1 /*-------------------------------------------------------------------------
2  *
3  * planmain.c
4  *	  Routines to plan a single query
5  *
6  * What's in a name, anyway?  The top-level entry point of the planner/
7  * optimizer is over in planner.c, not here as you might think from the
8  * file name.  But this is the main code for planning a basic join operation,
9  * shorn of features like subselects, inheritance, aggregates, grouping,
10  * and so on.  (Those are the things planner.c deals with.)
11  *
12  * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
13  * Portions Copyright (c) 1994, Regents of the University of California
14  *
15  *
16  * IDENTIFICATION
17  *	  src/backend/optimizer/plan/planmain.c
18  *
19  *-------------------------------------------------------------------------
20  */
21 #include "postgres.h"
22 
23 #include "optimizer/appendinfo.h"
24 #include "optimizer/clauses.h"
25 #include "optimizer/inherit.h"
26 #include "optimizer/optimizer.h"
27 #include "optimizer/orclauses.h"
28 #include "optimizer/pathnode.h"
29 #include "optimizer/paths.h"
30 #include "optimizer/placeholder.h"
31 #include "optimizer/planmain.h"
32 
33 
34 /*
35  * query_planner
36  *	  Generate a path (that is, a simplified plan) for a basic query,
37  *	  which may involve joins but not any fancier features.
38  *
39  * Since query_planner does not handle the toplevel processing (grouping,
40  * sorting, etc) it cannot select the best path by itself.  Instead, it
41  * returns the RelOptInfo for the top level of joining, and the caller
42  * (grouping_planner) can choose among the surviving paths for the rel.
43  *
44  * root describes the query to plan
45  * qp_callback is a function to compute query_pathkeys once it's safe to do so
46  * qp_extra is optional extra data to pass to qp_callback
47  *
48  * Note: the PlannerInfo node also includes a query_pathkeys field, which
49  * tells query_planner the sort order that is desired in the final output
50  * plan.  This value is *not* available at call time, but is computed by
51  * qp_callback once we have completed merging the query's equivalence classes.
52  * (We cannot construct canonical pathkeys until that's done.)
53  */
54 RelOptInfo *
55 query_planner(PlannerInfo *root,
56 			  query_pathkeys_callback qp_callback, void *qp_extra)
57 {
58 	Query	   *parse = root->parse;
59 	List	   *joinlist;
60 	RelOptInfo *final_rel;
61 
62 	/*
63 	 * Init planner lists to empty.
64 	 *
65 	 * NOTE: append_rel_list was set up by subquery_planner, so do not touch
66 	 * here.
67 	 */
68 	root->join_rel_list = NIL;
69 	root->join_rel_hash = NULL;
70 	root->join_rel_level = NULL;
71 	root->join_cur_level = 0;
72 	root->canon_pathkeys = NIL;
73 	root->left_join_clauses = NIL;
74 	root->right_join_clauses = NIL;
75 	root->full_join_clauses = NIL;
76 	root->join_info_list = NIL;
77 	root->placeholder_list = NIL;
78 	root->fkey_list = NIL;
79 	root->initial_rels = NIL;
80 
81 	/*
82 	 * Make a flattened version of the rangetable for faster access (this is
83 	 * OK because the rangetable won't change any more), and set up an empty
84 	 * array for indexing base relations.
85 	 */
86 	setup_simple_rel_arrays(root);
87 
88 	/*
89 	 * In the trivial case where the jointree is a single RTE_RESULT relation,
90 	 * bypass all the rest of this function and just make a RelOptInfo and its
91 	 * one access path.  This is worth optimizing because it applies for
92 	 * common cases like "SELECT expression" and "INSERT ... VALUES()".
93 	 */
94 	Assert(parse->jointree->fromlist != NIL);
95 	if (list_length(parse->jointree->fromlist) == 1)
96 	{
97 		Node	   *jtnode = (Node *) linitial(parse->jointree->fromlist);
98 
99 		if (IsA(jtnode, RangeTblRef))
100 		{
101 			int			varno = ((RangeTblRef *) jtnode)->rtindex;
102 			RangeTblEntry *rte = root->simple_rte_array[varno];
103 
104 			Assert(rte != NULL);
105 			if (rte->rtekind == RTE_RESULT)
106 			{
107 				/* Make the RelOptInfo for it directly */
108 				final_rel = build_simple_rel(root, varno, NULL);
109 
110 				/*
111 				 * If query allows parallelism in general, check whether the
112 				 * quals are parallel-restricted.  (We need not check
113 				 * final_rel->reltarget because it's empty at this point.
114 				 * Anything parallel-restricted in the query tlist will be
115 				 * dealt with later.)  This is normally pretty silly, because
116 				 * a Result-only plan would never be interesting to
117 				 * parallelize.  However, if force_parallel_mode is on, then
118 				 * we want to execute the Result in a parallel worker if
119 				 * possible, so we must do this.
120 				 */
121 				if (root->glob->parallelModeOK &&
122 					force_parallel_mode != FORCE_PARALLEL_OFF)
123 					final_rel->consider_parallel =
124 						is_parallel_safe(root, parse->jointree->quals);
125 
126 				/*
127 				 * The only path for it is a trivial Result path.  We cheat a
128 				 * bit here by using a GroupResultPath, because that way we
129 				 * can just jam the quals into it without preprocessing them.
130 				 * (But, if you hold your head at the right angle, a FROM-less
131 				 * SELECT is a kind of degenerate-grouping case, so it's not
132 				 * that much of a cheat.)
133 				 */
134 				add_path(final_rel, (Path *)
135 						 create_group_result_path(root, final_rel,
136 												  final_rel->reltarget,
137 												  (List *) parse->jointree->quals));
138 
139 				/* Select cheapest path (pretty easy in this case...) */
140 				set_cheapest(final_rel);
141 
142 				/*
143 				 * We still are required to call qp_callback, in case it's
144 				 * something like "SELECT 2+2 ORDER BY 1".
145 				 */
146 				(*qp_callback) (root, qp_extra);
147 
148 				return final_rel;
149 			}
150 		}
151 	}
152 
153 	/*
154 	 * Populate append_rel_array with each AppendRelInfo to allow direct
155 	 * lookups by child relid.
156 	 */
157 	setup_append_rel_array(root);
158 
159 	/*
160 	 * Construct RelOptInfo nodes for all base relations used in the query.
161 	 * Appendrel member relations ("other rels") will be added later.
162 	 *
163 	 * Note: the reason we find the baserels by searching the jointree, rather
164 	 * than scanning the rangetable, is that the rangetable may contain RTEs
165 	 * for rels not actively part of the query, for example views.  We don't
166 	 * want to make RelOptInfos for them.
167 	 */
168 	add_base_rels_to_query(root, (Node *) parse->jointree);
169 
170 	/*
171 	 * Examine the targetlist and join tree, adding entries to baserel
172 	 * targetlists for all referenced Vars, and generating PlaceHolderInfo
173 	 * entries for all referenced PlaceHolderVars.  Restrict and join clauses
174 	 * are added to appropriate lists belonging to the mentioned relations. We
175 	 * also build EquivalenceClasses for provably equivalent expressions. The
176 	 * SpecialJoinInfo list is also built to hold information about join order
177 	 * restrictions.  Finally, we form a target joinlist for make_one_rel() to
178 	 * work from.
179 	 */
180 	build_base_rel_tlists(root, root->processed_tlist);
181 
182 	find_placeholders_in_jointree(root);
183 
184 	find_lateral_references(root);
185 
186 	joinlist = deconstruct_jointree(root);
187 
188 	/*
189 	 * Reconsider any postponed outer-join quals now that we have built up
190 	 * equivalence classes.  (This could result in further additions or
191 	 * mergings of classes.)
192 	 */
193 	reconsider_outer_join_clauses(root);
194 
195 	/*
196 	 * If we formed any equivalence classes, generate additional restriction
197 	 * clauses as appropriate.  (Implied join clauses are formed on-the-fly
198 	 * later.)
199 	 */
200 	generate_base_implied_equalities(root);
201 
202 	/*
203 	 * We have completed merging equivalence sets, so it's now possible to
204 	 * generate pathkeys in canonical form; so compute query_pathkeys and
205 	 * other pathkeys fields in PlannerInfo.
206 	 */
207 	(*qp_callback) (root, qp_extra);
208 
209 	/*
210 	 * Examine any "placeholder" expressions generated during subquery pullup.
211 	 * Make sure that the Vars they need are marked as needed at the relevant
212 	 * join level.  This must be done before join removal because it might
213 	 * cause Vars or placeholders to be needed above a join when they weren't
214 	 * so marked before.
215 	 */
216 	fix_placeholder_input_needed_levels(root);
217 
218 	/*
219 	 * Remove any useless outer joins.  Ideally this would be done during
220 	 * jointree preprocessing, but the necessary information isn't available
221 	 * until we've built baserel data structures and classified qual clauses.
222 	 */
223 	joinlist = remove_useless_joins(root, joinlist);
224 
225 	/*
226 	 * Also, reduce any semijoins with unique inner rels to plain inner joins.
227 	 * Likewise, this can't be done until now for lack of needed info.
228 	 */
229 	reduce_unique_semijoins(root);
230 
231 	/*
232 	 * Now distribute "placeholders" to base rels as needed.  This has to be
233 	 * done after join removal because removal could change whether a
234 	 * placeholder is evaluable at a base rel.
235 	 */
236 	add_placeholders_to_base_rels(root);
237 
238 	/*
239 	 * Construct the lateral reference sets now that we have finalized
240 	 * PlaceHolderVar eval levels.
241 	 */
242 	create_lateral_join_info(root);
243 
244 	/*
245 	 * Match foreign keys to equivalence classes and join quals.  This must be
246 	 * done after finalizing equivalence classes, and it's useful to wait till
247 	 * after join removal so that we can skip processing foreign keys
248 	 * involving removed relations.
249 	 */
250 	match_foreign_keys_to_quals(root);
251 
252 	/*
253 	 * Look for join OR clauses that we can extract single-relation
254 	 * restriction OR clauses from.
255 	 */
256 	extract_restriction_or_clauses(root);
257 
258 	/*
259 	 * Now expand appendrels by adding "otherrels" for their children.  We
260 	 * delay this to the end so that we have as much information as possible
261 	 * available for each baserel, including all restriction clauses.  That
262 	 * let us prune away partitions that don't satisfy a restriction clause.
263 	 * Also note that some information such as lateral_relids is propagated
264 	 * from baserels to otherrels here, so we must have computed it already.
265 	 */
266 	add_other_rels_to_query(root);
267 
268 	/*
269 	 * Ready to do the primary planning.
270 	 */
271 	final_rel = make_one_rel(root, joinlist);
272 
273 	/* Check that we got at least one usable path */
274 	if (!final_rel || !final_rel->cheapest_total_path ||
275 		final_rel->cheapest_total_path->param_info != NULL)
276 		elog(ERROR, "failed to construct the join relation");
277 
278 	return final_rel;
279 }
280