, true otherwise. `scan` needs to have been
1684  * started via table_beginscan_sampling().
1685  *
1686  * This will call the TsmRoutine's NextSampleBlock() callback if necessary
1687  * (i.e. NextSampleBlock is not NULL), or perform a sequential scan over the
1688  * underlying relation.
1689  */
1690 static inline bool
table_scan_sample_next_block(TableScanDesc scan,struct SampleScanState * scanstate)1691 table_scan_sample_next_block(TableScanDesc scan,
1692 							 struct SampleScanState *scanstate)
1693 {
1694 	return scan->rs_rd->rd_tableam->scan_sample_next_block(scan, scanstate);
1695 }
1696 
1697 /*
1698  * Fetch the next sample tuple into `slot` and return true if a visible tuple
1699  * was found, false otherwise. table_scan_sample_next_block() needs to
1700  * previously have selected a block (i.e. returned true), and no previous
1701  * table_scan_sample_next_tuple() for the same block may have returned false.
1702  *
1703  * This will call the TsmRoutine's NextSampleTuple() callback.
1704  */
1705 static inline bool
table_scan_sample_next_tuple(TableScanDesc scan,struct SampleScanState * scanstate,TupleTableSlot * slot)1706 table_scan_sample_next_tuple(TableScanDesc scan,
1707 							 struct SampleScanState *scanstate,
1708 							 TupleTableSlot *slot)
1709 {
1710 	return scan->rs_rd->rd_tableam->scan_sample_next_tuple(scan, scanstate,
1711 														   slot);
1712 }
1713 
1714 
1715 /* ----------------------------------------------------------------------------
1716  * Functions to make modifications a bit simpler.
1717  * ----------------------------------------------------------------------------
1718  */
1719 
1720 extern void simple_table_tuple_insert(Relation rel, TupleTableSlot *slot);
1721 extern void simple_table_tuple_delete(Relation rel, ItemPointer tid,
1722 									  Snapshot snapshot);
1723 extern void simple_table_tuple_update(Relation rel, ItemPointer otid,
1724 									  TupleTableSlot *slot, Snapshot snapshot,
1725 									  bool *update_indexes);
1726 
1727 
1728 /* ----------------------------------------------------------------------------
1729  * Helper functions to implement parallel scans for block oriented AMs.
1730  * ----------------------------------------------------------------------------
1731  */
1732 
1733 extern Size table_block_parallelscan_estimate(Relation rel);
1734 extern Size table_block_parallelscan_initialize(Relation rel,
1735 												ParallelTableScanDesc pscan);
1736 extern void table_block_parallelscan_reinitialize(Relation rel,
1737 												  ParallelTableScanDesc pscan);
1738 extern BlockNumber table_block_parallelscan_nextpage(Relation rel,
1739 													 ParallelBlockTableScanDesc pbscan);
1740 extern void table_block_parallelscan_startblock_init(Relation rel,
1741 													 ParallelBlockTableScanDesc pbscan);
1742 
1743 
1744 /* ----------------------------------------------------------------------------
1745  * Functions in tableamapi.c
1746  * ----------------------------------------------------------------------------
1747  */
1748 
1749 extern const TableAmRoutine *GetTableAmRoutine(Oid amhandler);
1750 extern const TableAmRoutine *GetHeapamTableAmRoutine(void);
1751 extern bool check_default_table_access_method(char **newval, void **extra,
1752 											  GucSource source);
1753 
1754 #endif							/* TABLEAM_H */
1755